function [theta,Theta,Error,Y,iterations] = mtt_optimise (system_name,y_s,theta_0,method,free,weight,criterion,max_iterations,alpha) ## Usage: [theta,Theta,Error,Y,iterations] = mtt_optimise (system_name,y_s,theta_0,method,free,weight,criterion,max_iterations,alpha) ## system_name String containg system name ## y_s actual system output ## theta_0 initial parameter estimate ## free Indices of the free parameters within theta_0 ## weight Weighting function - same dimension as y_s ## method "time" or "freq" ## criterion convergence criterion ## max_iterations limit to number of iterations ## alpha Optimisation gain parameter ## Copyright (C) 1999 by Peter J. Gawthrop if nargin<4 method="time"; endif N = length(theta_0); if nargin<5 free = [1:N]; endif if nargin<6 weight = ones(size(y_s)); endif if nargin<7 criterion = 1e-5; endif if nargin <8 max_iterations = 10; endif if nargin<9 alpha = 1.0; endif if (!strcmp(method,"time"))&&(!strcmp(method,"freq")) error("method must be either time or freq") endif N_theta = length(free); Weight = weight*ones(1,N_theta); # Sensitivity weight e_last = 1e20; error=1e10; theta = theta_0; Theta = []; Error = []; Y = []; iterations = -1; while (abs(e_last-error)>criterion)&&(iterations<max_iterations) iterations = iterations + 1; e_last = error; eval(sprintf("[t,y,y_theta] = mtt_s%s(system_name,theta,free);",method)); # Simulate system Theta = [Theta theta]; # Save parameters Y = [Y y]; # Save output E = weight.*(y - y_s); # Weighted error y_theta = Weight.*y_theta; # Weighted sensitivity error = (E'*E); # Sum the error Error = [Error error]; ## theta(free) = theta(free) - alpha*(real(y_theta'*y_theta)\real(y_theta'*E)); tol = 1e-4; JJ = real(y_theta'*y_theta); ## sigma = svd(JJ) theta(free) = theta(free) - alpha*( pinv(JJ,tol)*real(y_theta'*E) ); endwhile endfunction