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1 Introduction

MTT is a set of Model Transformation Tools based on bond graphs. MTT implements the
theory to be found in the book “Metamodelling: Bond Graphs and Dynamic Systems” by
Peter Gawthrop and Lorcan Smith published by Prentice Hall in 1996 (ISBN 0-13-489824-
9).
It implements two features not discussed in that book:
e bicausal bond graphs and
e hierarchical bond graphs.
In the context of software, it has been said that one good tool is worth many packages.
UNIX is a good example of this philosophy: the user can put together applications from
a range of ready made tools. This manual describes the application of this philosophy to

dynamic system modeling embodied in MTT - a set of Model Transformation Tools each of
which implements a single transformation between system representations.

System representations have two attributes.
e A Form: e.g. acausal bond graph, differential algebraic, linear state-space etc.
e A Language: e.g. Fig, Matlab, LaTeX, Reduce, postscript etc.
Transformations in MTT are accomplished using appropriate software (e.g.
Octave/Matlab, Reduce) encapsulated in UNIX Bourne shell scripts. The relationships
between the tools are encoded in a Make File; thus the user can specify a final

representation and all the necessary intermediate transformations are automatically
generated.

1.1 What is a representation?

Physical systems have many representations. These include

e a schematic diagram,

e a block diagram,

e a bunch of equations,

e a single differential(-algebraic) equation,

e simulation code,

e linearised state-space (or descriptor) equations,

e transfer function (of the linearised system),

e frequency response (of the linearised system),

e ctc...

Each of these representations is related to other representations by an appropriate trans-

formation (see Section 1.2 [What is a Transformation?], page 2. In many cases, a modeler

is presented with a physical system and needs to make a model. In particular, a model, in
this context, is a representation of the system appropriate to a particular use, for example:

e simulation,

e control system design,
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optimisation

etc.

Indeed, for a given physical system, the modeler would need to derive a number of

models. This process can be viewed as a series of steps; each involving a transformation
between representations (see Section 1.2 [What is a Transformation?], page 2.

In this context, the following considerations are relevant.

There is a unique ‘core’ representation of any system. There are many routes from this
core representation, each leading to an appropriate model. There are many possible
routes to this core representation from the physical system: the route chosen is a matter
of convenience.

Because the core representation is unique, it is easy to expand the tool-box to include
additional transformations from the physical system to the core representation and
additional transformations from the core representation to the mode.

Transformation_1 probably cannot, and certainly should not, be completely automated.
Engineering insight, knowledge and experience is essential to capture the essence (with
respect to the particular use) of the physical system whilst discarding irrelevant form.

Representation_1 should be ‘close’ in some sense to the Physical system.

The core representation, and hence the representations leading to it, must contain
enough information to generate all of the required models.

Representations must be easily extensible: it must be possible to add extra components
or attributes without restructuring the representation.

I happen to believe that Bond graphs (see Section 1.3 [Bond graphs|, page 3) provide

the most convenient and powerful basis for the core representation.

1.2 What is a transformation?

Each system representation (see Section 1.1 [What is a Representation?], page 1 is related
to other representations by an appropriate transformation as follows:

Physical system
Transformation_1 —> Representation_1

Transformation_2 —> Representation_2

Transformation_N —> Core representation
Transformation_N+1 —> Representation_N+1

Transformation_N+2 —> Representation_N+2

Transformation_N+M —> Model

Thus modeling is seen as a sequence of transformations between representations.
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1.3 What is a bond graph?

Bond graphs provide a graphical high-level language for describing dynamic systems in a
precise and unambiguous fashion. They make a clear distinction between structure (how
components are connected together), and behavior (the particular constitutive relationships,
or physical laws, describing each component.

They can describe a range of physical systems including;:

Electrical systems

Mechanical systems

Hydraulic systems
e Chemical process systems
More importantly, they can describe systems which contain subsystems drawn from all
of these domains in a uniform manner.

Bond graphs are made up of components (see Section 1.6 [Components], page 4) con-
nected by bonds (see Section 1.5 [Bonds], page 4) which define the relationship between
variables (see Section 1.4 [Variables|, page 3).

1.4 Variables

In bond graph terminology there are four sorts of variables:

e cffort variables

flow variables

integrated effort variables

integrated flow variables

Examples of effort variables are
e voltage

e Dpressure

e force

e torque

e temperature

Examples of flow variables are
e current
e volumetric flow rate
e velocity
e angular velocity

e heat flow

Examples of integrated flow variables are
e charge

e volume
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e momentum
e angular momentum

e heat

1.5 Bonds

Bonds connect components (see Section 1.6 [Components|, page 4) together. Each bond
carries two variables:

e an effort (see Section 1.4 [Variables], page 3) variable and

e a flow (see Section 1.4 [Variables|, page 3) variable.

Each bond has three notations associated with it:

e a half-arrow,
e a causal stroke and

e a causal half-stroke.

The half-arrow indicates two things:

e the direction of power (or pseudo power) flow and

e the side of the bond associated with the flow variable.

The causal stroke indicates two things:

e the effort variable is imposed at the same end as the stroke and

e the flow variable is imposed at the opposite end to the stroke.

The causal half-stoke indicates one thing;:

e if it is on the effort side of the bond, the effort variable is imposed at the same end as
the stroke or

e if it is on the flow side of the bond, the flow variable is imposed at the opposite end to
the stroke.

1.6 Components

Components provide the building blocks of a dynamic system when connected by bonds
(see Section 6.4.1.2 [bonds], page 28). Components have the following attributes:

ports provide the connections to other components (see Section 1.6.1 [Ports], page 5)

constitutive relationships
define how the port-variables are related (see Section 1.6.2 [Constitutive rela-
tionship], page 5)
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1.6.1 Ports

Components have one or more ports. Each port carries two variables, and effort and a flow
variable (see Section 1.4 [Variables], page 3). Any pair of ports can be connected by a bond
(see Section 1.5 [Bonds|, page 4); this connection is equivalent to saying that the effort
variables at each port are identical and that the flow variables at each port are identical.

Ports are implemented in MTT using named SS components. (see Section 6.4.1.9 [Named
SS components], page 31).

The direction of the named SS components. (see Section 6.4.1.9 [Named SS components|,
page 31) is coerced (see Section 6.4.1.10 [Coerced bond direction|, page 31) to have the
same direction as the bons connected to the corresponding port. Thus the direction of the
direction of the named SS components has no significance unless the component is at the
top level.

1.6.2 Constitutive relationship

The constitutive relationship of a component defines how the port variables are related.
This relationship may be linear or non-linear. This typically contains symbolic parameters
(see Section 1.6.3 [Symbolic parameters|, page 5) which may be replaced, for the purposes of
numerical analysis by numeric parameters (see Section 1.6.4 [Numeric parameters|, page 5).

1.6.3 Symbolic parameters

The constitutive relationship of a system component (see Section 1.6 [Components|, page 4)
typically contains symbolic parameters. For example a resistor may have a symbolic resis-
tance r. It is convenient to leave such parameters as symbols when viewing equations or
when performing symbolic analysis such as differentiation.

However, MTT allows replacement of symbolic parameters by numeric parameters (see
Section 1.6.4 [Numeric parameters|, page 5) when appropriate.

1.6.4 Numeric parameters

Numerical parameters are needed to give specific values to symbolic parameters (see Sec-
tion 1.6.3 [Symbolic parameters|, page 5) for the purposes of numeric analysis; for example:
simulation, graph plotting or use within a numerical package such as Octave (see Section 10.4
[Octave], page 80).

1.7 Algebraic loops

Following Chapter 3 of the book, algebraic loops appear as under-causal components in the
bond graph. It is up to the modeler to indicate how these loops are to be resolved by adding
appropriate SS elements.

In particular if zero junction is undercausal an SS:loop component (with effort output
indicated by a causal stroke) with the following label file entry:
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loop SS unknown,zero

For more information, refer to: “Metamodelling: Bond Graphs and Dynamic Systems”
by Peter Gawthrop and Lorcan Smith published by Prentice Hall in 1996 (ISBN 0-13-
489824-9).

1.8 Switched systems

Some systems contain switch-like components. For example an electrical system may contain
on-off switches and diodes and a hydraulic system may shut-off valves and non-return valves.

Such systems are sometimes called hybrid systems. The modelling an simulation of such
systems is the subject of current research. MTT implements a simple pragmatic approach
to the modelling and simulation of such systems via two new Bond Graph components:

ISW a switched I component
CSwW a switched C component

These switches are user controlled through the logic representation (see Section 4.4
[Simulation logic|, page 21).
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2 User interface

There are two user interfaces to MTT: a command line interface (see Section 2.2 [Command
line interface|, page 7) and a menu-driven interface (see Section 2.1 [Menu-driven interface],

page 7).
2.1 Menu-driven interface

The Menu-driven interface for MTT is invoked as:
xmtt

This will bring up a menu which should be self explanatory :-). Various messages will
be echoed in the window from whence xMTT was invoked.

2.2 Command line interface

The command line interface for MTT is of the form:
mtt [options] <system_name> <representation> <language>

[options]
the (optional) option switches (see Section 2.3 [Options]|, page 7)

<system_name>
the name of the system being transformed

<representation>
the mnemonic for the system representation (see Section 6.1 [Representation
summary], page 25)
<language>
the mnemonic for language for the representation (see Chapter 9 [Languages|,
page 79)
for example
mtt rc rep view
creates a view of the report describing system rc and
mtt rc sm m

creates an m file (suitlable for Octave or Matlab) containing state matrices describing
the system rc.

2.3 Options

MTT has a number of optional switches to control its operation. These are invoked imme-
diately after ‘mtt’ on the command line; for example:

mtt -o -ss -cc syst cbg view
invokes the -o, -ss, and -cc options.

If you wish to use an option all the time, use the alias function appropriate to the shell
you are using. For example, using bash:
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alias mtt=’mtt -o -ss -cc’

Means that the previous example can be executed using
mtt syst cbg view

The available options are:

-q quiet mode — suppress MTT banner

-A solve algebraic equations symbolically

-ae <hybrd> solve algebraic equations numerically (this option requires -cc or -oct)
-D debug — leave log files etc

-I prints more information

-abg start at abg.m representation

-c c-code generation

-cc C++ code generation

-d <dir> use directory <dir>

-dc Maximise derivative (not integral) causality

-dc Maximise derivative (not integral) causality

-i <implicit | euler | rk4> Use implicit, euler or Runge Kutta [Vintegration
) ode is same as dae

-oct use oct files in place of m files where appropriate

-opt optimise code generation

-p print environment variables

-partition

partition hierachical system

-r reset time stamp on representation

-s try to generate sensitivity BG (experimental)

-ss use steady-state info to initialise simulations
-stdin read input data from standard input for simulations
-sub <subsystem> operate on this subsystem

-t tidy mode (default)

-u untidy mode (leaves files in current dir)

-v verbose mode (multiple uses increase the verbosity)
-viewlevel

<N> View N levels of hierachy

--version
print version and exit

-—versions
print version of mtt and components and exit
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2.4 Utilities

MTT provides some utilities to help you keep track of model building and to keep things
clean and tidy. The commands, and there purpose are:

mtt help Lists the help/browser commands

mtt copy <system>
Copies the system (ie directory and enclosed files) to the current working di-
rectory.

mtt rename <old_name> <new_name>
Renames all of the defining representations (see Section 6.2 [Defining represen-
tations|, page 27) and textually changes each file appropriately.

mtt <system> clean
Remove all files generated by MTT associated with system ‘system’.

mtt clean Remove all files generated by MTT associated with all systems within the cur-
rent directory.

mtt system representation vc
Apply version control to representation ‘representation’ of system ‘system’.

mtt system vc
Apply version control to all representations (under version control) system ‘sys-

tem’.

These are described in more detail in the following sections.

2.4.1 Help

MTT implements a browser to keep track of all the systems, subsystems and constitutive
relationships that you, and others may write. It is invoked in the following ways:

mtt help representations

mtt help components

mtt help examples

mtt help crs

mtt help representations <match_string>
mtt help components <match_string>

mtt help examples <match_string>

mtt help crs <match_string>

mtt help <component_or_example_or_CR_name>

2.4.1.1 help representations

The command
mtt help representations

lists all of the representations (see Chapter 6 [Representations|, page 25) available in
MTT. These may change as the version number of MTT increases.

The command
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mtt help representations <match_string>

lists those representation which contain the string match_string. This string can be
any regular expression (see standard Linux documentation under awk). For example

mtt help representations descriptor

gives all representations containing the word descriptor.

2.4.1.2 help components

The command
mtt help components

lists all of the components (see Section 1.6 [Components|, page 4) available in MTT.
These may change as the version number of MTT increases.

The command
mtt help components <match_string>

lists those component which contain the string match_string. This string can be any
regular expression (see standard Linux documentation under awk). For example

mtt help components source

gives all components containing the word component.

2.4.1.3 help examples

This command provides a good way to get started in MTT. having found an interesting
example, copy it to your working directory using

mtt copy <example_name>
(see Section 2.4.2 [Copy], page 11)
mtt help examples

lists all of the examples available in MTT. This list will change as more examples are
added.

The command
mtt help examples <match_string>

lists those component which contain the string match_string. This string can be any
regular expression (see standard Linux documentation under awk). For example

mtt help examples pharmokinetic

gives all examples containing the word pharmokinetic.

2.4.1.4 help crs

The command
mtt help crs

lists all of the constitutive relationships (see Section 1.6.2 [Constitutive relationship],
page 5) available in MTT. These may change as the version number of MTT increases.

The command
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mtt help crs <match_string>

lists those constitutive relationships which contain the string match_string. This string
can be any regular expression (see standard Linux documentation under awk). For example

mtt help crs sin

gives all crs containing the word sin.

2.4.1.5 help <name>

The command
mtt help <name>

gives a detailed description of the entity called name.

2.4.2 Copy

MTT provides a way of copying examples to your working directory:
mtt copy <example_name>
Use the command
mtt help examples
(see Section 2.4.1.3 [help examples], page 10) to find something of interest.

Note that components and constitutive relationships are automatically copied when re-
quired.

2.4.3 Clean

MTT generates a lot of representations in a number of languages. Some of these you will
edit yourself; others can always be recreated by MTT. It makes sense, therefore to have a
utility that removes all of these other files when you have finished actively working with a
particular system. These are two versions:

1. mtt system clean
2. mtt clean
The first removes all files that can be regenerated with MTT associated with system

‘system’; the second removes all such files associated with all systems in the current working
directory.

The files which remain after such a clean are the Defining representations (see Section 6.2
[Defining representations|, page 27).

2.4.4 Version control

When you are working on a modeling project, it is easy to forget what changes you made to
a system and why you made them. Sometimes, you may regret some changes and wish to
revert to an earlier version: even if you use .old files this may be difficult to achieve safely.

These are very similar problems to those faced by software developers and can be solved
in the same way: using version control. MTT provides version control using the standard
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GNU Revision Control System (RCS). This is hidden from the user, but is fully comple-
mentary to direct use of RCS (e.g. via emacs vc commands) to the more experienced user
who wishes to do so.

The only files that you should ever change (i.e. the ones never overwritten by MTT) are
the Defining representations (see Section 6.2 [Defining representations|, page 27).

All of the files, with the exception of system_abg.fig, are initially created by MTT and
contain the RCS header for version control.

The MTT version control will automatically expand this part of the text to include all
change comments that you give it — so will direct use of RCS (e.g. via emacs vc commands)

The MTT version commands are as follows:

mtt system representation vc
Apply version control to representation ‘representation’ of system ‘system’.

mtt system vc
Apply version control to all representations (under version control) system ‘sys-

tem’.

The first is appropriate after you have made a revision to a single file. It will prompt you
for a change comment; this will be automatically included in the file header. In addition,
enough information will be saved to enable any version to be retrieved via RCS.

The second is appropriate to record the state of the entire model. This assumes that
all relevant files have been recorded by the first version of the command. Once again, old
versions of the entire model can be retrieved using the relevant RCS commands.

A subdirectory ‘RCS’ is created to hold this information. You need not bother about
the contents, except that you must not delete any files within ‘RCS’.
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3 Creating Models

MTT helps you to analyse and transform system models — ultimately the process of cap-
turing the real world in a model is up to you. This chapter discusses the MTT aspects of
creating a model. For convenience, this is divided into creating simple models and creating
complex models.

3.1 Quick start

It is probably worth a quick skim though MTT to get a flavour of what it can do before
plunging into the detail of the rest of this document. Here is a series of commands to do
this.

Copy an initial set of files describing the bond graph.
mtt copy rc
Move to it.
cd rc
View the acausal bond graph (the system is called “rc”).
mtt rc abg view
View the causal bond graph of the system.
mtt rc cbg view
View the corresponding ordinary differential equations (ode).
mtt rc ode view
View the system (output) step response
mtt rc sro view
An alternative (but more general) way of achieving the same result is
mtt -c rc odeso view
View the system transfer function
mtt rc tf view
View the log modulus frequency response of the system.
mtt rc lmfr view

View the log modulus frequency response of the system for 100 logarithmically spaced
frequencies in the range 0.1 to 10 radians per second.

mtt rc lmfr view ’W=logspace(-1,1,100);’

MTT has a report generation ((see Section 6.16 [Report], page 64) facility which can
generate a hypertext description of the system.

mtt rc rep hview

The report contents are specified by the rep representation (see Section 6.16 [Report],
page 64), in this case the corresponding file is:
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% %% Outline report file for system rc (rc_rep.txt)

mtt rc abg tex
mtt rc struc tex
mtt rc cbg ps

mtt rc ode tex
mtt rc ode dvi
mtt rc sm tex

mtt rc tf tex

mtt rc tf dvi

mtt rc sro ps

mtt rc 1lmfr ps
mtt rc odes h
mtt rc numpar txt
mtt rc input txt
mtt -c rc odeso ps
mtt rc rep txt

A non-hypertext version can be viewed using:
mtt rc rep view

Now have a go at modifying the bond graph.
mtt rc abg fig

This brings up the bond graph in Xfig (see Section 10.2 [Xfig], page 80). Try creating a
system with two rs and 2 cs.

More examples can be found using
mtt help examples
Details of an example can be found using
mtt help <example_name>
and copied using
mtt copy <example_name>
Lots of examples are available.
mtt help examples
lists them and
mtt copy <name>

gets you an example.

3.2 Creating simple models

For then purposes of this section, simple models are those which are built up from bond
graphs involving predefined components. In contrast, more complex systems (see Section 3.3
[Creating complex models], page 16) need to be built up hierarchically.

The recommended sequence of steps to create a simple model is:

1. Decide on a name for the system; let us call it ‘syst’ for the purposes of this discussion.
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2. Invoke the Bond Graph editor to draw the acausal Bond Graph.
mtt syst abg fig

3. Draw the Bond Graph (see Section 6.4.1 [Language fig (abg.fig)], page 28), including the
bonds (see Section 1.5 [Bonds|, page 4), the components (see Section 1.6 [Components],
page 4) and any artwork (see Section 6.4.1.15 [artwork], page 33) to make the Bond
Graph more readable. The graphical editor xfig is (see Section 10.2 [Xfig], page 80) is
self-explanatory. The icon library is helpful here (see see Section 6.4.1.1 [icon library],
page 28).

4. Add causal strokes (see Section 6.4.1.3 [strokes|, page 29) where needed to define causal-
ity. As a general rule, use the minimum number of strokes needed to define the problem;
this will often be only on the SS components. (see Section 6.4.1.6 [SS components],
page 30).

Save the bond graph.

5. View the corresponding causal bond graph.

mtt syst cbg view

1. At this stage, MTT will warn you that the labeled components do not appear in
the label file - this can safely be ignored.

2. MTT will indicate the percentage of components which are causally complete —
ideally this will be 100\%. Components which are not causally complete will be
listed.

3. A view of the causal bond graph will be created. The added causal strokes are
indicated in blue, undercausal components in green and overcausal components in

red.

4. If the bond graph is causally complete, proceed to the next step, otherwise think
hard and return to the first step.

6. At this stage, no constitutive relationships have been defined. Nevertheless, MTT will
proceed in a semi-qualitative fashion by assuming that all constitutive relationships
are unity (and therefore linear). It may be useful at this stage to view various derived
representations to check the overall model properties before proceeding further. For
example:

1. View the system Differential-algebraic equations
mtt syst dae view
2. View the system state matrices
mtt syst sm view
3. View the system transfer function
mtt syst tf view
4. View the system step response
mtt syst sro view

7. As well as creating the causal bond graph, MTT has also generated templates for other
text files (see Section 6.2 [Defining representations|, page 27) used to further specify
the system. These can now be edited using your favorite text editor (see Section 10.3
[Text editors|, page 80).
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8. MTT will now generate the representations (see Section 6.1 [Representation summary],
page 25)that you desire. For example the system can be simulated by

mtt syst odeso view

MTT will complain if a component is named in the bond graph but not in the label
file and vice versa. This mainly to catch typing errors.

3.3 Creating complex models

Complex models — in distinction to simple models (see Section 3.2 [Creating simple models],
page 14) — have a hierarchical structure. In particular, bond graph components can be
created by specifying their bond graph. Typically, such components will have more than
one port (see Section 1.6.1 [Ports|, page 5); within each component, ports are represented
by named SS components (see Section 6.4.1.9 [Named SS components], page 31); outwith
each component, ports are unambiguously identified by labels (see Section 6.4.1.11 [Port
labels], page 32) and vector labels (see Section 6.4.1.12 [Vector port labels|, page 32).

Complex models are thus created by conceptually decomposing the system into simple
subsystems, and then creating the corresponding bond graphs. The procedure for simple
systems (see Section 3.2 [Creating simple models], page 14) is then followed using the top
level system (see Section 3.3.1 [Top level], page 16); MTT then recursively operates on the
lower level systems.

The report representation (see Section 6.16 [Report], page 64) provides a convenient way
of viewing a complex system.

An example of such a system can be created as follows:

mtt copy twolink
mtt twolink rep hview

3.3.1 Top level

The top level of a complex model contains subsystems but is not, itself, contained by other
systems. It has the following special features:

e its name is used in the mtt command as the system name.

e all named SS componenents (see Section 6.4.1.9 [Named SS components|, page 31) are
treated as ordinary SS components (see Section 6.4.1.6 [SS components], page 30).
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4 Simulation

One purpose of modelling is to simulate the modeled dynamic system. Although this is
just another transformation (see Section 1.2 [What is a Transformation?]|, page 2) and
therefore is covered in the appropriate chapter (see Chapter 6 [Representations|, page 25),
it is important enough to be given its own chapter.

Simulation is typically performed using an appropriate simulation language (which is of-
ten inappropriately conflated with modelling tools). MTT provides a number of alternative
routes to simulation based on the following representations (see Chapter 6 [Representations],
page 25):

cse constrained-state differential equation form
ode ordinary differential (or state-space) equations

in each case these equations may be linear or nonlinear.

Special cases of numerical simulation, appropriate to linear systems, are:

ir impulse response - state
iro impulse response - output
ST impulse response - state
sSTro impulse response - output

There are a number of languages (see Chapter 9 [Languages|, page 79) which can be
used to describe these representations for the purposes of numerical simulation:

m octave a high-level interactive language for numerical computation.
c gce a ¢ compiler.
cc g++ a C++ front-end to gece.

There are a number solution algorithms available:
e explicit solution via the matrix exponential
e backward Euler integration (explicit)
e forward Euler integration (implicit)
e Runge Kutta IV integration (explicit, fixed step)
e Hybrd algebraic solver (MINPACK, Octave fsolve)
However, all combinations of representation, language and solution method are not sup-

ported by MTT at the moment. Given a system ‘system’, some recommended commands
are:

mtt system iro view
creates the impulse response of a linear system via the system_sm.m represen-
tation using explicit solution via the matrix exponential.

mtt system sro view
creates the step response of a linear system via the system_sm.m representation
using explicit solution via the matrix exponential.
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mtt —c system odeso view
creates the response of a nonlinear system via the system_ode.c representation
using implicit integration.

mtt -c -1 euler system odeso view
creates the response of a nonlinear system via the system_ode.c representation
using euler integration.

Simulation parameters are described in the system_simpar.txt file (see Section 4.2 [Sim-
ulation parameters|, page 18).

The steady-state solution of a system can also be “simulated” (see Section 4.1 [Steady-
state solutions|, page 18).

4.1 Steady-state solutions

4.1.1 Steady-state solutions (odess)

MTT can compute the steady-state solutions of an ordinary differential equation; this used
the octave function ‘fsolve’. The solution is computed as a function of time using the
input specified in the input file. The simulation parameter file (see Section 4.2 [Simulation
parameters|, page 18) is used to provide the time scales.
For example

mtt copy rc

cd rc

mtt rc odess view

4.1.2 Steady-state solutions (ss)

A rudimentary form of steady-state solution exists in mtt. The steady states and inouts
are supplied by the user in the file system_simpar.r and the corresponding output and sate
derivative computed by MTT using

mtt system ss view
For example

mtt copy rc

cd rc

mtt rc sspar view
mtt rc ss view

4.2 Simulation parameters

Simulation parameters are set in the system_simpar.txt file. At the moment this sets the
following variables:

e LAST the last simulation time
e DT the incremental time (for plotting)
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e STEPFACTOR the number of integration steps per DT — thus the integration interval
is DT/STEPFACTOR

e WMIN Minimum frequency = 10~ WMIN

e WMAX Maximum frequency = 10°"WMAX

e WSTEPS Number of Frequency steps.

e INPUT The input index for frequency response

There are a number of solution algorithms

e Euler basic Euler integration (see Section 4.2.1 [Euler integration|, page 19). This
method is simple, but not recommended for stiff systems.

e Implicit semi-implicit integration (see Section 4.2.2 [Implicit integration|, page 19) -
uses the smx representation to give stability.

e Runge Kutta IV fixed step Runge Kutta fourth order integration (see Section 4.2.3
[Runge Kutta IV integration], page 20).

e Hybrd numerical algebraic equation solver

4.2.1 Euler integration

Euler integration approximates the solution of the Ordinary Differential Equation
dx/dt = f(x,u)
by
x := x + f(x,u)*DDT
where
DDT = DT/STEPFACTOR

If the system is linear, stability is ensured if the integer STEPFACTOR is chosen to be
greater than the real number

(maximum eigenvalue of -A)*DT/2
where A is the nxn matrix appearing in
f(x,u) = Ax + Bu

If the system is non linear, the linearised system matrix A should act as a guide to the
choice of STEPFACTOR.

4.2.2 Implicit integration

Implicit integration approximates the solution of the Ordinary Differential Equation
dx/dt = f(x,u)
by
(I-AxDT)x := (I-A*xDT)x + f(x,u)DT

where A is the linearised system matrix. This implies the solution of N (=number of
states) linear equations at each sample interval. The OCTAVE version used the ‘\’ operator
to solve the set of linear equations, the C version uses LU decomposition.
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If the system is linear, stability is ensured unconditionaly. If the system is non-linear,
then the method still works well.

This method is nice in that choice of DT trades of accuracy against computation time
without compromising stability. In addition, the correct stready-state values are achieved.

This approach can also be used for constrained state equations of the form:
E(x) dx/dt = f(x,u)

where E(x) is a state-dependent matrix. The approximate solution is then given by:
(E(x)-A*DT)x := (E(x)-AxDT)x + f(x,u)DT

which reduces to the ordinary differential equation case when E(x)=I.

The _smx representation includes the E matrix.

4.2.3 Runge Kutta IV integration

Runge Kutta IV approximates the solution of the Ordinary Differential Equation
dx/dt = f(x,t)

by

x :=x + (DT/6)*(k1 + 2%k2 + 2xk3 + k4)
where

kl = f(X,t)

k2 := £f(x+(1/2)*k1,t+(1/2)*DT)

k3 := f(x+(1/2)*k2,t+(1/2)*DT)
k4 := f(x+k3,t+DT)
The MTT implementation of Runge-Kutta integration is a fourth order, fixed-step, ex-
plicit integration method.

For some systems of equations, the increased accuracy of using a fourth order method can
allow larger step-lengths to be used than would allowed by the lower order Euler integration
method.

It should be noted that during the interemediate calculations (k1...k4), the input vector
u is not advanced w.r.t. time; the system inputs are assumed to be constant over the period
of the integration step-length.

4.2.4 Hybrd algebraic solver

The hybrd algebraic solver of MINPACK, which is used by Octave in the fsolve routine,
may be used in conjunction with one of the other integration methods to solve semi-explicit,
index 1, differential algebraic equations; these may be generated in MTT models by use of
unknown SS Components see Section 6.6.1 [SS component labels], page 39.

This method requires that compiled simulation code is used; either -cc or -oct. To
perform a simulation based on a model sys,

mtt -cc -ae hybrd -i euler sys odeso view

MTT will attempt to minimise the residual error at each integration time-step using the
hybrd routine.


http://www.netlib.org/minpack/hybrd.f
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This method of simulation is particularly well suited to stiff systems where very fast
dynamics are of little interest. Care must be taken to ensure that an acceptable level of
convergence is achieved by the solver for the system under investigation.

4.3 Simulation input

This is defined in the system_input.txt file. A default file is created automatically by MTT.
This is done explicitly by

mtt system input txt

If the file already exists, the same command checks that all inputs are defined and that
all defined inputs exist in the system and promts the user to correct discrepancies.

Inputs are defined by the full system name appearing in the structure file (see Section 6.7
[Structure (struc)], page 48). They can depend on states (again defined by name), time
(defined by t) and parameters

For example:

system_pump_1l_1_u = 4eb*atm;
system_pump_r_1_u = 4eb*x(t<10)*atm;
system_ss_i = Oxkg;
system_ss_o = 3e-3xkg;
system_v_1_u = (£>10);
system_v_11_1_u =1;
system_v_1lr_1_u = (t<10);
system_v_ul_1_u = 0;
system_v_ur_1_u = (t>10);

4.4 Simulation logic

This is defined in the system_logic.txt file. A default file is created automatically by MTT.
This is done explicitly by

mtt system logic txt

If the file already exists, the same command checks that the logic corresponding to all
switch states (see Section 1.8 [Switched systems]|, page 6) are defined and that all defined
logic exists in the system and promts the user to correct discrepancies.

Logical inputs are defined by the full system name corresponding to MTT _switch com-
ponents appearing in the structure file (see Section 6.7 [Structure (struc)], page 48) with
“logic’ appended. They can depend on states (again defined by name), time (defined by t)
and parameters

For example:

bounce_ground_1_mtt_switch_logic = bounce_intf_1_mtt3<0;
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4.5 Simulation initial state

This is defined in the system_state.txt file. A default file is created automatically by MTT.
This is done explicitly by
mtt system state txt
If the file already exists, the same command checks that all states are defined and that
all defined states exist in the system and prompts the user to correct discrepancies.
States are defined by the full system name appearing in the structure file (see Section 6.7
[Structure (struc)], page 48). They can depend on parameters. For example
system_c_1 = (le4/k_1)/kg;
system_c_11 = (le4/k_s)/kg;
system_c_lr = (le4/k_s)/kg;
system_c_u = (le4/k_1)/kg;

4.6 Simulation code

simulation code can be generated by MTT in the form of the ode2odes transformation. This
can be produced in a number of languages, including .m, .oct, C and C++ see Chapter 9
[Languages|, page 79.
To generate simulation code in C:
mtt -c [options] sys ode2odes c
Similarly, to generate C++ code:
mtt -cc [options] sys ode2odes cc
To generate an executable based on the C++ representation:

mtt -cc [options] sys ode2odes exe

4.6.1 Dynamically linked functions

Some model representations can be compiled into dynamically loaded code (shared objects)
which are compiled prior to use in other modelling and simulation environments; in par-
ticular, .oct files can be generated for use in GNU Octave (see Section 10.4.2 [Creating
GNU Octave .oct files], page 82) and .mex files can be generated for use in Matlab (see Sec-
tion 10.4.3 [Creating Matlab .mex files], page 83) or Simulink (see Section 10.4.4 [Embedding
MTT models in Simulink], page 83). The use of compiled (and possibly compiler-optimised)
code can offer significant processing speed advantages over equivalent interpreted functions
(e.g. .m files) for computationally intensive procedures.

The C++ code generated by MTT allows the same code to be generated as standalone
code, Octave .oct files or Matlab .mexglx files. Although MTT usually takes care of the
compilation options, if it is necessary to compile the code on a machine on which MTT is
not installed, the appropriate flag should be passed to the compiler pre-processor:

e -DCODEGENTARGET=STANDALONE
e —-DCODEGENTARGET=0CTAVEDLD

e -DCODEGENTARGET=MATLABMEX
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4.7 Simulation output

The view (see Section 10.1 [Views], page 80) representation provides a graphical represen-
tation of the results of a simulation; the postscript language provides the same thing in a
form that can be included in a document.

These are two simulation output representations
odes ordinary differential equation solution (states)
odeso ordinary differential equation solution (output)

Particular output variables can be selected by adding a fourth argument in one of 2
forms

’namel;name2; .. ;namen’
plot the variables with names nal .. namen against time

’namel:name2’
plot the variable with name2 against that with name 1
An example of plotting a single variable against time is:
mtt -o -c -ss OttoCycle odeso ps ’0OttoCycle_cycle_V’
An example of plotting one variable against another is:

mtt -o -c -ss 0ttoCycle odeso ps ’0ttoCycle_cycle_V:0ttoCycle_cycle_P’

4.7.1 Viewing results with gnuplot

Simulation plots may be conveniently selected, viewed with gnuplot and saved to file (in
PostScript format) using the command

mtt [options] rc gnuplot view

This will cause a menu to be displayed, from which states and outputs may be selected
for viewing. Clicking on a parameter name will, by default, cause the time history of the
selected parameter to be displayed.

As with xMTT (see Section 2.1 [Menu-driven interface|, page 7), the Wish Tcl/Tk in-
terpreter must be installed to make use of this feature.

4.7.2 Exporting results to SciGraphica

Simulation results can be converted into an XML-format SciGraphica (version 0.61) .sg file
with the command

mtt [options] sys odes sg

The SciGraphica file will contain two worksheets, X_sys and Y_sys, containing the state
and output time-histories from the simulation.


http://www.gnuplot.org
http://scigraphica.sourceforge.net
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5 Sensitivity models

The sensitivity model of a system is a set of equations giving the sensitivity of the system
outputs with respect to system parameters. MTT has built in methods for assisting with
the development of such models.

This feature is experimental at the moment, but the following example gives an idea of
what can be achieved.
mtt copy rc
cd rc
mtt -s src ode view
mtt -s src odeso view

The sensitivity system src is automatically created from the system rc using the prede-
fined sR and sC components together with vector junctions (see Section 6.4.1.14 [Vector
components|, page 33). The four outputs are the two system outputs plus the two sensitivity
functions.

An alternative route is to create the sensitivity functions by symbolic differentiation.
The following sensitivity representations are available:

scse sensitivity constrained-state equations
sm sensitivity state matrices

scsm sensitivity constrained-state matrices
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6 Representations

As discussed in Section 1.1 [What is a Representation?], page 1, a system has many repre-
sentations. The purpose of MTT is to provide an easy way to generate such representation
by applying the appropriate sequence of transformations. The representations supported
by MTT are summarised in Section 6.1 [Representation summary|, page 25.

There is a two-fold division of representations into those with which the user defines the
system and its various attributes, and those which are derived from these. The defining
representations are listed in Section 6.2 [Defining representations], page 27.

Each representation is implemented in one or more languages depending on its use.
These languages are discussed in Chapter 9 [Languages|, page 79 and are associated with
appropriate tools for modifying or viewing the representations.

6.1 Representation summary

Some of the the representations available in MTT are (in alphabetical order):

abg acausal bond graph

cbg causal bond graph

cr constitutive relationship for each subsystem
cse constrained-state equations

csm constrained-state matrices

dae differential-algebraic equations
daes dae solution - state

daeso dae solution - output

def definitions - system orders etc.
desc Verbal description of system

dm descriptor matrices

ese elementary system equations

fr frequency response

input numerical input declaration

ir impulse response - state

iro impulse response - output

1bl label file

lmfr loglog modulus frequency response
lpfr semilog phase frequency response

nifr Nichols style frequency response
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numpar
nyfr
obs
ode
odes
odes
odeso
odess
odesso
rbg
rep
rfe
sabg
simp
sm

smx
sms
smss
sTr

sro

ss
sspar
struc
sub
sub
sympar

tf

Representations 26

numerical parameter declaration
Nyquist style frequency response
observer equations for CGPC
ordinary differential equations

ode solution - state

ODE simulation header file

ode solution - output

ode numerical steady-states - states
ode numerical steady-states - outputs
raw bond graph

report

robot-form equations

stripped acausal bond graph
simplification information

state matrices

state matrices containing explicit states and inputs
ode

SM simulation header file

step response - state

step response - output

steady-state equations

steady-state definition
structure - list of inputs, outputs and states
Executable subsystem list

LaTeX subsystem list

symbolic parameters

transfer function

A complete list can be found via the help representations command (see
Section 2.4.1.1 [help representations|, page 9).

Many of these representations have more than one language (see Chapter 6 [Represen-
tations], page 25) associated with them.

Some of these representations define the system (see Section 6.2 [Defining representa-
tions], page 27).
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6.2 Defining representations

The following representations define the system and therefore must, ultimately, be defined
by the user. However, all of these are assigned default values by MTT and may then be
subsequently edited (see Section 10.3 [Text editors], page 80) viewed or operated on by the
appropriate tools (see Chapter 10 [Language tools], page 80).

system_abg.fig
the acausal bond graph (see Section 6.4 [Acausal bond graph (abg)|, page 28)

system_1bl.txt
the label file (see Section 6.6 [Labels (1bl)], page 37)

system_desc.tex
the description file (see Section 8.2.2 [Detailed], page 78)

system_simp.r
algebraic simplifications to make output more readable (see Section 6.9.2 [Sym-
bolic parameters for simplification (simp.r)], page 52)

system_subs.r
algebraic substitutions to resolve, eq trig. identities (see Section 6.9.1 [Symbolic
parameters (subs.r)], page 51)

system_simpar.txt
simulation parameters (see Section 4.2 [Simulation parameters], page 18)

system_numpar.txt
numerical parameters (see Section 6.9.3 [Numeric parameters (numpar)],
page 52)

system_input.txt
the system input for simulations (see Section 4.3 [Simulation input|, page 21)

system_logic.txt
the switching logic for simulations (see Section 4.4 [Simulation logic], page 21)

system_sspar.r
defines the system steady-state (see Section 4.1.2 [Steady-state solutions - sym-
bolic (ss)], page 18)

6.3 Verbal description (desc)

Systems can be documented in LaTeX using the _desc.tex file. This file is included in the
report (see Section 6.16 [Report], page 64) if the abg tex option is included in the rep.txt
file. As usual, MTT provides a default text file to be edited by the user (see Section 10.3
[Text editors|, page 80).
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6.4 Acausal bond graph (abg)

The acausal bond graph is the main input to MTT. It is up to you, as a system mod-
eler, to distill the essential aspects of the system that you wish to model and capture this
information in the form of a bond graph.

The inexperienced modeler may wish to look in one of the standard textbooks and copy
some bond graphs of systems to get going.

To create the acausal bond graph of system ‘sys’ in language fig type:
mtt sys abg fig

To create the acausal bond graph of system ‘sys’ in language m type:
mtt sys abg m

To view the acausal bond graph of system ‘sys’ type:
mtt sys abg view

6.4.1 Language fig (abg.fig)

A bond graph is made up of:
bonds To connect components together.
strokes  To indicate causality.

components
Either simple or compound.

artwork  Irrelevant to the system but useful to the user.

An icon library of bonds, components and other symbols is available within xfig (see
Section 6.4.1.1 [icon library], page 28).

6.4.1.1 Icon library

A number of predefined iconic symbols are available within xfig.

Click onto the library icon
Click onto the library pull-down menu and select BondGraph
Select iconic symbols from the presented list

6.4.1.2 Bonds

Bonds are represented by polylines with two segments. They must be the default style
(i.e. plain not dashed or dotted). The shortest segment is taken to be the half-arrow. its
positioning is significant because:

e It points in the direction of power flow; thus a bond normally points towards C, I and
R components.

e the corresponding side of the bond indicates flow causality; the other side represents
effort causality. This is significant when using casual half-strokes (see Section 6.4.1.3
[strokes], page 29). Please adopt the convention of having the half-arrows below hori-
zontal bonds and to the right of vertical bonds.
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6.4.1.3 Strokes

Causal strokes are represented by single-segment polylines. There are two sorts of strokes:

e Full strokes: these are the usual bond-graph strokes and determine both the effort and
flow causality in the usual way. The centre of the stroke should be at about one end
of the bond and be at right angles to it.

e Half strokes: these are an innovation in MTT and allow you to specify the effort and
flow causality independently. The end of the stroke should be at about one end of
the bond and be at right angles to it. If the causal half-stroke is on the same side as
the half-arrow (see Section 6.4.1.2 [bonds], page 28) then it determines flow causality;
if, on the other hand, it is on the opposite side to the half-arrow (see Section 6.4.1.2
[bonds|, page 28) then it determines effort causality. Two half strokes on the same,
but on opposite sides of the bond are equivalent to a a full stroke at the same end of
the bond.

MTT is reasonably forgiving; but a neat diagram will be less ambiguous to you as well
as to MTT.

Causality is indicated as follows:
e FEffort is imposed at the same end as the stroke.

e Flow is imposed at the opposite end as the stroke.

6.4.1.4 Components

Components are represented by a text string in fig. The recommended style is: 20pt,
Times-Roman and centre justified.

The component text string can be of the following forms:

type Just the type of the component is indicated. Components may be either Simple
components (see Section 6.4.1.5 [Simple components|, page 30) or Compound
components (see Section 6.4.1.8 [Compound components|, page 31). For exam-
ple:

R

type:label
Both the type and the label of the component are given. The type must be a
valid name (see Section 6.4.1.16 [Valid names|, page 33.The name provides a
link to more information to be found in See Section 6.6 [Labels (Ibl)], page 37.
For example:

R:r
type:label:cr
Not only are the type and the label of the component given, but also the
component cr argument. The type must be a valid name (see Section 6.4.1.16

[Valid names|, page 33.The name provides a link to more information to be
found in See Section 6.6 [Labels (Ibl)], page 37. For example:

R:r:flow,r
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type:label:expression

type*n

Expression is a mathematical expression relating the effort (called mtt_e) to the
flow (called mtt_f). For example the following three forms are equivalent
R:r:mtt_e=r*mtt_f
R:r:mtt_e-r*mtt_£=0
R:r:mtt_f=mtt_e/r

A non-linear example is:

R:r:mtt_e = sin(mtt_£)

The name, together with the number ‘n’ of repetitions of the component, are
given. This repetition only makes sense if the component has an even number of
ports (see Section 6.4.1.11 [Port labels], page 32); n copies of the component are
concatenated with odd Named ports (see Section 6.4.1.11 [Port labels|, page 32)
of the component being connected to the even Named ports of the previous
component in the chain in numerical order. This feature is particularly useful
if the component is compound and can be used for, example to give a lumped
approximation of a distributed system. For example:

MySystem*25

type:label*n

This complete form and is a combination of the simpler forms. For example:
MySystem:MyLabel*25

6.4.1.5 Simple components

The following simple components are defined in MTT.

R

C

I
SS
TF
GY
AE
AF
CSwW
ISw

Standard one-port R
Standard one-port I
Standard one-port I
Source-sensor
Transformer
Gyrator

Effort amplifier
Flow amplifier
Switched one-port 1
Switched one-port I

6.4.1.6 SS components

$$

SS components provide input and output variables for a system; Named SS components
(see Section 6.4.1.9 [Named SS components|, page 31) provide this for subsystems.
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6.4.1.7 Simple components - implementation

Each simple component, with name NAME, is defined by two m files:

NAME_cause.m
defines the possible causal patterns for the component

NAME_eqn.m
defines the equations generated

Only the experienced user would normally define simple components - Compound com-
ponents (see Section 6.4.1.8 [Compound components|, page 31) are recommended for DIY
components.

6.4.1.8 Compound components

Compound components are systems described by bond graphs and implemented by MTT.
They have special SS components, Named SS components (see Section 6.4.1.9 [Named SS
components|, page 31), to indicate connections to the encapsulating system.

Like any other system, they are described by a graphical Bond Graph description (see
Section 6.4.1 [Language fig (abg.fig)], page 28), and a label file (see Section 6.6 [Labels
(Ibl)], page 37).

By convention, all of the files describing a component live in a directory with the same
name as the component.

6.4.1.9 Named SS components

Named SS components provide the link from the system which defines compound com-
ponent to the system which uses a compound component see Section 6.4.1.8 [Compound
components|, page 31. A named SS components is of the form SS: [name];

Where ‘name’ is a name consisting of alphanumeric characters and underscore; for ex-
ample:

SS: [Mechanical_1]

Each such named SS provides one of the ports (see Section 1.6.1 [Ports|, page 5). The di-
rection of the named SS components. (see Section 6.4.1.9 [Named SS components], page 31)
is coerced (see Section 6.4.1.10 [Coerced bond direction|, page 31) to have the same direc-
tion as the bond connected to the corresponding port. Thus the direction of the direction
of the named SS components has no significance unless the component is at the top level of
a system.

If a named SS component exists at the top level (see Section 3.3.1 [Top level], page 16)
and is treated as an ordinary SS component with the given direction and with the attributes
specified in the label file (see Section 6.6 [Labels (Ibl)], page 37).

6.4.1.10 Coerced bond direction

Named SS components (see Section 6.4.1.9 [Named SS components], page 31) provide the
mechanism for declaring the ports (see Section 1.6.1 [Ports|, page 5) of a component. The
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corresponding bond has a direction. However, under some circumstances, it may be useful
to reverse this direction. MTT provides a coercion mechanism for this: the the direction of
the bond attached to the named SS component (see Section 6.4.1.9 [Named SS components],
page 31) is replaced by the direction of the bond attached to the component port.

6.4.1.11 Port labels

Most multi-port components have ports see Section 1.6.1 [Ports|, page 5)which display
different behaviors; the exception to this is the junction (0 and 1) components. For this
reason, MTT provides a method for unambiguously identifying the ports of a multi-port
component by port labels.

A port label is indicated by a name within parentheses of the form [name], where ‘name’
is a name consisting of alphanumeric characters and underscore; for example:
[Mechanical_1]

This provides a label for corresponding to the component to which the nearest bond-end
is attached.

The following rules must be be obeyed:

e If a component has any port labels at all, there must be one for each port of the
component.

Port labels may be grouped into vector port labels (see Section 6.4.1.12 [Vector port
labels], page 32). Components with compatible (ie containing the same number of ports)
vector ports may be connected by a single bond (see Section 1.5 [Bonds|, page 4); such
a bond implies the corresponding number of bonds (one for each element of the vector
port label). All such bonds inherit the same direction and any explicit causal strokes (see
Section 6.4.1.3 [strokes|, page 29)

6.4.1.12 Vector port labels

Port labels (see Section 6.4.1.11 [Port labels|, page 32) may be grouped into vector port
labels of the form [namel,name2,name3].

[Mechanical_1,Electrical,Hydraulic_5]

6.4.1.13 Port label defaults

Whether impicitly or explicity, all ports of components (with the exception of 0 and 1
junctions) must have lables (see Section 6.4.1.11 [Port labels|, page 32). However, these
can be omitted from the bond graph in the following circumstances and default labels are
supplied by MTT.

1. A single unlabled inport defaults to [in]
2. A single unlabled outport defaults to [out]
These defaults may, in turn be aliases (see Section 6.6.9 [Aliases|, page 42) for port
labels (see Section 6.4.1.11 [Port labels|, page 32) or vector port labels (see Section 6.4.1.12

[Vector port labels], page 32). Combining the default and alias mechanism is a powerful
tool for creating uncluttered, yet complex, bond graph models.
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6.4.1.14 Vector Components

Vectors of components can be created in four cases: 0 junctions, 1 junctions, SS components
and SS port components.
In each case, the presence of a vector component is indicated by a single port label (see
Section 6.4.1.11 [Port labels], page 32) of one of two forms:
1. containing numerals from 1 to the order of the vector. Thus a vector of 3 components
is indicated by a port label of the form [1,2,3].

2. 1: followed by the order of the vector. Thus a vector of 3 components is indicated by
a port label of the form [1:3].

Within the corresponding label file (see Section 6.6 [Labels (Ibl)], page 37), the compo-
nents of a vector port can be accessed using _i where i is the corresponding index. Thus
a port SS:[Electrical] appearing near the port label [1,2,3] could contain the port alias (see
Section 6.6.9.1 [Port aliases], page 43)

%ALIAS in Electrical_1,Electrical_2,Electrical_3

6.4.1.15 Artwork

You are encouraged to annotate your bond graphs extensively - this makes them an imme-
diately readable document whilst retaining the precise and unambiguous expressive power
of the bond graph.

You may add any Fig (see Section 9.1 [Fig|, page 79) object to the bond graph as long
as it will not be interpreted as part of the bond graph. The reccommended way to acheive
this is to put the Bond Graph at depth 0,10,20 etc (ie depth modulo 10 is zero) and artwork
at any other depth.

For compatibility with earlier versions of MTT, the following objects are ignored even
at level 0. However, their use is strongly discouraged.

e Adding text is OK as long as it cannot be confused with components (see Section 6.4.1.4
[components|, page 29). In particular, you can include invalid component characters
such as white space, ", 7, ! etc.

e Adding boxes, arcs etc is always OK.
e Adding dotted or dashes lines is always OK.
The stripped abg file (sabg) (see Section 6.5 [Stripped acausal bond graph (sabg)],

page 37) shows only those parts of the diagram recognised by MTT and is therefore useful
for distinguishing artwork.

6.4.1.16 Valid Names

A valid name is a text string containing alphanumeric characters. It must NOT contain

underscore ‘_’, hyphen ‘=’ “:” or ‘¥’
The following names should be avoided
if endif

The following reserved words in reduce should also be avoided (with any case)
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Commands ALGEBRAIC ANTISYMMETRIC ARRAY BYE CLEAR CLEARRULES COMMENT
CONT DECOMPOSE DEFINE DEPEND DISPLAY ED EDITDEF END EVEN FACTOR FOR
FORALL FOREACH GO GOTO IF IN INDEX INFIX INPUT INTEGER KORDER LET
LINEAR LISP LISTARGP LOAD LOAD PACKAGE MASS MATCH MATRIX MSHELL
NODEPEND NONCOM NONZERO NOSPUR ODD OFF ON OPERATOR ORDER OUT PAUSE
PRECEDENCE PRINT PRECISION PROCEDURE QUIT REAL REMFAC REMIND RETRY
RETURN SAVEAS SCALAR SETMOD SHARE SHOWTIME SHUT SPUR SYMBOLIC
SYMMETRIC VECDIM VECTOR WEIGHT WRITE WTLEVEL

Boolean Operators EVENP FIXP FREEOF NUMBERP ORDP PRIMEP

Infix Operators := = >= > <= < => + % / = %x . WHERE SETQ OR AND
MEMBER MEMQ EQUAL NEQ EQ GEQ GREATERP LEQ LESSP PLUS DIFFERENCE MINUS
TIMES QUOTIENT EXPT CONS Numerical Operators ABS ACOS ACOSH ACOT ACOTH
ACSC ACSCH ASEC ASECH ASIN ASINH ATAN ATANH ATAN2 COS COSH COT COTH
CSC CSCH EXP FACTORIAL FIX FLOOR HYPOT LN LOG LOGB LOG10 NEXTPRIME
ROUND SEC SECH SIN SINH SQRT TAN TANH

Prefix Operators APPEND ARGLENGTH CEILING COEFF COEFFN COFACTOR CONJ
DEG DEN DET DF DILOG EI EPS ERF FACTORIZE FIRST GCD G IMPART INT
INTERPOL LCM LCOF LENGTH LHS LINELENGTH LTERM MAINVAR MAT MATEIGEN MAX
MIN MKID NULLSPACE NUM PART PF PRECISION RANDOM RANDOM NEW SEED RANK
REDERR REDUCT REMAINDER REPART REST RESULTANT REVERSE RHS SECOND SET
SHOWRULES SIGN SOLVE STRUCTR SUB SUM THIRD TP TRACE VARNAME

Reserved Variables CARD NO E EVAL MODE FORT WIDTH HIGH POW I INFINITY
K!* LOW POW NIL PI ROOT MULTIPLICITY T

Switches ADJPREC ALGINT ALLBRANCH ALLFAC BFSPACE COMBINEEXPT
COMBINELOGS COMP COMPLEX CRAMER CREF DEFN DEMO DIV ECHO ERRCONT
EVALLHSEQP EXP EXPANDLOGS EZGCD FACTOR FORT FULLROOTS GCD IFACTOR INT
INTSTR LCM LIST LISTARGS MCD MODULAR MSG MULTIPLICITIES NAT NERO
NOSPLIT OUTPUT PERIOD PRECISE PRET PRI RAT RATARG RATIONAL RATIONALIZE
RATPRI REVPRI RLISP88 ROUNDALL ROUNDBF ROUNDED SAVESTRUCTR
SOLVESINGULAR TIME TRA TRFAC TRIGFORM TRINT

Other Reserved Ids BEGIN DO EXPR FEXPR INPUT LAMBDA LISP MACRO PRODUCT
REPEAT SMACRO SUM UNTIL WHEN WHILE WS

6.4.2 Language m (rbg.m)

The raw bond graph of system ‘sys’ is represented as an m file with heading:

function [rbonds, rstrokes,rcomponents,rports,n_ports] = sys_rbg
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This representation is a half-way house between the fig (see Section 6.4.1 [Language fig
(abg.fig)], page 28) and m (see Section 6.4.3 [Language m (abg.m)], page 36) representations.
It contains the geometric information from the fig file in a form digestible by Octave (see
Section 10.4 [Octave], page 80).

The five outputs of this function are:

rbonds

rstrokes

e rcomponents
e rports

e 1_ports

rbonds is a matrix with

e one row for each bond (see Section 6.4.1.2 [bonds], page 28)

columns 1 and 2 containing the x,y coordinates for one end of the bond

columns 3 and 4 containing the x,y coordinates for the corner of the bond

e columns 5 and 6 containing the x,y coordinates for the other end of the bond

rstrokes is a matrix with (see Section 6.4.1.3 [strokes|, page 29)
e one row for each stroke or half-stroke
e columns 1 and 2 containing the x,y coordinates for one end of the stroke

e columns 3 and 4 containing the x,y coordinates for the other end of the stroke

rcomponents is a matrix with (see Section 6.4.1.4 [components|, page 29)
e one row for each component
e columns 1 and 2 containing the x,y coordinates of the component

e the remaining columns containing fig file information

rports is a matrix with (see Section 6.4.1.11 [Port labels|, page 32)
e one row for each component port that is explicitly labeled
e columns 1 and 2 containing the x,y coordinates of the port label
e column 3 contains the port number.

n_ports is the number of ports associated with the system — i.e. the number of Named
SS components (see Section 6.4.1.9 [Named SS components], page 31).

6.4.2.1 Transformation abg2rbg_fig2m

This transformation takes the acausal bond graph as a fig file (see Section 6.4.1 [Language
fig (abg.fig)], page 28) and transforms it into a raw bond graph in m-file format (see Sec-
tion 6.4.2 [Language m (rbg.m)], page 34).

This transformation is implemented in GNU awk (gawk). It scans both the fig file (see
Section 6.4.1 [Language fig (abg.fig)], page 28) and the label file (see Section 6.6 [Labels
(Ibl)], page 37) and generates the rbg (see Section 6.4.2 [Language m (rbg.m)]|, page 34) with
components sorted according to the label file. It also generates a file sys_fig.fig containing
details of the bond graph with the components removed.
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6.4.3 Language m (abg.m)

The acausal bond graph of system ‘sys’ is represented as an m file with heading:
function [bonds,components,n_ports] = sys_abg
The three outputs of this function are:
e bonds
e components

e 1n_ports

bonds is a matrix with
e one row for each bond

e the first column contains the arrow-orientated (see Section 6.4.3.1 [Arrow-orientated
causality], page 36) causality of the effort variable.

e the second column contains the arrow-orientated (see Section 6.4.3.1 [Arrow-orientated
causality], page 36) causality of the flow variable.
components is a matrix with
e one row for each component

e one column for each bond impinging on the component. The magnitude of each entry
corresponds to the bond number (the appropriate row index of* bonds’); the sign is
positive if the bond arrow points into the component and negative otherwise.

n_ports is the number of ports associated with the system — i.e. the number of Named
SS components (see Section 6.4.1.9 [Named SS components], page 31).

6.4.3.1 Arrow-orientated causality

The arrow-orientated causality convention assigns -1, 0 or 1 to both the effort and flow
(see Section 1.4 [Variables|, page 3) sides of a bond to represent the causal stroke (see
Section 6.4.1.3 [strokes|, page 29) as follows:

0 if there is no causality set.
1 if the causal stroke is at the arrow end of the bond.
-1 if the causal stroke is at the other end of the bond.

see Section 6.4.3.2 [Component-orientated causality], page 36.

6.4.3.2 Component-orientated causality

The component-orientated causality convention assigns -1, 0 or 1 to both the effort and
flow (see Section 1.4 [Variables], page 3) sides of a bond to represent the causal stroke (see
Section 6.4.1.3 [strokes|, page 29) as follows:

0 if there is no causality set.
1 if the causal stroke is at the component end of the bond.
-1 if the causal stroke is at the other end of the bond.

see Section 6.4.3.1 [Arrow-orientated causality|, page 36.
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6.4.3.3 Transformation rbg2abg_m

This transformation takes the raw bond graph and, by doing some geometrical computation,
determines the topology of the bond graph — ie what is close to what.

6.4.4 Language tex (abg.tex)

For the purpose of producing a report (see Section 6.16 [Report], page 64), MTT generates
a LaTeX (see Section 10.5 [LaTeX], page 84) file describing the bond graph and its sub-
systems. Additional information may be supplied using the description representation (see
Section 8.2.2 [Detailed], page 78).

6.5 Stripped acausal bond graph (sabg)

The stripped acausal bond graph is the acausal bond graph representation (see Section 6.4
[Acausal bond graph (abg)], page 28) without the artwork (see Section 6.4.1.15 [artwork],
page 33). It is useful to check for mistakes by showing precisely what is recognised by MTT.

6.5.1 Language fig (sabg.fig)

The stripped acausal bond graph can be generated as a fig (see Section 9.1 [Fig], page 79)
file using

mtt syst sabg fig

6.5.2 Stripped acausal bond graph (view)

This representation has the standard text view (see Section 10.1 [Views], page 80).

6.6 Labels (1bl)

Bond graph components have optional labels. These provide pointers to further information
relating to the component; this avoids clutter on the bond graph.

The label file contains the following non-blank lines (blank lines are ignored)
e Summary - lines beginning with #SUMMARY
Description - lines beginning with #DESCRIPTION
e Alias - lines beginning with #ALIAS

Comments - lines beginning with #

Labels - other non-blank lines

Note, for compatability with old versions, % may be used in place of #; but the use of %
is deprecated. Each lable contains three fields (in the following order) separated by white
space and on one line:

1. The component name see Section 6.6.3 [Component names|, page 40. This must be a
valid name (see Section 6.4.1.16 [Valid names], page 33.
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2. The component constitutive relationship see Section 6.6.4 [Component constitutive
relationship], page 40

3. The component arguments see Section 6.6.5 [Component arguments|, page 40

Not each component see Section 6.4.1.4 [components]|, page 29 needs a label, only those
which are explicitly labeled on the Bond Graph see Section 6.4 [Acausal bond graph (abg)],
page 28. MTT checks whether all components labelled on the bond graph have labels and
vice versa.

If no Ibl file exists, MTT will create a valid one for you; including a default set of
arguments and crs for both simplae and compound components.

If wish to create one to edit yourself, type
mtt system_name 1bl txt
An example 1bl file (for the RC system is):

%% Label file for system RC (RC_1bl.txt)
%SUMMARY RC

%DESCRIPTION <Detailed description here>
% Port aliases

%ALIAS in in

%ALIAS out out

% Argument aliases
HALIAS $1 c
LALIAS  $2 r

%% Each line should be of one of the following forms:

pA a comment (ie starting with %)

b component-name cr_name argl,arg2,..argn
b blank

% —--— Component labels ----

% Component type C
C lin effort,c

% Component type R
r lin flow,r

% Component type SS
[in] SS external,external
[out] SS external,external

The old-style 1bl files (see Section 6.6.11 [Old-style labels (lbl)], page 45) are NO
LONGER supported — you are encouraged to convert them ASAP.
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6.6.1 SS component labels

In addition to the label there are two information fields, see Section 6.6 [Labels (Ibl)],
page 37. The first must be ‘SS’, the second contains two information fields of the form
info_field_1,info_field _2.

These two information fields correspond to the effort and flow variables of the of the SS
components as follows

info_field_1
effort

info_field_2
flow

Each of these two fields contains one of the following attributes:
external indicates that the corresponding variable is a system input or output

internal indicates that the variable does not appear as a system output; it is an error to
label an input in this way.

a number the value of the input; or the value of the (imposed) output
a symbol the symbolic value of the input; or the value of the (imposed) output

unknown  used for the SS method of solving algebraic loops. This indicates that the
corresponding system input (SS output) is to be chosen to set the corresponding
system output (SS input) to zero.

zZero used for the SS method of solving algebraic loops. This indicates that the
corresponding system output (SS input) is to be set to zero using the variable
indicted by the corresponding ‘unknown’ label.
Some examples are:

%% ssl1 is both a source and sensor

ssl SS external,external
%% ssl acts as a flow sensor - it imposes zero effort.
ss2 SS 0,external

6.6.2 Other component labels

In addition to the label there are two information fields, see Section 6.6 [Labels (Ibl)],
page 37. They correspond to the constitutive relationship (see see Section 1.6.2 [Constitutive
relationship]|, page 5 and arguments of the component as follows

info_field_1
constitutive relationship

info_field_2
parameters

Some examples are:
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%Armature resistance
r_a lin effort,r_a

%Gearbox ratio
n 1lin effort,n

MTT supports parameter-passing to (see Section 6.6.10 [Parameter passing], page 44)
subsystems.

6.6.3 Component names

The component name field must contain a valid name (see Section 6.4.1.16 [Valid names],
page 33 corresponding to the name (the bit after the :) of each named component (see
Section 6.4.1.4 [components], page 29) on the bond graph (see Section 6.4 [Acausal bond

graph (abg)], page 28).
6.6.4 Component constitutive relationship

The constitutive relationship field contains the name of a constitutive relationship for the
component. There are three sorts of constitutive relationship recognised by MTT:

1. A generic constitutive relationship such as lin (the generic linear constitutive relation-
ship.
2. A local constitutive relationship with the same name as the component type

3. The SS constitutive relationship reserved for SS components. All labels for SS compo-
nents must contain SS in this field.

6.6.5 Component arguments

6.6.6 Parameter declarations

It is sometimes useful to use parameters (in addition to those implied by the Component
arguments see Section 6.6.5 [Component arguments|, page 40) to compute values in, for
example the numpar file. These can be declared in the label file; for examples , the two
parameters parl and par 2 can be declared as:

#PAR parl
#PAR par?2

On the other hand, some CR arguments (eg foo and bar) may not correspond to param-
eters. These can be excluded from the sympar list using the NOTPAR declaration

#NOTPAR foo
#NOTPAR bar

For comapability with old code, VAR may be used in place of PAR, but this usage is
deprecated.
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6.6.7 Units declarations

The units and domains of ports (see Section 1.6.1 [Ports|, page 5) are declared as:
#UNITS Port_name domain effort_units flow_units
where "Port_name" is the name of the port, domain is one of:

electrical
the electrical domain

translational
the translational mechanical domain

rotational
the rotational mechanical domain

fluid the fluid domain
thermal the thermal domain

and effort_units and flow_units are corresponding units for the effort and the flow.
Allowed units are those defined in the units package.
MTT checks that units are

e defined consistently with the domain

e the same for connected ports when both ports have defined units.

No checks are done if one or both ends of a bond are not connected to a port with defined
units.

6.6.8 Interface Control Definition

It is sometimes useful to be able to automatically generate a set of assignments mapping
MTT inputs and outputs to an external interface definition. This can be achieved with use
of the #ICD directive.

#ICD PressureSensor PUMP1_PRESSURE_SENSOR,Pa;null,none
#ICD Electrical PUMP1_VOLTAGE,volt;PUMP1_CURRENT,amp

% Component type De
PressureSensor SS external

% Component type SS
Electrical SS external,external

The ICD directive consists of 3 whitespace delimited fields:
1. [%|4#]ICD
2. component name
3. Four comma (,) or semi-colon (;) delimited fields:
1. name of effort parameter

2. unit of effort parameter
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3. name of flow parameter
4. unit of flow parameter
If no parameter name is required, a value of "null" should be used. If the parameter
does not have any units, a value of "none" should be used.

ICD parameters may be aliased see Section 6.6.9 [Aliases|, page 42 in the same way
as normal parameters, thus it is possible to define some or all of the ICD in higher level
components.

The command
mtt sys ICD txt
will generate a text file containing a list of mappings:

## Interface Control Definition for System sys
## sys_ICD.txt: Generated by MTT Thu Jul 12 21:21:21 CDT 2001

Input: PUMP1_VOLTAGE sys_P1_1_Electrical Causality: Effort
Output: PUMP1_CURRENT sys_P1_1_Electrical Causality: Flow
OQutput: PUMP1_PRESSURE_SENSOR  sys_P1_1_PressureSensor Causality: Effort

A set of assignments can be generated with the command
mtt sys ICD m
resulting in:

# Interface Control Definition mappings for system sys
# sys_ICD.m: Generated by MTT Thu Jul 12 21:26:56 CDT 2001

# Inputs

mttu(l) = PUMP1_VOLTAGE;

# Outputs
PUMP1_CURRENT = mtty(1);
PUMP1_PRESSURE_SENSOR = mtty(2);

A similar file will be generated by the command

mtt sys ICD cc

6.6.9 Aliases

Aliases provide a convenient mechanism for relabelling words appearing in the label file (see
Section 6.6 [Labels (Ibl)], page 37). There are three contexts in which the alias mechanism
is used:

1. renaming ports (see Section 6.6.9.1 [Port aliases|, page 43),
2. renaming parameters (see Section 6.6.9.2 [Parameter aliases], page 43) and

3. renaming components (see Section 6.6.9.4 [Component aliases|, page 44).

All three mechanisms use the same form of statement within the label file

T Vo
: am
. Pa
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%ALIAS short_label real_label
MTT distinguishes between the three forms as follows:
e Parameter aliases: ‘short_label” starts with a ‘$’
e Component aliases: ‘real_label’ contains the directory separator */’

e Port aliases: neither of the above

6.6.9.1 Port aliases

Aliases provide a way of refering to (see Section 6.4.1.11 [Port labels], page 32) or vector
port labels (see Section 6.4.1.12 [Vector port labels|, page 32) on the bond graph using a
short-hand notation. With in a component label file (see Section 6.6 [Labels (Ibl)], page 37)
statements of the following forms can occur

%ALIAS short_label real_label

When the component is used within another component, the short_lable may be used in
place of the real_label. More than one alias per label can be used, for example

%ALIAS short_label_1 real_label
%ALIAS short_label_2 real_label
%ALIAS short_label_3 real_label

The port can then be refered to in four ways: as real_label, short_label_1, short_label _2
or short_label_3. An alternative notation for the ALIAS statement in this case is

%ALIAS short_label_1|short_label_2|short_label_3 real_label
The alias feature is particularly powerful in conjunction with vector port labels (see Sec-
tion 6.4.1.12 [Vector port labels|, page 32) and the port label default (see Section 6.4.1.13
[Port label defaults], page 32) mechanisms. For example, a component with 5 ports appear-
ing in the 1bl file as:

[Hydraulic_in] external external
[Hydraulic_out] external external
[Power_Shaft] external external
[Thermal_in] external external
[Thermal_out] external external

together with the following statements in the label file:

%ALIAS in Thermal_in,Hyydraulic_in
%ALIAS out Thermal_out,Hydraulic_out
%ALIAS shaft|power Power_Shaft

can appear in the bond graph containing that component with one bond labeled either
[shaft] or [power] or [Power_Shaft], one unlabeled vector bond pointing in and one unlabeled
vector bond pointing out.

6.6.9.2 Parameter aliases

Parameter aliases are of the form
%ALIAS $n actual parameter

where n is an integer (unique within the label file). For example
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%ALIAS $1 c_v

%ALIAS $2 density,ideal_gas,r
HALIAS $3 alpha

%ALIAS $4 flow,k_p

Assigns four symbolic parameters to the corresponding strings These four parameters
($1-$4) can then be used for parameter passing(see Section 6.6.10 [Parameter passing],
page 44).

6.6.9.3 CR aliases

CR aliases are of the form
J»ALIAS $an actual parameter
where n is an integer (unique within the label file). For example
»ALIAS $al 1lin

assigns the symbolic parameter to be lin. This parameter $1 can then be used for passing
a diofferent cr to the component (see Section 6.6.10 [Parameter passing], page 44).

6.6.9.4 Component aliases

Component aliases are of the form
%ALIAS Component_name  Component_location

An example appears in the following label file fragment

%ALIAS wPipe  CompressibleFlow/wPipe
HALIAS Poly CompressibleFlow/Poly

The two components ‘wPipe’ and ‘Poly’ are both to be found within the library ‘Com-
pressible flow’ and the respective subdirectories. This follows the MTT convention that
compound components (see Section 6.4.1.8 [Compound components], page 31) live within
a directory of the same name.

6.6.10 Parameter passing

MTT supports parameter-passing to subsystems within label files (see Section 6.6 [Labels
(Ibl)], page 37). Within a subsystem, explicit constitutive relationships and parameters (or
groups thereof) can be replaced by postitional parameters such as $1, $2 etc. Although
this can be done directly, it is recommended that this is done via the alias mechanism (see
Section 6.6.9.2 [Parameter aliases|, page 43).

In a subsystem $1i, is replaced by the ith field of a colon ; separated field in the calling
label file. This field may include commas , and the four arithmetic operators +, -, * and /.

For example, consider the following example label file fragment (associated with a com-
ponent called Pump:
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%ALIAS
%ALIAS
%ALIAS
%ALIAS

%ALIAS
%ALIAS
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$1 c_v

$2 density,ideal_gas,r
$3 alpha

$4 flow,k_p

wPipe CompressibleFlow/wPipe
Poly CompressibleFlow/Poly

% Component type wPipe

pipe none

% Component type Poly

poly Poly

c_v;density,ideal_gas,r

alpha

The 4 parameters $1, $2, $3, and $4 can be passed from a higher level component as in
the following label file fragment:

% Component type Pump

comp none
turb none

Thus in component ‘comp’:

e $1 is replaced by c_v

e $2 is replaced by rho,ideal_gas

e $3 is replaced by alpha

e 3$4 is replaced by effort,k_c

c_v;rho,ideal_gas,r;alpha;effort,k_c
c_v;rho,ideal_gas,r;alpha;effort,k_t

whereas in component ‘turb’ the first three parameters are the same but
e $4 is replaced by effort,k_t

6.6.11 Old-style labels (1bl)

Old syle labels (mtt version 2.x) are supported by mtt version 3.x. However, you are advised
to use the new form (see Section 6.6 [Labels (Ibl)], page 37).

Each line of the _label.txt file is of one of three forms:

1. Contains three fields (separated by white space) of the form
label field_1 field_2

2. Blank

3. Preceded by %

Only the first is noticed by MTT; the second and third are for providing helpful com-

menting.

The role of the two information fields depends on the component with the corresponding
label. In particular the classes of components are:
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e SS components, see Section 6.4.1.6 [SS components], page 30.

e Other components, see Section 6.4.1.4 [components], page 29.

Named SS component, see Section 6.4.1.9 [Named SS components|, page 31 never have
labels.

6.6.11.1 SS component labels (old-style)

In addition to the label there are two information fields, see Section 6.6 [Labels (Ibl)],
page 37. They correspond to the effort and flow of the components as follows

info_field_1
effort

info_field_2
flow

Each of these two fields contains one of the following attributes:
external indicates that the corresponding variable is a system input or output

internal indicates that the variable does not appear as a system output; it is an error to
label an input in this way.

a number the value of the input; or the value of the (imposed) output
a symbol the symbolic value of the input; or the value of the (imposed) output

unknown  used for the SS method of solving algebraic loops. This indicates that the
corresponding system input (SS output) is to be chosen to set the corresponding
system output (SS input) to zero.

zero used for the SS method of solving algebraic loops. This indicates that the
corresponding system output (SS input) is to be set to zero using the variable
indicted by the corresponding ‘unknown’ label.

Some examples are:

%Label field1l field2
ssi external external
ss2 0 external

6.6.11.2 Other component labels (old-style)

In addition to the label there are two information fields, see Section 6.6 [Labels (Ibl)],
page 37. They correspond to the constitutive relationship (see see Section 1.6.2 [Constitutive
relationship], page 5 and arguments of the component as follows

info_field_1
constitutive relationship

info_field_2
parameters

Some examples are:
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%Armature resistance

r_a lin

%Gearbox ratio

n 1lin

effort,r_a

effort,n
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MTT supports parameter-passing to (see Section 6.6.11.3 [Parameter passing (old-style)],

page 47) subsystems.

6.6.11.3 Parameter passing (old-style)

MTT supports parameter-passing to (see Section 6.6.11.3 [Parameter passing (old-style)],
page 47) subsystems within label files (see Section 6.6 [Labels (1bl)], page 37). Within a
subsystem, explicit constitutive relationships and parameters (or groups thereof) can be

replaced by $1, $2, etc.

In a subsystem $1i, is replaced by the ith field of a colon ; separated field in the calling

label file. This field may include commas , .

For example subsystem ROD contains the following lines in the label file:

%DESCRIPTION
%DESCRIPTION
%DESCRIPTION
%DESCRIPTION
%DESCRIPTION

%Inertias

J lin
m_x lin
m_y lin

Parameter
Parameter
Parameter
Parameter

w N =

4.

length from end 1 to mass centre
length from end 2 to mass centre
inertia about mass centre

mass

See Section 10.2 of "Metamodelling"

flow,$3
flow,$4
flow, $4

%Integrate angular velocity to get angle

th

%Modulated transformers

si 1sin
s2 1sin
cl lcos
c2 lcos

flow,$1
flow,$2
flow,$1
flow,$2

This can be used in a higher-level 1bl (see Section 6.6 [Labels (Ibl)], page 37) file as:
%SUMMARY Pendulum example from Section 10.3 of "Metamodelling"

%Rod parameters

rod none

1;1;j;m
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6.6.12 Language tex (desc.tex)

This file may contain any LaTeX compatible commands. Any mathematics should conform
to the AMSmath package.

6.7 Structure (struc)

The causal bond graph implies a set of equations describing the system. The Structure
(struc) representation describes the structure of these equations in terms of the input,
outputs, states and non-states of the system.

6.7.1 Language txt (struc.txt)

This text tile contains a description of the system structure (see Section 6.7 [Structure
(struc)], page 48 with 5 tab-separated columns containing the following information:

type input, output state or nonstate
index an integer corresponding to the array index
component name the name of the component corresponding to the variable

system name
the name of the system containing the component

repetition
an integer corresponding to the repetition of a repeated subsystem.

An example of such a file (corresponding to rc) (see Section 3.1 [Quick start], page 13)
is:

input 1 el rc 1
output 1 e2 rc 1
state 1 c rc 1

6.7.2 Language tex (struc.tex)

This LaTeX (see Section 10.5 [LaTeX], page 84) file contains a description of the system
structure (see Section 6.7 [Structure (struc)|, page 48 in longtable format. It is a useful
item to include in a report(see Section 6.16 [Report], page 64).

6.7.3 Language tex (view)

This representation has the standard text view (see Section 10.1 [Views], page 80).
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6.8 Constitutive relationship (cr)

The constitutive relationship (see Section 1.6.2 [Constitutive relationship], page 5) of a sim-
ple component (see Section 6.4.1.5 [Simple components|, page 30 is defined in the symbolic
algebra language Reduce (see Section 9.3 [Reduce], page 79). The constitutive relation-
ship of a compound components (see Section 6.4.1.8 [Compound components], page 31) is
implied by the constitutive relationships of its constituent components.

6.8.1 Predefined constitutive relationships

Some common cr’s are predefined by MTT; these are:
lin a linear constitutive relationship

exotherm an exothermic reaction

6.8.1.1 lin

The constitutive relationship 1in is predefined for the following components.

R (one-port) R component
TF transformer

GY gyrator

MTF modulated transformer

MGY modulated gyrator

FMR flow-modulated resistor

Lin takes two arguments in the form causality,gain

causality
the causality (effort or flow) of the input to the constitutive relationship

gain the gain of the component when the input causality is as specified in the first
argument.
For example the arguments
flow,r
given to an R component corresponds to
e =rf
if if the input causality is flow or
f =e/r
if if the input causality is effort.

6.8.1.2 exotherm
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6.8.2 DIY constitutive relationships

You can write your own constitutive relationships using Reduce (see Section 9.3 [Reduce],
page 79). This requires some understanding as to how MTT represent the elementary
system equations (see Section 6.11 [Elementary system equations], page 58). Looking at
the predefined constitutive relationships is a good way to get started (see Section 11.5 [File
structure], page 87).

6.8.3 Unresolved constitutive relationships

Consider the following CR file.

FOR ALL rho,g,vol,h,topt,bott,flowin,press
LET tktf2(rho,g,vol,h,topt,bott,effort,2,press,effort,1)
= tank(rho,g,vol,h,topt,bott,press);

Assuming that ‘tank’ is not defined in a reduce file, MTT will leave it unresolved when
generating m or ¢ code.

The resulting function can then be expressed as octave (see Section 6.8.4 [Unresolved
constitutive relationships - Octave], page 50) or c++ code as (see Section 6.8.5 [Unresolved
constitutive relationships - c++|, page 50) appropriate.

6.8.4 Unresolved constitutive relationships - Octave

Following the example of the previous section, the unresolved CR ‘tank’ can be expressed
as an Octave m-file. For example:

function p = tank (rho,g,vol,h,topt,bott,press)

## usage: p = tank (vol,h,topt,bott,press)
##
##

val = press; zt = topt; zb = bott;
zval = 0.5*%(abs(zb+(zt-zb)*val-h)+(zb+(zt-zb)*val-h));

p = rhoxg*zval + 0.5*(l+tanh((press-0.98)*500))*100000;

endfunction

This will be automatically loaded into octave.

6.8.5 Unresolved constitutive relationships - c++

Following the example of the previous section, the unresolved CR ‘tank’ can be expressed
in c++ code. For example:

inline double tank(const double rho,
const double g,
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const
const
const
const
const

/% ##
##
##

*/

double

double vol,
double h,
double topt,
double bott,
double press)

usage: p = tank (vol,h,topt,bott,press)

p, val, zval, zt, zb;

val = press;

zt = topt;
zb = bott;
zval = 0.5 * (abs(zb + (zt - zb) * val - h) + zb + (zt - zb) * val - h);

p = rho * g * zval + 0.5 * (1 + tanh((press - 0.98) * 500)) * 100000L;

return p;

To make sure that this is used in system ‘model’, the model_cr.h file must be as follows:

// CR headers for system model

#include

"tank.c"

6.9 Parameters

In general, 1bl (see Section 6.6 [Labels (1bl)], page 37) files contain symbolic parameters.
MTT provides three ways of substituting for these parameters:

e symbolic substitution

e symbolic substitution for simplification of displayed equations

e numeric

6.9.1 Symbolic parameters (subs.r)

This file contains reduce statements to symbolically change the expressions describing the
system. For example, a useful set of trig substitutions is:

LET cos(”
LET cos(~
LET sin(™
LET cos(™
LET sin(~

x)*cos("y) = (cos(x+y)+cos(x-y))/2;

x)*sin("y) = (sin(x+y)-sin(x-y))/2;
®)*sin(Ty) = (cos(x-y)-cos(x+y))/2;
x)7"2 = (1+cos(2*x))/2;

x) "2

(1-cos(2*x));
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6.9.2 Symbolic parameters for simplification (simp.r)

This file contains reduce statements to symbolically change the expressions describing the
system. Unlike the subs.r file (see Section 6.9.1 [Symbolic parameters (subs.r)], page 51) it
does not affect all system transformations; only those converting to LaTeX form.

6.9.3 Numeric parameters (numpar)

When computing time and frequency responses; or when evaluating functions in Octave
(see Section 10.4 [Octave], page 80); symbolic parameters need numerical instantiations.

The numpar representation provides the relevant numerical information. It comes in a
number of languages:

txt a textual description of the parameter values — this is the defining representation
(see Section 6.2 [Defining representations], page 27).

m readable by octave a high-level interactive language for numerical computation
— translated by mtt from the txt version.

c readable by gcc a ¢ compiler — translated by mtt from the txt version.

6.9.3.1 Text form (numpar.txt)

This is the textual form of the numerical parameters representation (see Section 6.9.3 [Nu-
meric parameters (numpar)], page 52). Lines are either

assignment statements
variable = value

comments lines beginning with #

commented assignment statements
variable = value # comments
An example file is:

# Numerical parameter file (rc_numpar.txt)
Generated by MIT at Mon Jun 16 15:10:17 BST 1997

+H+

ToToToTo oo ToTo o oo ToTo o o foTo o o o Jo To o o o ToTo o o o ToTo o o o ToTo o o o To T o o o To o o o Jo To o o o To T o o o To T o o
%% Version control history

ToloToToToTo oo o o foToToTo o To o o o o JoToTo oo o o o o ToToTo oo o o o o To ToTo oo o o o o To To oo oo o o o T To oo oo o
%% $Id: mtt.texi,v 1.18 2003/09/07 20:41:19 geraint Exp $

%% $Log: mtt.texi,v $

%% Revision 1.18 2003/09/07 20:41:19 geraint

%% *** empty log message *¥*x

he

%% Revision 1.17 2003/08/19 14:20:38 gawthrop

%% Version 5.0 of MTT

%% Remove xref errors (spurious spaces)

o

H OHF HF H H OH HF H H H HH
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Revision 1.16 2003/08/19 14:11:23 gawthrop
Links to legal stuff

Revision 1.15 2003/08/19 14:01:45 gawthrop
Added legal appendices

Revision 1.14 2003/08/06 14:50:56 gawthrop
Describe the alias mechanism for invoking mtt options

Revision 1.13 2002/12/13 10:07:07 gawthrop
Added example in sh section of DIY reps

Revision 1.12 2002/09/19 08:09:31 gawthrop
Updated documentation documentation

Revision 1.11 2002/08/20 15:51:17 gawthrop
Update to work with ident DIY rep

Revision 1.10 2002/07/22 10:45:22 geraint
Fixed gnuplot rep so that it correctly re-runs the simulation if input files have

Revision 1.9 2002/07/05 13:29:34 geraint
Added notes about generating dynamically linked functions for Octave and Matlab.

Revision 1.8 2002/07/04 21:34:12 geraint
Updated gnuplot view description to describe Tcl/Tk interface instead of obsolete

Revision 1.7 2002/04/23 09:51:54 gawthrop
Changed incorrect statement about searching for components.

Revision 1.6 2001/10/15 14:29:50 gawthrop
Added documentaton on [1:N] style port labels

Revision 1.5 2001/07/23 03:35:29 geraint
Updated file structure (mtt/bin).

Revision 1.4 2001/07/23 03:25:02 geraint
Added notes on -ae hybrd, rk4, ode2odes.cc, .oct dependencies.

Revision 1.3 2001/07/13 03:02:38 geraint
Added notes on #ICD, gnuplot.txt and odes.sg rep.

Revision 1.2 2001/07/03 22:59:10 gawthrop
Fixed problems with argument passing for CRs

Revision 1.1 2001/06/04 08:18:52 gawthrop
Putting documentation under CVS
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Revision 1.66 2000/12/05 14:20:

Added the c++ anf m CR info.

Revision 1.65 2000/11/27 15:36:

NOPAR --> NOTPAR

Revision 1.64 2000/11/16 14:22:

added UNITS declaration

Revision 1.63 2000/11/03 14:41:

Added PAR and NOTPAR stuff

Revision 1.62 2000/10/17 17:53:

Added some simulation details

Revision 1.61 2000/09/14 17:13:

New options table

Revision 1.60 2000/09/14 17:09:

Tidied up valid name sections

55

15

48

08

34

06

20

Tidied up defining represnetations

Verion 4.6

Revision 1.59 2000/08/30 13:09:

Updated option table

Revision 1.58 2000/08/01 13:30:

Version 4.4
updated STEPFACTOR info

00

19

peterg

peterg

peterg

peterg

peterg

peterg

peterg

table

peterg

peterg

describes octave and OCST interfaces

Revision 1.57 2000/07/20 07:55:44 peterg

Version 4.3

Revision 1.56 2000/05/19 17:49:17 peterg
Extended the user defined representation section -- new nppp rep.

Revision 1.55 2000/03/16 13:53:31 peterg

Correct date

Revision 1.54 2000/03/15 21:22:57 peterg

Updated to 4.1 -- old style SS no longer supported

Revision 1.53 1999/12/22 05:33:10 peterg

Updated for 4.0

54
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%% Revision 1.52 1999/11/23 00:25:11 peterg
%% Added the sensitivity reps

hh

%% Revision 1.51 1999/11/16 04:43:47 peterg
%% Added start of sensitivity section

hoto

%% Revision 1.50 1999/11/16 00:30:35 peterg
%% Updated simulation section

%% Added vector components

Do

%% Revision 1.49 1999/07/20 23:44:58 peterg
hh V 3.8

e

%% Revision 1.48 1999/07/19 03:08:33 peterg
%% Added documentation for (new) SS 1bl fields
hoto

%% Revision 1.47 1999/03/09 01:42:22 peterg
%% Rearranged the User interface section

e

%% Revision 1.46 1999/03/09 01:18:01 peterg
%% Updated for 3.5 including xmtt

hoto

%% Revision 1.45 1999/03/03 02:39:26 peterg
%% Minor updates

hoto

%% Revision 1.44 1999/02/17 06:52:14 peterg
%% New level formula dor artwork

hh

%% Revision 1.43 1998/11/25 16:49:24 peterg
%% Put in subs.r documentation (was called params.r)
hoto

%% Revision 1.42 1998/11/24 12:24:59 peterg
%% Added section on simulation output

%% Version 3.4

hoto

%% Revision 1.41 1998/09/02 12:04:15 peterg
%% Version 3.2

he

%% Revision 1.40 1998/08/27 08:36:39 peterg
%% Removed in. methods except Euler anf implicit
hoto

%% Revision 1.39 1998/08/18 10:44:28 peterg
%% Typo

hto

%% Revision 1.38 1998/08/18 09:16:38 peterg
%% Version 3.1

o

H OHF HF H H OH HF H H HHFHHHHHFHHHHFHFHFHHHHFHHHEHFHFHHHEHFHFHHHHFHHHEHHFHH
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Revision 1.37 1998/08/17 16:14:30 peterg

56

Version 3.1 - includes documentation on METHOD=IMPLICIT

Revision 1.36 1998/07/30 17:33:15 peterg
VERSION 3.0

Revision 1.35 1998/07/22 11:00:53 peterg
Correct date!

Revision 1.34 1998/07/22 11:00:13 peterg
Version to BAe

Revision 1.33 1998/07/17 19:32:19 peterg
Added more about aliases

Revision 1.32 1998/07/05 14:21:56 peterg
Further additions (Carlisle-Glasgow)

Revision 1.31 1998/07/04 11:35:57 peterg
Strarted new 1lbl description

Revision 1.30 1998/07/02 18:39:20 peterg
Started 3.0
Added alias and default sections.

Revision 1.29 1998/05/19 19:46:58 peterg
Added the odess description

Revision 1.28 1998/05/14 09:17:22 peterg
Added METHOD variable to the simpar file

Revision 1.27 1998/05/13 10:03:09 peterg
Added unknown/zero SS label documentation.

Revision 1.26 1998/04/29 15:12:46 peterg
Version 2.9.

Revision 1.25 1998/04/12 17:00:26 peterg
Added new port features: coerced direction

Revision 1.24 1998/04/05 18:27:20 peterg
This was the 2.6 version

Revision 1.23 1997/08/24 11:17:51 peterg
This is the released version 2.5

and top-level behaviour.

ool oo To o T o o T T To T T T To To T T To T oo oo oo o oo fo o o o o o o o o o o o o o o o o o o o To T To T To T o
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# Parameters
c = 1.0; # Default value
r = 1.0; # Default value

# Initial states
x(1) = 0.0; # Initial state for rc (c)

As usual, MTT provides a default text file to be edited by the user (see Section 10.3
[Text editors|, page 80).

6.10 Causal bond graph (cbg)

The causal bond graph is the causally complete version of the Acausal bond graph (see
Section 6.4 [Acausal bond graph (abg)], page 28).

To create the causal bond graph of system ‘sys’ in language fig type:
mtt sys cbg fig

To create the causal bond graph of system ‘sys’ in language m type:
mtt sys cbg m

To view the causal bond graph of system ‘sys’ type:

mtt sys cbg view

6.10.1 Language fig (cbg.fig)

The fig file is created by MTT. It is identical to the corresponding acausal representation
(see Section 6.4.1 [Language fig (abg.fig)], page 28) except that

e the new causal strokes are added (using a double thickness line in blue)
e components that are undercausal are bold and green

e components that are overcausal are bold and red

6.10.2 Language m (cbg.m)

The causal bond graph of system ‘sys’ is represented as an m file with heading;:
function [cbonds,status] = sys_cbg
The two outputs of this function are:
e chonds

e status

cbonds is a matrix with
e one row for each bond

e the first column contains the arrow-orientated (see Section 6.4.3.1 [Arrow-orientated
causality], page 36) causality of the effort variable.

e the second column contains the arrow-orientated (see Section 6.4.3.1 [Arrow-orientated
causality], page 36) causality of the flow variable.



Chapter 6: Representations 58

status is a matrix with
e one row for each component
e the first column contains 1 if the component is overcausal; 0 if the component is causally
complete and -1 if the component is undercausal.

A successful model would therefore have all zeros in the status matrix.

6.10.2.1 Transformation abg2cbg_m

This transformation takes the acausal bond graph as an m file (see Section 6.4.3 [Language
m (abg.m)|, page 36) and transforms it into a causal bond graph in m-file format (see
Section 6.10.2 [Language m (cbg.m)], page 57).

It is based on the m-function abg2cbg.m which iteratively tries to complete causality
whilst recursively searching the bond graph structure. If causality is incomplete, it picks
the first acausal dynamic (C or I) component, asserts integral causality, and tries again.

This is essentially the sequential causality assignment procedure of Karnopp and Rosen-
berg.

The transformation informs the user of the final status in terms of the percentage of
causally complete components; a successful model will yield 100% here.

6.11 Elementary system equations (ese)

The elementary system equations are a complete set of assignment statements describing the
dynamic system corresponding to the bond graph. They are in the Reduce (see Section 9.3
[Reduce], page 79) language.

Because these are based on a causally complete system, these assignment statements are
directly soluble by substitution.

Unlike early versions of MTT, MTT does not sort the equations in order of solution, but
rather leaves them sorted by component and subsystem.

These are not supposed to be read by the user, so there is no view facility as such.
However, you may read these with your favourite text editor and, to this end, helpful
comment lines have been added.

Wherever components have an explicit constitutive relationship, the corresponding RHS
of the equation has a standard form.

cr(arguments,out_causality,outport,
input_1, causality_1, port_1,

input_i, causality_i, port_i,

input_n, causality_n, port_n
);

where the symbols have the following meaning

arguments
the constitutive relationship arguments
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out_causality
the causality (effort or flow) of the output variable (see Section 1.4 [Variables],

page 3)
outport  the number (integer) of the output port of the system

input_i  the ith input to the component

causality_i
the causality (effort or flow) of the ith input variable (see Section 1.4 [Variables],

page 3)
port_i the number (integer) of the ith input port of the system

An example for a resistor with linear constitutive relationship is:

rc_1_bond4_flow := lin(flow,r,flow,1,
rc_1_bond4_effort,effort,1
);

6.11.0.1 Transformation cbg2ese_m2r

This transformation takes the causal bond graph as an m file (see Section 6.10.2 [Language
m (cbg.m)], page 57) and transforms it into elementary system equations in Reduce (see
Section 9.3 [Reduce], page 79) form.

It is based on the m-function cbg2ese.m which iteratively traverses the causal bond graph
writing equations as it goes.

It also writes out the system structure as the file ‘sys_def.r’.

6.12 Differential-Algebraic Equations (dae)

The system differential algebraic equations describe the system dynamics together together
with any algebraic constraints.

They are generated in language lang for system sys by:
mtt sys dae lang

Valid languages are:

T reduce (see Section 9.3 [Reduce], page 79).
m m (see Section 9.2 [m], page 79).
view reduce (see Section 10.1 [Views], page 80).

There are five sets of variables describing the system:

X the system states (corresponding to C and I components with integral causality.
z the system nonstates (corresponding to C and I components with derivative
causality.

u the system inputs (corresponding to SS components with external attribute).
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ui the internal system inputs (corresponding to SS components with internal at-
tribute) used to solve algebraic loops (see Section 1.7 [Algebraic loops], page 5).

v the system outputs (corresponding to SS components with external attribute).

In general there are four sets of equations. The right-hand side of each is a function of
x, dz/dt, u and ui and the left hand sides are:

1. the derivative of x (dx/dt)

2. z
3. w=0 (the algebraic equations)
4. y

6.12.1 Language reduce (dae.r)

The system DAEs (see Section 6.12 [Differential-Algebraic Equations|, page 59) are repre-
sented in the reduce (see Section 9.3 [Reduce], page 79) language as arrays containing the
algebraic expressions for the right hand sides of each set of equations. The arrays are:

MTTx x — the system states (corresponding to C and I components with integral
causality.

MTTz z — the system nonstates (corresponding to C and I components with derivative
causality.

MTTu u — the system inputs (corresponding to SS components with external attribute).

mttv ui — the internal system inputs (corresponding to SS components with inter-
nal attribute) used to solve algebraic loops (see Section 1.7 [Algebraic loops],
page 5).

MTTy y — the system outputs (corresponding to SS components with external at-
tribute).

6.12.1.1 Transformation ese2dae_r

This transformation (see Section 1.2 [What is a Transformation?], page 2) uses Reduce
(see Section 9.3 [Reduce], page 79) to combine the elementary system equations (see Sec-
tion 6.11 [Elementary system equations], page 58) with the constitutive relationships (see
Section 1.6.2 [Constitutive relationshipl|, page 5) and simplify the result.

6.12.2 Language m (dae.m)

The system DAEs (see Section 6.12 [Differential-Algebraic Equations], page 59) are repre-
sented in the m (see Section 9.2 [m], page 79) language as two m-functions of the form:

function resid = sys_dae(dx,x,t)
function y = sys_dae(dx,x,t)
Where x is the dae descriptor vector and dx its time derivative; t is the time. The first

function is of a form suitable for solution by DASSL; the second function can then be used
to find the coresponding system output.
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6.12.2.1 Transformation dae_r2m

This transformation (see Section 1.2 [What is a Transformation?], page 2) uses Reduce (see
Section 9.3 [Reduce], page 79) to rewrite the elementary system equations (see Section 6.11
[Elementary system equations], page 58) in m-file format (see Section 9.2 [m], page 79) .
Numerical parameters are declared as global.

6.13 Constrained-state Equations (cse)

The system constrained-state equations describe the system dynamics for a special class of
systems (see the book for details). The resuting equations are of the form:
E(x) dx/dt = f(x,u)
y = g(x,u)
They typically occure where two or more states are constrained to be equal, or propor-

tional, to each other. For example, two capacitors in parallel or two inertias connected by
a stiff shaft.

They are generated in language lang for system sys by:
mtt sys cse lang

Valid languages are:

T reduce (see Section 9.3 [Reduce], page 79).
m m (see Section 9.2 [m], page 79).
view reduce (see Section 10.1 [Views], page 80).

There are three sets of variables describing the system:

X the system states (corresponding to C and I components with integral causality.
u the system inputs (corresponding to SS components with external attribute).
y the system outputs (corresponding to SS components with external attribute).

In general there are two sets of equations. The right-hand side of each is a function of x
and u and the left hand sides are:

1. the derivative of x (dx/dt) y

6.13.1 Language reduce (cse.r)

The system CSEs (see Section 6.13 [Constrained-state Equations|, page 61) are represented
in the reduce (see Section 9.3 [Reduce], page 79) language as arrays containing the algebraic
expressions for the right hand sides of each set of equations. The arrays are:

MTTx x — the system states (corresponding to C and I components with integral
causality.

MTTu u — the system inputs (corresponding to SS components with external attribute).

MTTy y — the system outputs (corresponding to SS components with external at-
tribute).

together with the array containing the elements of the E matrix.



Chapter 6: Representations 62

6.13.1.1 Transformation dae2cse_r

This transformation (see Section 1.2 [What is a Transformation?], page 2) Reduce (see
Section 9.3 [Reduce], page 79) to find various Jacobians which are combined to find the E
matrix and the constrained-state equations (see Section 6.13 [Constrained-state Equations],
page 61).

6.13.2 Language m (view)

This representation has the standard text view (see Section 10.1 [Views], page 80).

6.14 Ordinary Differential Equations

The system ordinary differential equations describe the system dynamics.
They are generated in language lang for system sys by:
mtt sys ode lang

Valid languages are:

r reduce (see Section 9.3 [Reduce], page 79).
m m (see Section 9.2 [m], page 79).
view reduce (see Section 10.1 [Views], page 80).

There are three sets of variables describing the system:

X the system states (corresponding to C and I components with integral causality.
u the system inputs (corresponding to SS components with external attribute).
y the system outputs (corresponding to SS components with external attribute).

In general there are two sets of equations. The right-hand side of each is a function of x
and u and the left hand sides are:

1. the derivative of x (dx/dt) y

6.14.1 Language reduce (ode.r)

The system ODEs (see Section 6.14 [Ordinary Differential Equations|, page 62) are repre-
sented in the reduce (see Section 9.3 [Reduce], page 79) language as arrays containing the
algebraic expressions for the right hand sides of each set of equations. The arrays are:

MTTx x — the system states (corresponding to C and I components with integral
causality.

MTTu u — the system inputs (corresponding to SS components with external attribute).

MTTy y — the system outputs (corresponding to SS components with external at-

tribute).
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6.14.1.1 Transformation cse2ode_r

This transformation (see Section 1.2 [What is a Transformation?], page 2) uses Reduce (see
Section 9.3 [Reduce], page 79) to invert the E matrix of the constrained-state equations (see
Section 6.13 [Constrained-state Equations], page 61) and simplify the result.

6.14.2 Language m (ode.m)

The system ODEs (see Section 6.14 [Ordinary Differential Equations|, page 62) are repre-
sented in the m (see Section 9.2 [m], page 79) language as two m-functions of the form:

function dx = sys_0DE(x,t)
function y sys_0DE(dx,x,t)

Where x is the ODE state vector and dx its time derivative; t is the time. The first
function is of a form suitable for solution by odesol; the second function can then be used
to find the corresponding system output.

6.14.2.1 Transformation ode_r2m

This transformation (see Section 1.2 [What is a Transformation?], page 2) uses Reduce (see
Section 9.3 [Reduce], page 79) to rewrite the ordinary differential equations (see Section 6.14
[Ordinary Differential Equations|, page 62) in m-file format (see Section 9.2 [m], page 79) .
Numerical parameters are declared as global.

6.14.3 Language m (view)

This representation has the standard text view (see Section 10.1 [Views], page 80).

6.15 Descriptor matrices (dm)

The system descriptor matrices A, B, C, D and E describe the linearised system dynamics
in the form

E dx/dt = Ax + Bu
y = Cx + Du

They are generated in language lang for system sys by:
mtt sys dm lang

Valid languages are:
T reduce (see Section 9.3 [Reduce], page 79).
m m (see Section 9.2 [m], page 79).

view reduce (see Section 10.1 [Views], page 80).
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6.15.1 Language reduce (dm.r)

The system descriptor matrices (see Section 6.15 [Descriptor matrices], page 63) are repre-
sented in the reduce (see Section 9.3 [Reduce], page 79) language as arrays containing the
four matrices. The arrays are:

MTTA A
MTTB B
MTTA C
MTTD D
MTTE E

6.15.2 Language m (dm.m)

The system descriptor matrices (see Section 6.15 [Descriptor matrices|, page 63) are repre-
sented in the m (see Section 9.2 [m], page 79) language as an m-function of the form:
function [A,B,C,D,E] = sys_dm
System numeric parameters (see Section 1.6.4 [Numeric parameters|, page 5) are passed
via global variables defined in the _numpar.m file. Thus the system descriptor matrices are
typically generated in Octave (see Section 10.4 [Octave|, page 80) as follows:
Sys_numpar
[A,B,C,D,E] = sys_dm
Parameters can be changed from their default values by entering their values directly
into Octave (see Section 10.4 [Octave], page 80) and then invoking sys_dm; for example
Sys_numpar
par_1 = 25
par_2 = par_1 + 3
[A,B,C,D,E] = sys_dm

6.16 Report (rep)

MTT has a report-generator feature. The user specifies the report contents in a text file (see
Section 6.16.1 [Report (text)], page 64) using an appropriate text editor (see Section 10.3
[Text editors]|, page 80).

For example, the report can be viewed by typing

mtt system rep view

6.16.1 Language text (rep.txt)

The user specifies the report contents in a text file (see Section 6.16.1 [Report (text)],
page 64) using an appropriate text editor (see Section 10.3 [Text editors|, page 80). The
text file contains lines which are either comments (indicated by %) or valid MTT commands.
The report will then contain appropriate sections. The following languages are supported
by the report generator:
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m octave a high-level interactive language for numerical computation.
r reduce a high-level interactive language for symbolic computation.
tex latex a text processor.

ps ghostview another document viewer.

c gcc a ¢ compiler.

For example:

mtt rc abg tex
mtt rc cbg ps
mtt rc struc tex
mtt rc ode tex
mtt rc sro ps
mtt rc tf tex
mtt rc 1lmfr ps

The acausal bond graph (abg) (see Section 6.4 [Acausal bond graph (abg)], page 28)
with the tex language is handled in a special way: the acausal Bond Graph in fig format
(see Section 6.4.1 [Language fig (abg.fig)], page 28), the label file (see Section 6.6 [Labels
(Ibl)], page 37) the description file (see Section 8.2.2 [Detailed|, page 78), together with
corresponding subsystems are included in the report. It is recommended that the first
(non-comment line) in the file should be:

mtt <system> abg tex
where <system> is the name of the (top-level) system.

As usual, MTT provides a default text file to be edited by the user (see Section 10.3
[Text editors|, page 80).

In the special case that the first argument to mtt (normally the system) is a directory,
a default text file is provided which generates a report for all systems to be found in that
directory tree.

6.16.2 Language view

This representation has the standard text view (see Section 10.1 [Views|, page 80).
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7 Extending MTT

MTT has a number of built-in mechanisms for the user to extend its capabilities. As MTT
is based on ‘Make’ it is unsurprising that some of these involve the creation of ‘make files’.

7.1 Makefiles

If a file called ‘Makefile’ exists in the current directory, MTT executes it using make before
doing anything else. This is useful if one of the .txt files contains a reference to, for example,
an octave function of which MTT unaware. Such a function can be created using the
makefile. An example ‘Makefile’ is

# Makefile for the Two link GMV example
all: msdP_tf.m TwoLinkP_obs.m TwolLinkP_sm.m twolinkp_sm.m TwoLinkGMV_numpar.m

msdP_tf.m: msdP_abg.fig
mtt -q msdP tf m

TwoLinkP_obs.m: TwolLinkP_abg.fig TwolLinkP_1bl.txt
mtt —-q TwoLinkP obs m

TwoLinkP_sm.m: TwoLinkP_abg.fig TwoLinkP_1bl.txt
mtt -q TwoLinkP sm m

twolinkp_sm.m: TwoLinkP_sm.m
cp -v TwoLinkP_sm.m twolinkp_sm.m

TwoLinkGMV_numpar.m: TwoLinkGMV_numpar.txt
mtt -q TwoLinkGMV numpar m

All of the files in the line stating ‘all:’ are created when MTT is executed (if they don’t
already exist).

7.2 New (DIY) representations

It may be convenient to create new representations for MTT; in particular, it is nice to
be able to include the result of some numerical or symbolic computations within an MTT
report (see Section 6.16 [Report], page 64). Therefore MTT provides a mechanism for doing
this.

Future extensions of MTT will use such representations stored in SMTT_REP.
There are three parts to creating a DIY representation called myrep

1. Creating a make file in Make format called myrep_rep.make

2. Optionally creating a shell script called myrep_rep.sh

3. Optionally creating a documentation file in LaTeX format called myrep_rep.tex
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7.2.1 Makefile

To create a new representation ‘myrep’ in a language ‘mylang’, create a file with the name
myrep_rep.make
This file must contain text in ‘make’ syntax. It is executed by MTT and the two
arguments ‘SYS’ (the system name) and ‘LANG’ (the language) are passed to it by MTT.
Note that MTT cannot know of any prerequisites, but these can be explicitly included in
the makefile (which may include execution of MTT itself.

The following example declares the new representation ‘ident’ which is created in con-
junction with the shell-script ident_rep.sh (see Section 7.2.2 [Shell-script (DIY representa-
tions)], page 70).

# —*-makefile—*-—

#SUMMARY Identification
#DESCRIPTION Partially know system identification using
#DESCRIPTION using bond graphs

# Makefile for representation ident
# File ident_rep.make

#Copyright (C) 2000,2001,2002 by Peter J. Gawthrop

## Model targets

model_reps = ${SYS}_sympar.m ${SYS}_simpar.m ${SYS}_state.m
model_reps += ${SYS}_numpar.m ${SYS}_input.m ${SYS}_ode2odes.m
model_reps += ${SYS}_def.m

## Prepend s to get the sensitivity targets
sensitivity_reps = ${model_reps:%=s%}

## Model prerequisites
model_pre = ${SYS}_abg.fig ${SYS}_1bl.txt
model_pre += ${SYS}_rdae.r ${SYS}_numpar.txt

## Prepend s to get the sensitivity targets
sensitivity_pre = ${model_pre:%=s%}
## Simulation targets

sims = ${SYS}_sim.m s${SYS}_ssim.m

## m-files needed for ident
ident_m = ${SYS}_ident.m ${SYS}_ident_numpar.m

## Targets for the ident simulation
ident_reps = ${ident_m} ${sims} ${model_reps} ${sensitivity_reps}
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## ps output files etc

psfiles = ${SYS}_ident.ps ${SYS}_ident.comparison.ps
figfiles = ${psfiles:%.ps=V%.figt

gdatfiles = ${psfiles:’.ps=).gdat}

datfiles = ${psfiles:’%.ps=V.dat2}

## LaTeX files etc
latexfiles = ${SYS}_ident_par.tex

all: ${SYS}_ident.${LANG}

echo:
echo "sims: ${sims}"
echo "model_reps: ${model_reps}"
echo "sensitivity_reps: ${sensitivity_repsl}"
echo "ident_reps: ${ident_repsl}"

${SYS}_ident.view: ${psfiles}
ident_rep.sh ${SYS} view

${psfiles}: ${figfiles}
ident_rep.sh ${SYS} ps

${figfiles}: ${gdatfiles}
ident_rep.sh ${SYS} fig

${gdatfiles}: ${datfiles}
ident_rep.sh ${SYS} gdat

${datfiles} ${latexfiles}: ${ident_reps}
ident_rep.sh ${SYS} dat2

${SYS}_ident.m:
ident_rep.sh ${SYS} m

${SYS}_ident_numpar.m:
ident_rep.sh ${SYS} numpar.m

## System model reps
## Generic txt files
${SYS}_%.txt:
mtt ${0PTS} -q -stdin ${SYS} $* txt

## Specific m files
${SYS}_ode2odes.m: ${model_pre}
mtt -q -stdin ${0PTS} ${SYS} ode2odes m
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${SYS}_sim.m: ${SYS}_ode2odes.m
mtt ${0PTS} -q -stdin ${SYS} sim m

## Numpar files
${SYS} _numpar.m:
mtt ${SYS} numpar m

## Sympar files
${SYS}_sympar.m:
mtt ${SYS} sympar m

## Generic txt tom
${SYS}_% .m: ${SYS}_%.txt
mtt ${OPTS} -q -stdin ${SYS} $* m

## r files
${SYS}_def.r: ${SYS}_abg.fig
mtt ${0PTS} -q -stdin ${SYS} def r

${SYS}_rdae.r:
mtt ${0PTS} -q -stdin ${SYS} rdae r

## Sensitivity model reps
## Generic txt files
s${SYS}_%.txt:
mtt ${0PTS} -q -stdin -s s${SYS} $* txt

## Specific m files
## Numpar files
s${SYS}_numpar.m:

mtt -s s${SYS} numpar m

## Sympar files
s${SYS}_sympar.m:
mtt -s s${SYS} sympar m

s${SYS}_ode2odes.m: ${sensitivity_pre}

mtt -q -stdin ${OPTS} -s s${SYS} ode2odes m

s${SYS}_ssim.m:
mtt -q -stdin ${0PTS} -s s${SYS} ssim m

s${SYS}_def .m:
mtt -q -stdin ${0PTS} -s s${SYS} def m
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## Generic txt tom
s${SYS}_%.m: s${SYS}_%.txt
mtt ${0PTS} -q -stdin s${SYS} $* m

## r files
s${SYS}_rdae.r:
mtt ${0PTS} -q -stdin -s s${SYS} rdae r

7.2.2 Shell-script

For more complex DIY representations, it is convenient to define new commands to be used
by the Makefile (see Section 7.2.1 [Makefile (DIY representations)], page 67).

The following example shows this in the context of the DIY representation ‘ident’ used
as an example in the previous section (see Section 7.2.1 [Makefile (DIY representations)],
page 67).

#! /bin/sh

## ident_rep.sh
## DIY representation "ident" for mtt
# Copyright (C) 2002 by Peter J. Gawthrop

ps=ps

sys=$1

rep=ident

lang=$2
mtt_parameters=$3
rep_parameters=$4

## Some names
target=${sys}_${rep}.${lang}
def_file=${sys}_def.r
dat2_file=${sys}_ident.dat2
dat2s_file=${sys}_idents.dat2
ident_numpar_file=${sys}_ident_numpar.m
option_file=${sys}_ident_mtt_options.txt

## Get system information
if [ -f "${def_file}" 1; then
echo Using ${def_file}
else
mtt -q ${sys} def r
fi

ny=‘mtt_getsize $1 y°
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nu=‘mtt_getsize $1 u‘

check_new_options() {

if [ -f "${option_file}" ]; then
old_options=‘cat ${option_file}*
if [ "${mtt_options}" != "${old_options}" ]; then

echo ${mtt_options} > ${option_file}

fi

else
echo ${mtt_options} > ${option_file}

fi

## Make the _ident.m file
make_ident () {
filename=${sys}_${repr.m
date=‘date®

echo Creating ${filename}

cat > ${filename} <<EOF
function [epar,Y] = ${sys}_ident (y,u,t,par_names,Q,extras)

## usage: [epar,Y] = ${sys}_ident (y,u,t,par_names,Q,extras)
##

## last last time in run

## ppp_names Column vector of names of ppp params

## par_names Column vector of names of estimated params

## extras Structure containing additional info

##

## Created by MIT on ${date}

## Sensitivity system name
system_name = "s${sys}"

##Sanity check

if nargin<3
printf ("Usage: [y,u,t] = ${sys}_ident(y,u,t,par_names,Q,extras);");
return

endif

if nargin<6
## Set up optional parameters
extras.criterion = le-3;
extras.emulate_timing = O;
extras.max_iterations = 10;
extras.simulate = 2;
extras.v = 1le-2;
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extras.verbose = 1;
extras.visual = 1;
endif

## System info
[n_x,n_y,n_u,n_z,n_yz] = ${sys}_def;
sympar = ${sys}_sympar;

simpar = ${sys}_simpar;
sympars = s${sys}_sympar;
simpars = s${sys}_simpar;

## Parameter indices
i_par = ppp_indices (par_names,sympar,sympars);

## Initial model state
x_0 = zeros(2*n_x,1);

## Initial model parameters
par_0 = s${sys}_numpar;

## Reset simulation parameters
[n_data,m_datal] = size(y);

dt = t(2)-t(1);

simpars.last = (n_data-1)*dt;
simpars.dt = dt;

## Identification
lepar,Par,Error,Y,iterations,x] = ppp_optimise(system_name,x_0,par_O,simpars,u,y,i_par,Q,

## Do some plots

figure(1);

title("Comparison of data");

xlabel("t");

ylabel("y");

[N,M] = size(Y);

plot(t,Y(: ,M-n_y+1:M),"1;Estimated;", t,y,"3;Actual;");
figfig("${sys}_ident_comparison");

## Create a table of the parameters
[n_par,m_par] = size(i_par);

fid = fopen("${sys}_ident_par.tex", "w");
fprintf (fid,"\\\\begin{table} [htbp]l\\n");
fprintf (£fid," \\\\centering\\n");

fprintf (£fid," \\\\begin{tabular}{|1|1[|}\\n");
fprintf (fid," \\\\hline\\n");

fprintf(fid," Name & Value \\\\\\\\ \\n");
fprintf (£fid," \\\\hline\\n");
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for i = 1:n_par
fprintf (fid,"$%s$ & %4.2f \\\\\\\\ \\n", par_names(i,:), epar(i_par(i,1)));
endfor
fprintf (£fid," \\\\hline\\n");
fprintf (£fid, "\\\\end{tabular}\\n") ;
fprintf (fid,"\\\\caption{Estimated Parameters}\\n");
fprintf (fid,"\\\\end{table}\\n");
fclose(fid);

endfunction
EQOF
}

make_ident_numpar () {

echo Creating ${ident_numpar_file}

cat > ${sys}_ident_numpar.m <<EOF

function [y,u,t,par_names,Q,extras] = ${sys}_ident_numpar;

## usage: [y,u,t,par_names,Q,extras] = ${sys}_ident_numpar;
## Edit for your own requirements
## Created by MTT on ${date}

## This section sets up the data source

## simulate = O Real data (you supply ${sys}_ident_data.dat)
## simulate = 1 Real data input, simulated output

## simulate 2 Unit step input, simulated output

simulate = 2;

## System info
[n_x,n_y,n_u,n_z,n_yz] = ${sys}_def;
simpars = s${sys}_simpar;

## Access or create data
if (simulate<2) # Get the real data
if (exist("${sys}_ident_data.dat")==2)
printf ("Loading ${sys}_ident_data.dat\n");
load ${sys}_ident_data.dat
else
printf ("Please create a loadable file ${sys}_ident_data.dat containing y,u and t\n");
return
endif
else
switch simulate
case 2 # Step simulation
t = [0:simpars.dt:simpars.last]’;
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u = ones(size(t));
otherwise
error (sprintf ("simulate = %i not implemented", simulate));
endswitch
endif

if (simulate>0)

par = ${sys}_numpar();

x_0 = ${sys}_state(par);

dt = t(2)-t(1);

simpars.dt = dt;

simpars.last = t(length(t));

y = ${sys}_sim(zeros(n_x,1), par, simpars, u);
endif

## Default parameter names - Put in your own here

sympar = ${sys}_sympar; # Symbolic params as structure
par_names = struct_elements (sympar); # Symbolic params as strings
[n,m] = size(par_names); # Size the string list

## Sort by index
for [i,name] = sympar

par_names(i,:) = sprintf ("%s%s",name, blanks(m-length(name)));
endfor

## Output weighting vector
Q = ones(n_y,1);

## Extra parameters
extras.criterion = le-5;
extras.emulate_timing = O;
extras.max_iterations = 10;
extras.simulate = simulate;
extras.v = 1le-2;
extras.verbose = 1;
extras.visual = 1;

endfunction
EQOF

}

make_dat2() {

## Inform user
echo Creating ${dat2_file}

## Use octave to generate the data
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octave —-q <<EOF
[y,u,t,par_names,Q,extras] = ${sys}_ident_numpar;
[epar,Y] = ${sys}_ident (y,u,t,par_names,Q,extras);
[N,M] = size(Y);
y_est = Y(:,M);
data = [t,y_est,ul;
save -ascii ${dat2_file} data

EOF

## Tidy up the latex stuff - convert foo_123 to foo_{123}

cat ${sys}_ident_par.tex > mtt_junk

sed -e "s/_\([a-z0-9,]1*\)/_{\1}/g" < mtt_junk >${sys}_ident_par.tex
rm mtt_junk

3

case ${lang} in
numpar.m)
## Make the numpar stuff
make_ident_numpar;
m)
## Make the code
make_ident;
dat2)
## The dat2 language (output data) & fig file
make_dat2;
gdat)
cp ${dat2_file} ${dat2s_file}
dat22dat ${sys} ${rep’
dat2gdat ${sys} ${rep}
fig)
gdat2fig ${sys}_${rep}
ps)
figs=‘1ls ${sys}_ident*.fig | sed -e ’s/\.fig//’¢
for fig in ${figs}; do
fig2dev -Leps ${fig}t.fig > ${figl}.ps
done
texs=‘ls ${sys}_ident*.tex | sed -e ’s/\.tex//’¢
for tex in ${texs}; do
makedoc nn ll${sys}ll llident_parll “teX" nmnonn "$psll
doc23%ps ${sys}_ident_par "$documenttype"
done

A
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view)
pss=‘ls ${sys}_ident*.ps®
echo Viewing ${pss}
for ps in ${pss}; do

gv ${ps}t&

done

*)
echo Language ${lang} not supported by ${rep} representation
exit 3

esac

7.2.3 Documentation

7.3 Component library

If MTT does not recognise a component (eg named MyComponent) as a simple component
(see Section 6.4.1.5 [Simple components|, page 30) or as already existing, it searches the
library search path SMTT_COMPONENTS (see Section 11.4.2 [MTT_COMPONENTS],
page 87) for a directory called MyComponent containing MyComponent_lbl.txt. It then
copies the entire directory into the current working directory. Thus, for example, the direc-
tory could contain MyComponent_desc.tex MyComponent_abg.fig MyComponent_lbl.txt
and MyComponent_cr.r in addition to MyComponent_lbl.txt.
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8 Documentation

8.1 Manual

MTT is documented in this manual. The manual can be invoked in various ways:

mtt manual
Brings up a pdf version of the manual

mtt info Brings up an xterm containing an info version of the manual
mtt hinfo Brings up an html browser containing the manual
emacs type ~“h"i followed by mmtt in the command window

browser  point browser to mtt.sf.netb
8.2 On-line documentation

MTT components, constitutive relations, examples and representations in libraries (see
Section 7.3 [Component library]|, page 76) are documented in two ways:

1. brief
2. verbose

8.2.1 Brief on-line documentation

Documentation of DIY components, examples, constitutive relationships and representa-
tions is provides by the programmer by inserting code of the form

#SUMMARY One line summary
#DESCRIPTION Multi-line
#DESCRIPTION More detailed description

within the appropriate file (usually at or near the top):

components

_Ibl.txt (see Section 6.6 [Labels (Ibl)], page 37)
examples _lbltxt (see Section 6.6 [Labels (1bl)], page 37)

constitutive relations
-cr.r (see Section 6.8.2 [DIY constitutive relationships|, page 50)

representations
_rep.make (see Section 7.2.1 [Makefile (DIY representations)|, page 67)

This documentation is accessed by the user in various ways

mtt help name
prints basic information on the screen

mtt system 1bl view
gives formatted information about the component or example

Including mtt system abg tex in the _rep.txt file
gives formatted information about the component or example within the report
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8.2.2 Detailed on-line documentation

DIY components, examples, constitutive relationships can be described textually in LaTeX
(.tex) description file; this is the only language for this representation. This representation
is used by the LaTeX language version (see Section 6.4.4 [Language tex (abg.tex)], page 37)
of the acausal bond graph representation (see Section 6.4 [Acausal bond graph (abg)],
page 28).

The file may contain any LaTeX commands valis for the “article” document type but
must not contain:

e documentclass commands

e document environments
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9 Languages

These are a number of languages used by MTT to implement the various representations.
Each has associated Language tools (see Chapter 10 [Language tools|, page 80) to manip-
ulate and/or view the representation.

fig Fig a graphical description language.

m octave a high-level interactive language for numerical computation.
r reduce a high-level interactive language for symbolic computation.
tex latex a text processor.

dvi xdvi a document viewer.

ps ghostview another document viewer.

gdat gnuplot a data viewer.

c gcc a ¢ compiler.

sg scigraphica a plotting package.

These tools are automatically invoked as appropriate by MTT; but for more advanced
use, these tools can be used directly on files (with the appropriate suffix) generated by
MTT.

9.1 Fig

Please see xfig documentation.

9.2 m

Please see Octave documentation

9.3 Reduce

Please see the reduce documentation.

94 c

Please see the gce documentation.
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10 Language tools

10.1 Views

A number of representations (see Chapter 6 [Representations|, page 25) have a language
representation which is particularly useful for viewing by the user. These views are invoked,
where appropriate by the command:

mtt sys rep view

where sys is the system name and rep a corresponding representation.

10.2 Xfig

10.3 Text editors

All representations live in text files and thus may be edited using your favourite text editor;
however, the Fig (see Section 9.1 [Fig], page 79) representation is pretty meaningless in this
form and so you should use Xfig (see Section 10.2 [Xfig], page 80) for representation in this
language.

Its up to you which text editor to use. I recommend emacs, but simpler (and less
powerful) editors such as xedit, textedit and vi are also ok.

I usually run MTT out of an emacs shell window and keep the rest of the files in emacs
buffers.

10.4 Octave

Octave is a numerical matrix-based language See section “Octave” in Octave. It is similar
to Matlab in many ways. In most cases, m-files generated by MTT can be understood by
both Matlab and Octave (and no doubt other Matlab lookalikes).

MTT provides the octave function mtt. The octave command
help mtt
gives the following information:

usage: mtt (system[,representation,language])

Invokes mtt from octave to generate system_representation.language
Ie equivalent to "mtt system representation language" at the shell
Representation and language defualt to "sm" and "m" respectively

Thus for example, if octave is in the directory containing the system rc the following
session generates the state matrices of the system "rc¢" with the defaut capacitance but
resitance r=0.1.
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octave> mtt("rc");
Creating rc_rbg.m

Creating rc_cmp.m

Creating rc_fig.fig
Creating rc_sabg.fig
Creating rc_alias.txt
Creating rc_alias.m
Creating rc_sub.sh
Creating rc_abg.m

Creating rc_cbg.m (maximise integral causality)
Creating rc_type.sh
Creating rc_ese.r

Creating rc_def.r

Creating rc_struc.txt
Creating rc_rdae.r
Creating rc_subs.r
Creating rc_cr.txt
Creating rc_cr.r

Copying CR SS to here from
Copying CR lin to here from
Creating rc_dae.r

Creating rc_sympar.txt
Creating rc_sympar.r
Creating rc_cse.r

Creating rc_sspar.r
Creating rc_csm.r

Creating rc_ode.r

Creating rc_ss.r

Creating rc_sm.r

Creating rc_switch.txt

0 switches found

Creating rc_sympars.txt
Creating rc_sm.m

Copying rc_sm.m

octave> mtt("rc","numpar") ;
Creating rc_numpar.txt
Creating rc_numpar.m
Copying rc_numpar.m
octave> mtt("rc","sympar") ;
Creating rc_sympar.m
Copying rc_sympar.m
octave> par = rc_numpar
par =
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octave> sym = rc_sympar;

octave> par(sym.r) = 0.1;
octave> [A,B,C,D] = rc_sm(par)

A =-10
B =10
c=1
D=0
octave>

generates the data structure rc corresponding the the bond graph of the system called
‘r¢’. The following octave commands then generate the step reponse and bode diagram
respectively:

step(rc);
bode (rc) ;

10.4.1 Octave control system toolbox (OCST)

MTT provides an interface to the Octave control system toolbox (OCST) using the mfile
mtt2sys. the octave command

help mtt2sys
gives the following information.

usage: sys = mtt2sys (Namel[,par])

Creates a sys structure for the Octave Control Systems Toolbox
from an MTT system with name "Name"

Optional second argument is system parameter list

Assumes that Name_sm.m, Name_struc.m and Name_numpar.m exist

Thus for example, if octave is in the directory containing the system rc:
rc = mtt2sys("rc");

generates the data structure rc corresponding the the bond graph of the system called
‘r¢’. The following octave commands then generate the step reponse and bode diagram
respectively:

step(rc);
bode(rc);

10.4.2 Creating GNU Octave .oct files

GNU Octave dynamically loaded functions (.oct files) can be created by instructing MTT
to create the “oct” representation:
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mtt [options] sys ode oct

This will cause MTT to create the C++ representation of the system (sys_ode.cc) and to
then compile it as a shared object suitable for use within Octave. The resultant file may be
used in an identical manner to the equivalent, but generally slower, interpreted .m file.

Usage information for the function may be obtained within Octave in the usual manner:

octave:1> help rc_ode

rc_ode is the dynamically-linked function from the file
/home/mttuser/rc/rc_ode.oct

Usage: [mttdx] = rc_ode(mttx,mttu,mttt,mttpar)
Octave ode representation of system rc
Generated by MIT on Fri Jul 5 11:23:08 BST 2002

Note that the first line of output from Octave identifies whether the compiled or inter-
preted function is being used.

Alternatively, standard representations may be generated using the Octave DLDs by use
of the “-oct” switch:

mtt —-oct rc odeso view

In order to successfully generate .oct files, Octave must be correctly configured prior to
compilation and certain headers and libraries must be correctly installed on the system (see
Section 11.3.2 [.oct file dependencies], page 86).

10.4.3 Creating Matlab .mex files

On GNU/Linux systems, Matlab dynamically linked executables (.mexglx files) can created
by instructing MTT to create the “mexglx” representation:

mtt [options] sys ode mexglx

This will cause MTT to create the C++ representation of the system (sys_ode.cc) and to
then compile it as a shared object suitable for use within Matlab.

If it is necessary to compile mex files for another platform, then the usual C++ represen-
tation (generated with the -cc flag) can be created and the resultant file compiled with the
-DCODEGENTARGET=MATLABMEX flag on the target platform.

mtt_machine:
mtt —-cc rc ode cc

matlab_machine:
matlab> mex -DCODEGENTARGET=MATLABMEX rc_ode.cc

10.4.4 Embedding MTT models in Simulink

It is possible to embed MTT functions or entire MTT models within Simulink simulations
as Sfun blocks. If the zip package is installed on the system, the command
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mtt sys sfun zip

will create a compressed archive containing sys.mdl, which may be embedded into a
larger Simulink model. Also contained within the archive will be four sys_sfun*.c files,

e sys_sfun.c model state and output equations
e sys_sfun_ae.c model algebraic equations
e sys_sfun_input.c model inputs
e sys_sfun_interface.c interface between MTT model and Simulink
The last of these files must be edited to correctly map the inputs and outputs between
the MTT and Simulink models. The two sections to edit are clearly marked with
/* Start EDIT */

/* End EDIT x/

These four files should then be compiled with the Matlab “mex” compiler as described
in the README file in the archive.

If it is desired to compile the .mex files directly from within MTT on a machine which
has the Matlab header files installed, this may be done with the command

mtt sys sfun mexglx

which will generated the four .mex files and the .mdl file. In this case, the user must
ensure that sys_sfun_interface.c has been correctly edited prior to compilation.

Note that solution of algebraic equations within Simulink is not possible unless the
Matlab Optimisation Toolbox is installed.

10.5 LaTeX

LaTeX is a powerful text processor which MTT uses to provide visual output.
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11 Administration

11.1 Software components

MTT is built from a set of readily-available software tools. These are:
e General purpose software tools.
e Octave (see Section 11.3 [Octave setup], page 86)
e REDUCE (see Section 11.2 [REDUCE setup]|, page 85)

The General purpose tools are (these will all be available with a standard Linux distri-
bution):

sh Bourne shell

gmake Gnu make

gawk Gnu awk

sed Gnu sed

grep Gnu grep

comm Gnu Compare sorted files by line
xfig Figure editor, version 3 or greater.

fig2dev  Fig file conversion, version 3 or greater.

ghostview
postscript viewer
xdvi dvi viewer
dvips dvi to postscript conversion
latex the text processor (LaTeX2e needed)
latex2html
converts latex to html
perl needed for latex2html

gnuplot  a graph plotting program
gnuscape or other web/html browser such as netscape, Red Baron etc.

gcce GNU c compiler

11.2 REDUCE setup

Symbolic algebra is performed by REDUCE, which although not free software is the the
result of international collaboration. The version I use is obtained from:

ZIB ( http://www.zib.de )
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11.3 Octave setup

Octave is available at various web sites including: http://www.octave.org

11.3.1 .octaverc

The ‘.octaverc’ file should contain the following lines:
Tolo o T T to o Tolo o T To o To To ot ToTo o To ot To To o To o T to To o To fo o to To o To To o Fo To To o To o ot To To To o o Jo To To o fo o Jo
%% Startup file for Octave for use with MTT
Tolo ot Tt o To To o T Voo o To foFo FoTo o To fo o To Yoo To To o to Vo To o To o o to Yo o To fo o Fo Vo o To To o o Fo Yo o o fo o Fo Vo To o Fo o

1;
1;

implicit_str_to_num_ok
empty_list_elements_ok

11.3.2 .oct file dependencies

Successful compilation of .oct code requires that Octave has been configured to use dynami-
cally linked libraries and that the Octave libraries 1iboctave, libcruft and liboctinterp
are available on the system.

This can be acheived by compiling Octave from the source code, configured with the
options --enable-shared and —-enable-dl.

A number of additional libraries and headers are also required to be installed on a system.
These include,

e ncurses and readline terminal control routines

e blas or altas basic linear algebra subprograms, usually optimised for the specific pro-
cessor

e fftw fast Fourier transform routines
e g2c¢ GNU Fortran to C conversion routines
e kpathsea TeX path search routines
Note that on many GNU/Linux distributions, the necessary headers are contained in
development packages which must be installed in addition to the standard library package.

Further information on configuring and installing Octave to handle dynamic libraries
(DLDs) can be found in the Octave documentation.

11.4 Paths

There are a number of paths that must be set correctely for MTT to work. These are
normally set up by sourcing the file mttrc that lives in the MTT home directory.

11.4.1 SMTTPATH

The environment variable SMTTPATH points to the mtt home directory. This is usually
/usr/local/lib/mtt.


http://www.octave.org
http://www.octave.org/docs.html
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11.4.2 SMTT_COMPONENTS

The environment variable $SMTT_COMPONENTS is a colon-separated path pointing to
directories containing components and subsystems. By default

MTT_COMPONENTS=. : $MTT_LIB/1ib/comp/
but you may wish to add your own component libraries:
MTT_COMPONENTS=my_library_path:$MTT_COMPONENTS

11.4.3 SMTT_CRS

The environment variable $SMTT_CRS is a colon-separated path pointing to directories
containing constitutive relationships. By default

MTT_CRS=$MTTPATH/lib/cr
but you may wish to add your own component libraries:
MTT_CRS=my_cr_path:$MTT_CRS

11.4.4 SMTT_EXAMPLES

The environment variable SMTT_EXAMPLES is a colon-separated path pointing to direc-
tories containing EXAMPLES and subsystems. By default

MTT_EXAMPLES=$MTTPATH/1ib/examples
but you may wish to add your own component libraries:
MTT_EXAMPLES=my_examples_path:$MTT_EXAMPLES

11.4.5 SOCTAVE_PATH

The $0CTAVE_PATH path must include the relevant paths for mtt to work properly. In
particular, it must include:

$MTTPATH/trans/m
$MTTPATH/1ib/comp/simple
$MTTPATH/1ib/comp/compound

11.5 File structure

The recommended installation of MTT uses the following directory structure with corre-
sponding contents. Normally, each of the listed directories is a subdirectory of ‘/usr/local’.
The directory mtt is pointed to by SMTTPATH (see Section 11.4.1 [SMTTPATH], page 86).

‘mtt/bin’ This is the home directory for MTT. MTT itself lives here along with ‘mttrc’.

‘mtt/bin/trans’
The transformations executed by MTT.

‘mtt/bin/trans/m’
The m-files associated with the transformations.
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‘mtt/bin/trans/awk’
The awk scripts associated with the transformations.

‘mtt/1ib’ The place for components, examples and CRs which will be updated.

‘mtt/1lib/comp/simple’
The m-files defining the simple components.

‘mtt/1ib/comp/compound’
The m-files defining the compound components.

‘mtt/lib/cr/r’
constitutive relationship definitions

‘mtt/1lib/examples’
Some examples.

‘mtt/examples/metamodelling’
Examples from the book.

‘mtt/doc’ The documentation files for MTT.

‘mtt/doc/Examples’
Examples used in the documentation.
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Appendix A Legal stuff

A.1 GNU Free Documentation License

Version 1.2, November 2002

Copyright (©) 2000,2001,2002 Free Software Foundation, Inc.
59 Temple Place, Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.

0. PREAMBLE

The purpose of this License is to make a manual, textbook, or other functional and
useful document free in the sense of freedom: to assure everyone the effective freedom
to copy and redistribute it, with or without modifying it, either commercially or non-
commercially. Secondarily, this License preserves for the author and publisher a way
to get credit for their work, while not being considered responsible for modifications
made by others.

This License is a kind of “copyleft”, which means that derivative works of the document
must themselves be free in the same sense. It complements the GNU General Public
License, which is a copyleft license designed for free software.

We have designed this License in order to use it for manuals for free software, because
free software needs free documentation: a free program should come with manuals
providing the same freedoms that the software does. But this License is not limited to
software manuals; it can be used for any textual work, regardless of subject matter or
whether it is published as a printed book. We recommend this License principally for
works whose purpose is instruction or reference.

1. APPLICABILITY AND DEFINITIONS

This License applies to any manual or other work, in any medium, that contains a
notice placed by the copyright holder saying it can be distributed under the terms
of this License. Such a notice grants a world-wide, royalty-free license, unlimited in
duration, to use that work under the conditions stated herein. The “Document”,
below, refers to any such manual or work. Any member of the public is a licensee, and
is addressed as “you”. You accept the license if you copy, modify or distribute the work
in a way requiring permission under copyright law.

A “Modified Version” of the Document means any work containing the Document or
a portion of it, either copied verbatim, or with modifications and/or translated into
another language.

A “Secondary Section” is a named appendix or a front-matter section of the Document
that deals exclusively with the relationship of the publishers or authors of the Document
to the Document’s overall subject (or to related matters) and contains nothing that
could fall directly within that overall subject. (Thus, if the Document is in part a
textbook of mathematics, a Secondary Section may not explain any mathematics.) The
relationship could be a matter of historical connection with the subject or with related
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matters, or of legal, commercial, philosophical, ethical or political position regarding
them.

The “Invariant Sections” are certain Secondary Sections whose titles are designated, as
being those of Invariant Sections, in the notice that says that the Document is released
under this License. If a section does not fit the above definition of Secondary then it is
not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The “Cover Texts” are certain short passages of text that are listed, as Front-Cover
Texts or Back-Cover Texts, in the notice that says that the Document is released under
this License. A Front-Cover Text may be at most 5 words, and a Back-Cover Text may
be at most 25 words.

A “Transparent” copy of the Document means a machine-readable copy, represented
in a format whose specification is available to the general public, that is suitable for
revising the document straightforwardly with generic text editors or (for images com-
posed of pixels) generic paint programs or (for drawings) some widely available drawing
editor, and that is suitable for input to text formatters or for automatic translation to
a variety of formats suitable for input to text formatters. A copy made in an otherwise
Transparent file format whose markup, or absence of markup, has been arranged to
thwart or discourage subsequent modification by readers is not Transparent. An image
format is not Transparent if used for any substantial amount of text. A copy that is
not “Transparent” is called “Opaque”.

Examples of suitable formats for Transparent copies include plain ASCII without
markup, Texinfo input format, LaTEX input format, SGML or XML using a publicly
available DTD, and standard-conforming simple HTML, PostScript or PDF designed for
human modification. Examples of transparent image formats include PNG, XCF and
JPG. Opaque formats include proprietary formats that can be read and edited only
by proprietary word processors, SGML or XML for which the DTD and/or processing
tools are not generally available, and the machine-generated HTML, PostScript or PDF
produced by some word processors for output purposes only.

The “Title Page” means, for a printed book, the title page itself, plus such following
pages as are needed to hold, legibly, the material this License requires to appear in the
title page. For works in formats which do not have any title page as such, “Title Page”
means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

A section “Entitled XYZ” means a named subunit of the Document whose title either
is precisely XYZ or contains XYZ in parentheses following text that translates XYZ in
another language. (Here XYZ stands for a specific section name mentioned below, such
as “Acknowledgements”, “Dedications”, “Endorsements”, or “History”.) To “Preserve
the Title” of such a section when you modify the Document means that it remains a
section “Entitled XYZ” according to this definition.

The Document may include Warranty Disclaimers next to the notice which states that
this License applies to the Document. These Warranty Disclaimers are considered to
be included by reference in this License, but only as regards disclaiming warranties:
any other implication that these Warranty Disclaimers may have is void and has no
effect on the meaning of this License.
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2. VERBATIM COPYING

You may copy and distribute the Document in any medium, either commercially or
noncommercially, provided that this License, the copyright notices, and the license
notice saying this License applies to the Document are reproduced in all copies, and
that you add no other conditions whatsoever to those of this License. You may not use
technical measures to obstruct or control the reading or further copying of the copies
you make or distribute. However, you may accept compensation in exchange for copies.
If you distribute a large enough number of copies you must also follow the conditions
in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly
display copies.

3. COPYING IN QUANTITY

If you publish printed copies (or copies in media that commonly have printed covers) of
the Document, numbering more than 100, and the Document’s license notice requires
Cover Texts, you must enclose the copies in covers that carry, clearly and legibly, all
these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on
the back cover. Both covers must also clearly and legibly identify you as the publisher
of these copies. The front cover must present the full title with all words of the title
equally prominent and visible. You may add other material on the covers in addition.
Copying with changes limited to the covers, as long as they preserve the title of the
Document and satisfy these conditions, can be treated as verbatim copying in other
respects.

If the required texts for either cover are too voluminous to fit legibly, you should put
the first ones listed (as many as fit reasonably) on the actual cover, and continue the
rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100,
you must either include a machine-readable Transparent copy along with each Opaque
copy, or state in or with each Opaque copy a computer-network location from which
the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If
you use the latter option, you must take reasonably prudent steps, when you begin
distribution of Opaque copies in quantity, to ensure that this Transparent copy will
remain thus accessible at the stated location until at least one year after the last time
you distribute an Opaque copy (directly or through your agents or retailers) of that
edition to the public.

It is requested, but not required, that you contact the authors of the Document well
before redistributing any large number of copies, to give them a chance to provide you
with an updated version of the Document.

4. MODIFICATIONS

You may copy and distribute a Modified Version of the Document under the conditions
of sections 2 and 3 above, provided that you release the Modified Version under precisely
this License, with the Modified Version filling the role of the Document, thus licensing
distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:
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N.

0.

Use in the Title Page (and on the covers, if any) a title distinct from that of the
Document, and from those of previous versions (which should, if there were any,
be listed in the History section of the Document). You may use the same title as
a previous version if the original publisher of that version gives permission.

List on the Title Page, as authors, one or more persons or entities responsible for
authorship of the modifications in the Modified Version, together with at least five
of the principal authors of the Document (all of its principal authors, if it has fewer
than five), unless they release you from this requirement.

State on the Title page the name of the publisher of the Modified Version, as the
publisher.

Preserve all the copyright notices of the Document.

Add an appropriate copyright notice for your modifications adjacent to the other
copyright notices.

Include, immediately after the copyright notices, a license notice giving the public
permission to use the Modified Version under the terms of this License, in the form
shown in the Addendum below.

Preserve in that license notice the full lists of Invariant Sections and required Cover
Texts given in the Document’s license notice.

Include an unaltered copy of this License.

Preserve the section Entitled “History”, Preserve its Title, and add to it an item
stating at least the title, year, new authors, and publisher of the Modified Version
as given on the Title Page. If there is no section Entitled “History” in the Docu-
ment, create one stating the title, year, authors, and publisher of the Document
as given on its Title Page, then add an item describing the Modified Version as
stated in the previous sentence.

Preserve the network location, if any, given in the Document for public access to
a Transparent copy of the Document, and likewise the network locations given in
the Document for previous versions it was based on. These may be placed in the
“History” section. You may omit a network location for a work that was published
at least four years before the Document itself, or if the original publisher of the
version it refers to gives permission.

For any section Entitled “Acknowledgements” or “Dedications”, Preserve the Title
of the section, and preserve in the section all the substance and tone of each of the
contributor acknowledgements and/or dedications given therein.

Preserve all the Invariant Sections of the Document, unaltered in their text and
in their titles. Section numbers or the equivalent are not considered part of the
section titles.

Delete any section Entitled “Endorsements”. Such a section may not be included
in the Modified Version.

Do not retitle any existing section to be Entitled “Endorsements” or to conflict in
title with any Invariant Section.

Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify
as Secondary Sections and contain no material copied from the Document, you may at
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your option designate some or all of these sections as invariant. To do this, add their
titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled “Endorsements”, provided it contains nothing but
endorsements of your Modified Version by various parties—for example, statements of
peer review or that the text has been approved by an organization as the authoritative
definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up
to 25 words as a Back-Cover Text, to the end of the list of Cover Texts in the Modified
Version. Only one passage of Front-Cover Text and one of Back-Cover Text may be
added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement
made by the same entity you are acting on behalf of, you may not add another; but
you may replace the old one, on explicit permission from the previous publisher that
added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission
to use their names for publicity for or to assert or imply endorsement of any Modified
Version.

5. COMBINING DOCUMENTS

You may combine the Document with other documents released under this License,
under the terms defined in section 4 above for modified versions, provided that you
include in the combination all of the Invariant Sections of all of the original documents,
unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical
Invariant Sections may be replaced with a single copy. If there are multiple Invariant
Sections with the same name but different contents, make the title of each such section
unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment
to the section titles in the list of Invariant Sections in the license notice of the combined
work.

In the combination, you must combine any sections Entitled “History” in the vari-
ous original documents, forming one section Entitled “History”; likewise combine any
sections Entitled “Acknowledgements”, and any sections Entitled “Dedications”. You
must delete all sections Entitled “Endorsements.”

6. COLLECTIONS OF DOCUMENTS

You may make a collection consisting of the Document and other documents released
under this License, and replace the individual copies of this License in the various
documents with a single copy that is included in the collection, provided that you
follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individu-
ally under this License, provided you insert a copy of this License into the extracted
document, and follow this License in all other respects regarding verbatim copying of
that document.
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7. AGGREGATION WITH INDEPENDENT WORKS

10.

A compilation of the Document or its derivatives with other separate and independent
documents or works, in or on a volume of a storage or distribution medium, is called
an “aggregate” if the copyright resulting from the compilation is not used to limit the
legal rights of the compilation’s users beyond what the individual works permit. When
the Document is included in an aggregate, this License does not apply to the other
works in the aggregate which are not themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document,
then if the Document is less than one half of the entire aggregate, the Document’s Cover
Texts may be placed on covers that bracket the Document within the aggregate, or the
electronic equivalent of covers if the Document is in electronic form. Otherwise they
must appear on printed covers that bracket the whole aggregate.

TRANSLATION

Translation is considered a kind of modification, so you may distribute translations
of the Document under the terms of section 4. Replacing Invariant Sections with
translations requires special permission from their copyright holders, but you may
include translations of some or all Invariant Sections in addition to the original versions
of these Invariant Sections. You may include a translation of this License, and all the
license notices in the Document, and any Warranty Disclaimers, provided that you
also include the original English version of this License and the original versions of
those notices and disclaimers. In case of a disagreement between the translation and
the original version of this License or a notice or disclaimer, the original version will
prevail.

If a section in the Document is Entitled “Acknowledgements”, “Dedications”, or “His-
tory”, the requirement (section 4) to Preserve its Title (section 1) will typically require
changing the actual title.

TERMINATION

You may not copy, modify, sublicense, or distribute the Document except as expressly
provided for under this License. Any other attempt to copy, modify, sublicense or
distribute the Document is void, and will automatically terminate your rights under
this License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

FUTURE REVISIONS OF THIS LICENSE

The Free Software Foundation may publish new, revised versions of the GNU Free
Documentation License from time to time. Such new versions will be similar in spirit
to the present version, but may differ in detail to address new problems or concerns.
See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document
specifies that a particular numbered version of this License “or any later version”
applies to it, you have the option of following the terms and conditions either of that
specified version or of any later version that has been published (not as a draft) by
the Free Software Foundation. If the Document does not specify a version number of
this License, you may choose any version ever published (not as a draft) by the Free
Software Foundation.


http://www.gnu.org/copyleft/
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A.1.1 ADDENDUM: How to use this License for your documents

To use this License in a document you have written, include a copy of the License in the
document and put the following copyright and license notices just after the title page:

Copyright (C) year your name.
Permission is granted to copy, distribute and/or modify this document
under the terms of the GNU Free Documentation License, Version 1.2
or any later version published by the Free Software Foundation;
with no Invariant Sections, no Front-Cover Texts, and no Back-Cover
Texts. A copy of the license is included in the section entitled °‘GNU
Free Documentation License’’.
If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the
“with... Texts.” line with this:

with the Invariant Sections being list their titles, with
the Front-Cover Texts being list, and with the Back-Cover Texts
being list.
If you have Invariant Sections without Cover Texts, or some other combination of the
three, merge those two alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing
these examples in parallel under your choice of free software license, such as the GNU
General Public License, to permit their use in free software.
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A.2 GNU GENERAL PUBLIC LICENSE

Version 2, June 1991

Copyright (©) 1989, 1991 Free Software Foundation, Inc.
59 Temple Place - Suite 330, Boston, MA 02111-1307, USA

Everyone is permitted to copy and distribute verbatim copies
of this license document, but changing it is not allowed.
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A.2.1 Preamble

The licenses for most software are designed to take away your freedom to share and change
it. By contrast, the GNU General Public License is intended to guarantee your freedom
to share and change free software—to make sure the software is free for all its users. This
General Public License applies to most of the Free Software Foundation’s software and to
any other program whose authors commit to using it. (Some other Free Software Foundation
software is covered by the GNU Library General Public License instead.) You can apply it
to your programs, too.

When we speak of free software, we are referring to freedom, not price. Our General
Public Licenses are designed to make sure that you have the freedom to distribute copies
of free software (and charge for this service if you wish), that you receive source code or
can get it if you want it, that you can change the software or use pieces of it in new free
programs; and that you know you can do these things.

To protect your rights, we need to make restrictions that forbid anyone to deny you
these rights or to ask you to surrender the rights. These restrictions translate to certain
responsibilities for you if you distribute copies of the software, or if you modify it.

For example, if you distribute copies of such a program, whether gratis or for a fee, you
must give the recipients all the rights that you have. You must make sure that they, too,
receive or can get the source code. And you must show them these terms so they know
their rights.

We protect your rights with two steps: (1) copyright the software, and (2) offer you this
license which gives you legal permission to copy, distribute and/or modify the software.

Also, for each author’s protection and ours, we want to make certain that everyone
understands that there is no warranty for this free software. If the software is modified by
someone else and passed on, we want its recipients to know that what they have is not the
original, so that any problems introduced by others will not reflect on the original authors’
reputations.

Finally, any free program is threatened constantly by software patents. We wish to avoid
the danger that redistributors of a free program will individually obtain patent licenses, in
effect making the program proprietary. To prevent this, we have made it clear that any
patent must be licensed for everyone’s free use or not licensed at all.

The precise terms and conditions for copying, distribution and modification follow.

A.2.2 TERMS AND CONDITIONS FOR COPYING,
DISTRIBUTION AND MODIFICATION

0. This License applies to any program or other work which contains a notice placed
by the copyright holder saying it may be distributed under the terms of this General
Public License. The “Program”, below, refers to any such program or work, and a
“work based on the Program” means either the Program or any derivative work under
copyright law: that is to say, a work containing the Program or a portion of it, either
verbatim or with modifications and/or translated into another language. (Hereinafter,
translation is included without limitation in the term “modification”.) Each licensee is
addressed as “you”.
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Activities other than copying, distribution and modification are not covered by this
License; they are outside its scope. The act of running the Program is not restricted,
and the output from the Program is covered only if its contents constitute a work based
on the Program (independent of having been made by running the Program). Whether
that is true depends on what the Program does.

1. You may copy and distribute verbatim copies of the Program’s source code as you
receive it, in any medium, provided that you conspicuously and appropriately publish
on each copy an appropriate copyright notice and disclaimer of warranty; keep intact
all the notices that refer to this License and to the absence of any warranty; and give
any other recipients of the Program a copy of this License along with the Program.

You may charge a fee for the physical act of transferring a copy, and you may at your
option offer warranty protection in exchange for a fee.

2. You may modify your copy or copies of the Program or any portion of it, thus forming a
work based on the Program, and copy and distribute such modifications or work under
the terms of Section 1 above, provided that you also meet all of these conditions:

a. You must cause the modified files to carry prominent notices stating that you
changed the files and the date of any change.

b. You must cause any work that you distribute or publish, that in whole or in part
contains or is derived from the Program or any part thereof, to be licensed as a
whole at no charge to all third parties under the terms of this License.

c. If the modified program normally reads commands interactively when run, you
must cause it, when started running for such interactive use in the most ordinary
way, to print or display an announcement including an appropriate copyright notice
and a notice that there is no warranty (or else, saying that you provide a warranty)
and that users may redistribute the program under these conditions, and telling
the user how to view a copy of this License. (Exception: if the Program itself is
interactive but does not normally print such an announcement, your work based
on the Program is not required to print an announcement.)

These requirements apply to the modified work as a whole. If identifiable sections
of that work are not derived from the Program, and can be reasonably considered
independent and separate works in themselves, then this License, and its terms, do not
apply to those sections when you distribute them as separate works. But when you
distribute the same sections as part of a whole which is a work based on the Program,
the distribution of the whole must be on the terms of this License, whose permissions
for other licensees extend to the entire whole, and thus to each and every part regardless
of who wrote it.

Thus, it is not the intent of this section to claim rights or contest your rights to
work written entirely by you; rather, the intent is to exercise the right to control the
distribution of derivative or collective works based on the Program.

In addition, mere aggregation of another work not based on the Program with the
Program (or with a work based on the Program) on a volume of a storage or distribution
medium does not bring the other work under the scope of this License.

3. You may copy and distribute the Program (or a work based on it, under Section 2)
in object code or executable form under the terms of Sections 1 and 2 above provided
that you also do one of the following;:
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a. Accompany it with the complete corresponding machine-readable source code,
which must be distributed under the terms of Sections 1 and 2 above on a medium
customarily used for software interchange; or,

b. Accompany it with a written offer, valid for at least three years, to give any third
party, for a charge no more than your cost of physically performing source distri-
bution, a complete machine-readable copy of the corresponding source code, to be
distributed under the terms of Sections 1 and 2 above on a medium customarily
used for software interchange; or,

¢. Accompany it with the information you received as to the offer to distribute cor-
responding source code. (This alternative is allowed only for noncommercial dis-
tribution and only if you received the program in object code or executable form
with such an offer, in accord with Subsection b above.)

The source code for a work means the preferred form of the work for making modifi-
cations to it. For an executable work, complete source code means all the source code
for all modules it contains, plus any associated interface definition files, plus the scripts
used to control compilation and installation of the executable. However, as a spe-
cial exception, the source code distributed need not include anything that is normally
distributed (in either source or binary form) with the major components (compiler,
kernel, and so on) of the operating system on which the executable runs, unless that
component itself accompanies the executable.

If distribution of executable or object code is made by offering access to copy from
a designated place, then offering equivalent access to copy the source code from the
same place counts as distribution of the source code, even though third parties are not
compelled to copy the source along with the object code.

4. You may not copy, modify, sublicense, or distribute the Program except as expressly
provided under this License. Any attempt otherwise to copy, modify, sublicense or
distribute the Program is void, and will automatically terminate your rights under this
License. However, parties who have received copies, or rights, from you under this
License will not have their licenses terminated so long as such parties remain in full
compliance.

5. You are not required to accept this License, since you have not signed it. However,
nothing else grants you permission to modify or distribute the Program or its derivative
works. These actions are prohibited by law if you do not accept this License. Therefore,
by modifying or distributing the Program (or any work based on the Program), you
indicate your acceptance of this License to do so, and all its terms and conditions for
copying, distributing or modifying the Program or works based on it.

6. Each time you redistribute the Program (or any work based on the Program), the
recipient automatically receives a license from the original licensor to copy, distribute
or modify the Program subject to these terms and conditions. You may not impose
any further restrictions on the recipients’ exercise of the rights granted herein. You are
not responsible for enforcing compliance by third parties to this License.

7. If, as a consequence of a court judgment or allegation of patent infringement or for any
other reason (not limited to patent issues), conditions are imposed on you (whether by
court order, agreement or otherwise) that contradict the conditions of this License, they
do not excuse you from the conditions of this License. If you cannot distribute so as



Appendix A: Legal stuff 100

10.

11.

to satisfy simultaneously your obligations under this License and any other pertinent
obligations, then as a consequence you may not distribute the Program at all. For
example, if a patent license would not permit royalty-free redistribution of the Program
by all those who receive copies directly or indirectly through you, then the only way
you could satisfy both it and this License would be to refrain entirely from distribution
of the Program.

If any portion of this section is held invalid or unenforceable under any particular
circumstance, the balance of the section is intended to apply and the section as a
whole is intended to apply in other circumstances.

It is not the purpose of this section to induce you to infringe any patents or other
property right claims or to contest validity of any such claims; this section has the
sole purpose of protecting the integrity of the free software distribution system, which
is implemented by public license practices. Many people have made generous contri-
butions to the wide range of software distributed through that system in reliance on
consistent application of that system; it is up to the author/donor to decide if he or
she is willing to distribute software through any other system and a licensee cannot
impose that choice.

This section is intended to make thoroughly clear what is believed to be a consequence
of the rest of this License.

If the distribution and/or use of the Program is restricted in certain countries either
by patents or by copyrighted interfaces, the original copyright holder who places the
Program under this License may add an explicit geographical distribution limitation
excluding those countries, so that distribution is permitted only in or among countries
not thus excluded. In such case, this License incorporates the limitation as if written
in the body of this License.

The Free Software Foundation may publish revised and/or new versions of the General
Public License from time to time. Such new versions will be similar in spirit to the
present version, but may differ in detail to address new problems or concerns.

Each version is given a distinguishing version number. If the Program specifies a
version number of this License which applies to it and “any later version”, you have
the option of following the terms and conditions either of that version or of any later
version published by the Free Software Foundation. If the Program does not specify a
version number of this License, you may choose any version ever published by the Free
Software Foundation.

If you wish to incorporate parts of the Program into other free programs whose distri-
bution conditions are different, write to the author to ask for permission. For software
which is copyrighted by the Free Software Foundation, write to the Free Software Foun-
dation; we sometimes make exceptions for this. Our decision will be guided by the two
goals of preserving the free status of all derivatives of our free software and of promoting
the sharing and reuse of software generally.

NO WARRANTY

BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO
WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLI-
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CABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPY-
RIGHT HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MER-
CHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE
RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH
YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST
OF ALL NECESSARY SERVICING, REPAIR OR CORRECTION.

IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN
WRITING WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO
MAY MODIFY AND/OR REDISTRIBUTE THE PROGRAM AS PERMITTED
ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY GENERAL,
SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF
THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT
LIMITED TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR
LOSSES SUSTAINED BY YOU OR THIRD PARTIES OR A FAILURE OF THE
PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), EVEN IF SUCH
HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGES.

END OF TERMS AND CONDITIONS
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A.2.3 Appendix: How to Apply These Terms to Your New
Programs

If you develop a new program, and you want it to be of the greatest possible use to the public,
the best way to achieve this is to make it free software which everyone can redistribute and
change under these terms.

To do so, attach the following notices to the program. It is safest to attach them to the
start of each source file to most effectively convey the exclusion of warranty; and each file
should have at least the “copyright” line and a pointer to where the full notice is found.

one line to give the program’s name and a brief idea of what it does.
Copyright (C) yyyy name of author

This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.

This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.

You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.

Also add information on how to contact you by electronic and paper mail.

If the program is interactive, make it output a short notice like this when it starts in an
interactive mode:
Gnomovision version 69, Copyright (C) 19yy name of author
Gnomovision comes with ABSOLUTELY NO WARRANTY; for details type ‘show w’.
This is free software, and you are welcome to redistribute it
under certain conditions; type ‘show ¢’ for details.
The hypothetical commands ‘show w’ and ‘show ¢’ should show the appropriate parts of
the General Public License. Of course, the commands you use may be called something
other than ‘show w’ and ‘show c¢’; they could even be mouse-clicks or menu items—whatever

suits your program.

You should also get your employer (if you work as a programmer) or your school, if any,
to sign a “copyright disclaimer” for the program, if necessary. Here is a sample; alter the
names:

Yoyodyne, Inc., hereby disclaims all copyright interest in the program
‘Gnomovision’ (which makes passes at compilers) written by James Hacker.

signature of Ty Coon, 1 April 1989
Ty Coon, President of Vice

This General Public License does not permit incorporating your program into proprietary
programs. If your program is a subroutine library, you may consider it more useful to permit
linking proprietary applications with the library. If this is what you want to do, use the
GNU Library General Public License instead of this License.
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