
Bond-graph modeling: a tutorial introduction for control engineers

Gawthrop, Peter J.; Bevan, Geraint P.

Published in:
IEEE Control Systems

DOI:
10.1109/MCS.2007.338279

Publication date:
2007

Document Version
Peer reviewed version

Link to publication in ResearchOnline

Citation for published version (Harvard):
Gawthrop, PJ & Bevan, GP 2007, 'Bond-graph modeling: a tutorial introduction for control engineers', IEEE
Control Systems, vol. 27, no. 2, pp. 24-45. https://doi.org/10.1109/MCS.2007.338279

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

Take down policy
If you believe that this document breaches copyright please view our takedown policy at https://edshare.gcu.ac.uk/id/eprint/5179 for details
of how to contact us.

Download date: 29. Apr. 2020

https://doi.org/10.1109/MCS.2007.338279
https://researchonline.gcu.ac.uk/en/publications/ee130394-c2b8-4bc2-82f3-52846a77e723
https://doi.org/10.1109/MCS.2007.338279


Bond-Graph Modeling

A tutorial introduction for control engineers

Peter J Gawthrop and Geraint P Bevan

Centre for Systems and Control, and Department of Mechanical Engineering,

University of Glasgow,

GLASGOW. G12 8QQ Scotland.

email: G.Bevan@eng.gla.ac.uk

email: P.Gawthrop@eng.gla.ac.uk

tel: +44 141 330 4723

fax: +44 141 330 4343

Submitted to IEEE Control Systems Magazine on 23rd September 2005.

Revised version submitted on 16th June 2006

Further revision 19th September 2006

Minor changes 21st September, further changes 27th September&28th

September.

Revised 11th and 23rd October 2006.

Revised 18th and 19th November 2006.

2



In the 19th century, Lord Kelvin and James Clerk Maxwell bothobserved that a wide range

of phenomena give rise to similar forms of equations, findinganalogies between heat flow and

electric force and between lines of force and fluid streamlines. In the 1940s and 1950s, H.M.

(Hank) Paynter of MIT worked on interdisciplinary engineering projects including hydroelectric

plants, analog and digital computing, nonlinear dynamics,and control [1]. Through this experi-

ence, he observed that similar forms of equations are generated by dynamic systems in a wide

variety of domain (for example electrical, fluid, and mechanical); in other words, such systems

areanalogous. Paynter incorporated the notion of anenergy portinto his methodology, and thus

bond graphs were invented. Since that time, his group and many others have developed the basic

concepts of bond-graph modeling into a mature methodology.

The bond-graph method is a graphical approach to modeling inwhich component energy

ports are connected by bonds that specify the transfer of energy between system components.

Power, the rate of energy transport between components, is the universal currency of physical

systems. The focus on power makes it a simple matter to generate multi-domain models while

ensuring compliance with the first law of thermodynamics, namely, conservation of energy.

The graphical nature of bond graphs separates the system structure from the equations,

making bond graphs ideal for visualizing the essential characteristics of a system. Indeed, by

creating bond graphs, designing and analyzing the structure of a system – perhaps the most

important part of the modeling task – can often be undertakenusing only a pencil and paper.

Modelers can thus focus on the relationships among components and subsystems rather than the

implementation details of their particular modeling software. Even before a computer is used,

bond graphs can provide an engineer with information about constrained states, algebraic loops,

and the benefits and consequences of potential approximations and simplifications.

Many computer-based modeling tools are available for generating and processing bond

graphs, see the sidebar “Further Reading”. These tools generally have capabilities that extend far
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beyond those of traditional block-diagram software, including generation of symbolic representa-

tions, model inversion, and parametric identification as well as the ability to produce simulations,

frequency responses, and other design aids. Bond-graph models can therefore be used by engi-

neers not only to perform straightforward numerical analysis but also, more importantly, to gain

qualitative insight.

This article has two purposes. Firstly, we provide a tutorial introduction to bond graphs

using examples that are familiar to control engineers. Secondly, the article is intended to motivate

readers to apply the bond-graph approach themselves and to read more widely on the topic. As

such, the article is neither a survey nor a systematic development of the method; rather the article

focuses on linear systems while emphasizing that the bond-graph approach is not constrained in

this way.

This article includes two case studies. The first case study is described in the sidebar “Case

Study 1: Laboratory Experiment”, while the second case study is described in the section “Case

Study 2: An Aircraft Fuel System”. The early sections of thistutorial cover enough of the bond-

graph method to model the system in Case Study 1. The later sections introduce more advanced

topics required for Case Study 2.

Boxed text (like this) highlights material that is directlyapplicable to the sidebar “Case Study

1” .

Analogies

Bond-graph modeling is based on three types of analogies, namely,signalanalogies,com-

ponentanalogies, andconnectionanalogies.
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Signal analogies

Table 1 shows four signal categories with examples from fourengineering domains:

effort signals, with the generic symbole, including electrical voltage and mechanical force.

flow signals, with the generic symbolf , including electrical current and mechanical velocity.

integrated effort signals, with the generic symbolp, including electrical lines of flux and me-

chanical (translational and angular) momentum.

integrated flow signals, with the generic symbolq, including electrical charge and mechanical

displacement.

Some entries in the table are less familiar, but nevertheless provide a guide for the system-

atic choice of signals for system modeling. Additional domains, including magnetic and thermal,

can also be incorporated in this scheme. A key insight is thatthe product of the effort and flow

signals in each domain is power, that is,

effort× flow = power. (1)

The system shown in Figure S1 of Case Study 1 is driven by electrical power (voltage×current),

which is converted to rotational mechanical power (torque× angular velocity) by a dc motor.

For this reason, effort and flow signal pairs are deemed to be carried by the singlepower

bondof Figure 1(a). The direction of the half-arrow indicates the positive direction of energy

transport; in Figure 1(a), energy transport from left to right is regarded as positive.

It should be noted that the half arrow does not denote an inputor output in the same way

as an arrow on a block-diagram. Inputs and outputs are assigned by causal strokes, which are

introduced later in the section “Causality and Block-Diagrams”.
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Figure 1(b) shows theactive bond, which carries either effort or flow. The active bond thus

corresponds to a block-diagram signal and can therefore actas an interface between a system

modeled as a bond graph and another system modeled as a block diagram.

Component analogies

Table 2 lists one-port bond-graph components with analogous examples from four engi-

neering domains. For example, the generic

Se component, which can correspond to an ideal voltage source or an applied force, is asource

of effort;

Sf component, which can correspond to an ideal current source or an applied velocity, is a

sourceof flow;

De component, which can correspond to a voltmeter or a force sensor, is adetectorof effort;

Df component, which can correspond to an ammeter or a tachometer, is adetectorof flow;

R component, which can correspond to an electrical resistor or a mechanical damper,dissipates

energy;

C component, which can correspond to an electrical capacitoror a mechanical spring (or com-

pliance),storesenergy;

I component, which can correspond to an electrical inductor or a mechanical mass,storesen-

ergy;

SS components (not shown in table) model colocated sensor-actuator pairs:Se-Df or Sf-De .

These components also represent energy ports of compound components.
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In the linear case the corresponding equations for theR, C, andI components in terms of

the generic variables of Table 1 are, respectively,

R { e = rf, (2)

C







e =
q

c
, (3)

q̇ = f, (4)

I







f =
p

m
, (5)

ṗ = e, (6)

wherer, c, andm are constants describing the corresponding physical system. In the electrical

domain, (2) corresponds to Ohm’s law and (3) to Coulomb’s law; in the mechanical domain, (3)

corresponds to Hooke’s law, while (5) corresponds to Newton’s second law.

Because the same type of component usually occurs more than once in a given system,

the colon “:” notation is used to distinguish between multiple instances of each component type.

In particular, the symbol preceding the colon refers to the component type, while the symbol

following the colon labels the particular instance. ThusC:c1 refers to aC component labeledc1,

which is equivalent to placing the labelc1 adjacent to the symbol for a capacitor in an electrical

circuit diagram.

Figure S1 of Case Study 1 includes examples of both mechanical (damper) and electrical (re-

sistor)R components.

Connection analogies

Two components can be connected by a power bond thus giving them the same effort and

flow. Figure 2(a) shows two mechanical components, while Figure 2(b) shows two analogous

electrical components. Each of these physical systems can be represented by the bond graph of

Figure 2(c).
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Because there are only two components, the electrical components of Figure 2(b) share

both voltage and current. But, more generally, electrical connections are either parallel (Figure

3(a)) or series (Figure 3(b)). The parallel connection obeys Kirchhoff’s voltage law, whereas

the series connection obeys Kirchhoff’s current law. The bond-graph approach uses a0 junction

to model a parallel electrical connection (Figure 3(c)) anda 1 junction (Figure 3(d)) to model

a series electrical connection. However, the series/parallel analogy can be misleading in the

mechanical and other non-electrical domains; a more usefulabstraction is to view an electrical

parallel connection as acommon-effortor 0 connection and an electrical series connection as a

common-flowor 1 connection. The effort on each bond impinging on a0 junction is equal, while

the flows on these bonds sum to zero. A0 junction withm bonds in andn bonds out is therefore

described by the equation pair

0











ein

1 = · · · = ein

m = eout

1 = · · · = eout

n , (7)
m

∑

i=1

f in

i −

n
∑

j=1

f out

j = 0, (8)

where the effortsein
1 , . . . , ein

m and the flowsf in
1 , . . . , f in

n are carried on bonds pointing into the

junction, while the effortseout
1 , . . . , eout

n and the flowsf out
1 , . . . , f out

n are carried on bonds pointing

out of the junction. Likewise, the efforts on a1 junction sum to zero while the flows are all equal,

so a dual junction is described by the equation pair

1











f in

1 = · · · = f in

m = f out

1 = · · · = f out

n , (9)
m

∑

i=1

ein

i −

n
∑

j=1

eout

j = 0. (10)

The symbols0 and1 are chosen to be neutral with respect to the physical domain.

The system shown in Figure S1 of Case Study 1 contains an electrical 1 junction carrying

armature current as well as several mechanical1 junctions carrying velocity.
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Simple R C I System

Figures 4(a)–4(c) show analogous systems drawn from three physical domains. Since the

systems are analogous, they share the bond graph of Figure 4(d). As can be seen from figures 4(a)

and 4(c), the concepts of parallel and series connection canbe misleading, whereas the concepts

of common effort and flow junctions provide a domain-neutralformulation.

Power Conversion with Transformers and Gyrators

The effort and flow variables within each physical domain of Table 1 have different units

and therefore cannot be directly connected. However, sincepower is the universal currency of

physical systems, thepower-convertingbond-graph componentsTF (a generictransformer) and

GY (a genericgyrator) of figures 5(c) and 5(d) provide a means for converting powerand thus

connecting different domains. TheTF component generalizes an electricaltransformer, which

has the property that the ratio of voltages (efforts) at the two terminals is the inverse of the

ratio of current, which is consistent with the fact that power is conserved in the sense that the

instantaneous power at the input port equals the instantaneous power at the output port at each

instant of time. Figure 5(a) shows a physical system that, inidealized form, corresponds to

the TF component of Figure 5(c). Additional examples of physical components with an ideal

TF representation include a piston for mechanical-to-hydraulic power conversion and a rack-

and-pinion gear converting translational to rotational power.

The GY component is the same as theTF component insofar as power is conserved; the

difference is that flow at one port depends on effort at the other, and vice versa. Figure 5(b) shows

a physical system that, in idealized form, corresponds to theGY component of Figure 5(d). The

name gyrator arises from the property of a gyroscope that angular velocity (flow) is converted

into torque (effort).
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In the linear case, theTF andGY components have the equations

TF

{

e2 = ne1, (11)

f1 = nf2, (12)

GY

{

e2 = kf1, (13)

e1 = kf2, (14)

wheren andk are nondimensional constants describing the corresponding physical system. The

pairs (11)–(12) and (13)–(14) both describe energy-conserving components since, in both cases,

the input and output power is the same, that is,e2f2 = e1f1.

The system shown in Figure S1 of Case Study 1 has aGY component representing conver-

sion of electrical to mechanical power within a dc motor as well as aTF component (a gear

ratio) representing conversion of mechanical power withina gearbox. In each case, losses are

accounted for usingR components, which dissipate power.

Causality and Block-Diagrams

Although block diagrams are familiar to control engineers,the sidebar “Why Bond Graphs

Are Better than Block Diagrams” explains that block diagrams have an unfortunate drawback,

namely, they representassignment statementsrather thanequations. In other words, a block

diagram cannot be drawn until the inputs and outputs of each component are specified. For

example, the upper right-hand part of Figure 6(a) shows an electrical resistor corresponding to

the equationV = ri. Two possible block diagrams are shown below this component, where one

has voltage (effort) output and corresponds to the assignment statementV := ri, while the other

has current (flow) output and corresponds to the assignment statementi := 1

r
V . In contrast, the

bond-graph representation in the upper left-hand part of Figure 6(a) isacausaland represents

an equation. The addition of acausal strokein each of the two lower bond graphs assigns the

input and output of eachR component. Thiscausal assignmentis not part of the initial modeling
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but is added later. This approach has the important advantage that bond-graph components are

reusable within different causal contexts, whereas block-diagram components are not. While the

bond-graph approach thus has one model for a resistor, the block-diagram approach hastwo. In

bond-graph terminology, the middleR imposeseffort and has flowimposed on it, whereas the

lowerR imposesflow and has effortimposed on it.

Because theC component of Figure 6(b) is dynamic, the distinction between the two forms

of causality is more significant. In particular, the middle diagram corresponds tointegralcausal-

ity, while the lower corresponds toderivativecausality. The former is preferred if we wish to

have a state-space system representation. TheI component is similar to theC component of

Figure 6(b) but withe andf reversed.

Figure 7(a) is the causally complete equivalent of Figure 4(d), Figure 7(b) is the corre-

sponding block diagram, and the following comments explainthe details:

• The C and I components are in preferredintegral causality; for theC component, this

relation implies effort out and flow in, whereas, for theI component, this relation implies

flow out and effort in.

• TheR component has effort output since the corresponding flow is “caused” by theI component.

• The 0 junction has exactly one bond imposing effort on it, whereasthe 1 junction has

exactly one bond imposing flow on it.

• The0 junction of Figure 7(a) corresponds to the first summation block of Figure 7(b) and

the connection to the second summation block.

• The1 junction of Figure 7(a) corresponds to the second summationblock of Figure 7(b)

and the various connections involvingf1.
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Figure S1 of Case Study 1 has examples ofR components in each type of causality. For ex-

ample, the armature resistorR:ra imposes the armature current (flow), whereasR:rg andR:rb

each impose torque (effort). Figure S1 also has examples of both integral (I:mg, C:cb, and

I:mb) causality as well as derivative (I:mm) causality.

Causal assignment

Abstracting the physical system as an acausal bond graph provides a complete description

of the corresponding model. However, for the purposes of analysis, there are many ways of repre-

senting the system as a set of equations, and each such representation has its own particular uses.

For example, the control engineer typically uses a state-space representation for system anal-

ysis and simulation, whereas the mechanical engineer may prefer a Lagrangian representation

and the mathematician may prefer a Hamiltonian representation. Each of these representations

corresponds to a particular causality and thus each representation can be extracted by impos-

ing a particular pattern of causal strokes on the acausal bond graph [2], a procedure known as

completing causality. This article focuses on generating a state-space representation of a system.

The assignment of causality to a bond graph can usually be accomplished automatically by

computer if the causality is specified at key points on the graph, usually the external ports, and if

some general preference for integral or derivative causality (figures 6(b) and 6(c)) is expressed by

the modeler. The best known method for automating causal assignment is the sequential causal

assignment procedure (SCAP) [3], which gives a state-spacesystem representation. If, indeed,

the system has a state-space representation, the details ofthe resulting pattern of causal strokes,

although helpful in understanding the inner workings of themodel, need not be viewed by the

modeler. However, if the model does not possess a state-space representation, then the pattern of

causal strokes clarifies the situation and helps the modelerreconsider the model in terms of the

underlying physical system.
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For proper causal completion, which will result in a set of explicit assignment statements,

it is necessary that exactly one bond impose a flow on each1 junction. Similarly, exactly one

bond must impose an effort on each0 junction. The causality ofTF and GY components is

also subject to constraints if self-consistent system models are to be generated. In particular,

causality is transmitted unaltered throughTF components, that is, one impinging bond imposes

effort (flow), while the other has effort (flow) imposed on it.Causality is reversed through a

GY component so that both impinging bonds impose effort (or flow) and have flow (or effort)

imposed on them. Within these constraints, causality can beassigned arbitrarily, although general

guidelines, or preferences, are usually expressed.

After specifying the causality at the external interfaces,it is generally advisable for the

modeler to specify the preferred causality of the systemC and I components. As discussed in

Figure 6,C and I components may have either integral or derivative causality. For simulation

or state-space representations, integral causality is usually preferable since it leads to ordinary

differential equations (ODEs), which can be computed without recourse to computationally in-

tensive differential algebraic equation (DAE) solvers.

Constraints due to0 and1 junctions orTF andGY components may make it impossible

to place all of the energy storage elements in integral causality. In this case, dependent states

result in DAEs.

Insofar as modeling is the art of approximation, that is, deciding which components, fea-

tures, and behaviors to omit, bond graphs can help engineersdecide which approximations are

useful before generating the equations. For example, approximate models with derivative causal-

ity can be converted to integral causality either by adding greater detail to the model, in the form

of additional states, or by combining states to simplify themodel. An example of this conver-

sion is the decision to model a shaft connecting two rotatingmasses as either rigid or compliant.

The modeler may wish to consider whether the additional difficulty of solving DAEs outweighs
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potential disadvantages associated with an ODE representation, such as numerical stiffness or

reduced transparency in the meaning of quantities represented by system states.

Although either causal configuration can be meaningful for an R component, the modeler

should be aware of the possibility of algebraic loops arising between multipleR components.

An algebraic loop occurs when the output of one component is required to determine the input

of another, and vice versa. The formation of an algebraic loop exists on a bond graph if, between

R components with opposing causality, there exists a path that includes neither a1 junction

with flow imposed by anI or Sf component nor a0 junction with the effort imposed by aC or

Se component. In other words, to avoid the formation of an algebraic loop, at least one system

input or storage element with integral causality must impose a flow on a1 junction or an effort on

a0 junction in each path betweenR components with opposing causality. A slight complication

is thatGY components effectively reverse the causality of the two subsystems on either side of

them with respect to each other. ThusR components may have opposing causality even if the

causal stroke is at the same end of the bond attached to each component due to a an odd number

of GY components appearing in the path between them.

One of the benefits of bond-graph modeling is that the presence of algebraic loops is ex-

plicitly visible to the modeler. Although algebraic loops lead to implicit equations, such loops

can be broken in various ways to allow the creation of an explicit model, for example:

• adjacentR components can be combined to form equivalent components;

• additional dynamics can be modeled by introducingC or I components between theR components;

• algebraic or numerical solvers can be introduced (using theSS component) to resolve the

causal conflict;

• the causality of adjacent components can be altered so that both R components can be

assigned the same causality.
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Despite the possibility of completely automating causal assignment, it is generally advis-

able for the modeler to be involved in the process since the causal assignments made within

a model carry important information about the system and thesuitability of the model for any

intended purpose. In particular, the information gleaned from causal assignment gives the mod-

eler immediate feedback as to the consequences of includingor deleting a component from the

bond-graph model of the physical system without the need to generate equations.

In Figure S1 of Case Study 1 the componentI:mm has derivative causality. An ordinary dif-

ferential equation representation can be obtained by adding further detail, such as motor shaft

compliance, or by simplifying the model.

State-space Equations and Block-Diagrams

Bond graphs are an acausal system representation. By assigning a causal stroke to each

bond, a causal representation can be generated. The causally complete model can be converted

into other causal representations such as state-space equations and block-diagrams. This section

demonstrates the principles of this conversion. Most bond-graph software supports this conver-

sion and provides an interface to standard control engineering tools such as Matlab and Octave

[4].

The causal strokes on a bond graph provide “signposts” to guide the generation of state-

space equations and block-diagrams. Although software canperform these transformations au-

tomatically, state-space equations can be generated by hand. The following steps demonstrate

this procedure using Figure 7(a):

Identify the states. The system states are the integrated flowsq associated withC components,

as well as integrated effortsp associated withI components, in integral causality (Figure

6(b)). In this case the states areq1, the integrated flow variable associated withC:c1, and
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p1, the integrated effort variable associated withI:m1.

Write state derivatives in terms of states and inputs.By definition, dq1

dt
= fc. Follow-

ing the causal strokes,fc = f0 − f1. In this example,f0 is an input and, following the

causal strokes,f1 = p1

m1

, wherep1 is a state. Thus, the first state equation is

dq1

dt
= f0 −

p1

m1

. (15)

By definition, dp1

dt
= em. Following the causal strokes, we obtainem = e0 − er − e1. In

this example,e0 = q1

c1
, ande1 is an input. Using the properties of theR component given

in Figure 6(a),er = r1f1 = r1
p1

m1

. Thus the second state equation is

dp1

dt
=

q1

c1

− r1

p1

m1

− e1. (16)

Write outputs in terms of states and inputs. The outputsf1 and e0 can be written in

terms of the states asf1 = p1

m1

ande0 = q1

c1
. Defining

x =





q1

p1



 , y =





f1

e0



 , u =





f0

e1



 , (17)

(15) and (16) can be written in state-space form

dx

dt
(t) = Ax(t) + Bu(t), (18)

y(t) = Cx(t), (19)

where

A =





0 − 1

m1

1

c1
− r1

m1



 , B =





1 0

0 −1



 , C =





1

c1
0

0 1

m1



 . (20)

In a similar fashion the block-diagram of Figure 7(b) can be derived from the causally

complete bond graph of Figure 7(a).

Both the bond graph and simplified bond graph of Figure S1 of Case Study 1 correspond to

state-space equations with three states since three components have integral causality in each

case. The state-space equations can be derived by hand or by using symbolic software.
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Simplification and Approximation

In the same way that two resistors in series can be combined into a single resistor, or two

rigidly connected masses can be combined into a single mass,bond-graph components can be

combined to give a simplified bond graph with the same external behavior as the original bond

graph. Such simplification can be useful in understanding the behavior of a complex system in

terms of its simplified version.

Figure 8 shows twoI components separated by aC component, a bond graph that can

represent two rotating masses separated by a compliant shaft. Under steady state conditions, the

masses rotate at the same speed, and there is no change in the twist of the shaft. This synchronous

rotation is manifested as zero flow through the bond to theC component. Even under transient

conditions, the flow is generally small. It may therefore be reasonable to approximate the flow

to zero, an approximation that can be accomplished explicitly by replacingC with a flow source

Sf adding zero flow to the junction. Having made this approximation, the bond graph can be sim-

plified by eliminating theSf component entirely because bonds adding zero flow to a0 junction

have no effect on the system.

Using some simple rules, further simplifications can easilybe made. A junction connecting

only two bonds is redundant since it merely constrains the effort and flow in each bond to be the

same. An identical effect can be achieved by replacing both bonds and the junction with a single

bond, thereby eliminating the0 junction. Simplifying further, two junctions of the same type,

which are connected by a single bond, can be replaced by a single junction of the same type. The

result is a greatly simplified bond graph with twoI components connected to a single1 junction.

Finally, the approximate system can be simplified as in figures 9(a) and 9(b).

In more complex examples, analysis of the causality of the original model and the sim-

plified version yields information that can be used to determine whether the approximation is

effective. The original model has three energy storage states to which integral causality can be
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simultaneously assigned. The model therefore produces a set of three ODEs. The approximated

model has only two states and is therefore in some sense simpler. However, following the rules

of causal assignment, described previously, it is not possible to simultaneously place both of the

I components in integral causality. One state must be placed in derivative causality (Figure 6(b)),

which (without simplification) results in a set of DAEs. Whether the replacement of three ODEs

with two DAEs is a useful approximation or not depends on the purpose of the model; never-

theless, a benefit of bond-graph causality is that the consequences of such an approximation are

explicit to the modeler.

Case Study 1 uses simplification to reduce the number of bond-graph components and remove

the componentI:mm in derivative causality.

Advantages of bond graphs over block diagrams

Case Study 1 provides evidence for the assertions in the sidebar “Why Bond Graphs Are

Better Than Block Diagrams”. The evidence is presented below. In particular, Figure 10 is more

complex than the bond graph of Figure S1 of Case Study 1 .

The acausal, equation-based nature of a bond graph is apparent from the way that compo-

nents can be treated identically regardless of the causality imposed on them. The resistancesra

andrm of Figure S1 of Case Study 1 are implemented identically in the bond-graph model of the

motor with only the later addition of a causal stroke, specifying the inputs and outputs required

to generate assignment statements from the acausal equations. By contrast, the same resistances

ra andrm depicted in block-diagram form in Figure 10b are implemented differently, with the

reciprocal of the resistance multiplying the input signal in one case, but not the other.

A more striking example can be seen in the handling of the motor inertia. Whether the

inertia must be modeled with an integrator or differentiator changes according to its causality,

16



as can be seen by comparing figures 10b and 10c, where a change to the input and output of

the component model causes the inertia causality to change.In the first configuration, an output

torque is generated in response to motor speed for a given voltage, and the inertia is represented

by a differentiator. In the second configuration, the motor torque is an input, and the shaft speed

an output, but the differentiator must then be changed to an integrator. It is also necessary to

reverse the direction of some arrows and to change the sign ofthe signal connecting the motor

torqueτm to the motor mass, which is not necessary in the bond graph because the positive

direction of energy transport is automatically handled by the sign convention specified by the

bond directions.

The disadvantages of requiring two block-diagrams to represent one component depending

on its inputs and outputs extend beyond the need to create andmaintain twice as many models.

There is also the problem of unit testing. While it is a simplematter to verify the dynamic behav-

ior of the block diagram with integral causality in Figure 10c by specifying constant inputs, this

simplicity is not true of the version with a differentiator in Figure 10c. Applying a constant shaft

speed does not reveal any of the dynamic characteristics of the motor. The need for different

forms of verification means that it is necessary to write separate tests for every particular instan-

tiation of a model in block-diagram form, whereas it sufficesto test a single configuration of a

bond graph with confidence that the same model can be used regardless of the external causality.

Maintenance of bond-graph models is also made easier by the localization of components.

It can be seen that the block-diagram representation of the gearbox requires that the gear ratio

n be specified in two places in Figure 10d, whereas the corresponding TF:n component need

only be inserted once for the bond-graph representation (Figure S1). Multiple specification of

parameters is usually only a minor inconvenience when initially creating models, but can easily

lead to the introduction of hard-to-detect bugs when modelsare updated to accommodate future

changes.
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The block-diagram of Figure 10a, corresponding to the bond graph of Figure S1 of Case Study

1 is complicated, bearing little relation to the system topology. A comparison with the bond

graph reveals many of the benefits that bond graphs provide for modeling the system.

Advanced topics

The bond-graph method has been developed in several ways since its inception, and many

of these developments have been initiated at the biennial International Conference on Bond

Graph Modeling. From these extensions, we discuss several topics that we believe to be of

importance to control engineers. Sources of information for these topics can be found in the

sidebar “Further Reading”.

Physical-model-based Control

As discussed in [5, 6] physical-model-based control regards feedback controllers as phys-

ical systems. This approach has the advantage that both physical intuition and energy-based

stability analysis can be used to design stable controllers. One example of physical-model-based

control is the impedance control methodology of [7], which is applied in the robotics field, and,

more recently, in the design of structural dynamics experiments [8].

Perhaps the simplest version of physical-model-based control is the realization that a PID

controller is analogous to a mass-spring-damper system andcan therefore (as in Case Study 1)

be treated as a physical system attached to the controlled physical system. Using bond-graph

representations, Figure 11 shows the physical systems corresponding to two versions of PID

control. In particular, ifkp = k, ki = k
Ti

, andkd = kTd, then Figure 11(a) corresponds to the
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PID controller

u = k

(

1 +
1

Tis
+ Tds

)

(w − y).

It is well known that such a control, although a convenient idealization, is not practical due to the

pure derivative action, which is reflected in the fact that the I component in Figure 11(a) must be

assigned derivative causality. Figure 11(b) shows the bondgraph corresponding to a PID control

with filtered derivative. Note that theI component now has integral causality. In particular if

kf =
Tf

kTd
, the controller equation becomes

u = k

(

1 +
1

Tis
+ Td

s

1 + Tfs

)

(w − y).

A crucial feature of this approach is that the system inputu and outputy must be colocated,

that is, the bond at the lower right of each controller of Figure 11 can be directly connected to

a port of the controlled system. If this is not the case, andu andy are associated with different

system ports, one approach is to revert to conventional control-system design based on the state-

space approach or the block-diagram approach. In other words, the bond-graph methodology

is used just for system modeling, and the bond graph is converted into state-space or transfer

function form to be analyzed using conventional software tools such as Matlab or Octave. As an

alternative, current research investigates physical-model-based control in the noncolocated case

[8, 9].

Inversion and Bicausality

The systems of Figure 4 have the acausal bond graph of Figure 4(d). When natural causal-

ity is imposed as in Figure 7, the system inputu and outputy are

u =





f0

e1



 , y =





e0

f1



 . (21)
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The corresponding system transfer function is

G =





m1s+r1

c1m1s2+c1r1s+1

1

c1m1s2+c1r1s+1

1

c1m1s2+c1r1s+1

−c1s
c1m1s2+c1r1s+1



 . (22)

This system has two poles corresponding to the componentsC:c1 andI:m1 in integral causality.

For some applications, such as actuator sizing [10, 11], it is of interest to compute inputs

in terms of outputs, which leads to system inversion. Because of their acausal nature, (such as

Figure 4(d)), bond-graph models are amenable to inversion.In Figure 12(a) the causality at the

left-hand port is reversed to change the choice of system input and output from (21) to

u =





e0

e1



 , y =





f0

f1



 . (23)

The transfer function arising from this choice is

G =





c1m1s2+c1r1s+1

m1s+r1

−1

m1s+r1

1

m1s+r1

−1

m1s+r1



 . (24)

Not surprisingly, this transfer function is improper; the fact it has only one pole follows from the

fact that only the componentI:m1 is in integral causality.

Another choice of inputs and outputs is

u =





e1

f1



 , y =





eo

fo



 . (25)

However, the concept of bond-graph causality must be extended in this case. Remember that

each bond carries two co-variables, namely effort and flow. The placement of a single causal

stroke at one end of the bond, as in Figure 6, indicates which component sets the effort and

which sets the flow. This configuration isuni-causal. By contrast, abi-causalmodel contains

bonds in which one component sets both the effort and the flow.In Figure 12(b), bicausality is

signified on a bond graph by separating the causal stroke intotwo half strokes [12, 13].
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The model corresponding to the bond graph of 4(d) can now be inverted by changing the

causality of the bonds to that depicted in Figure 12(c). The resulting improper transfer function

is

G =





1 m1s + r1

c1s c1m1s
2 + c1r1s + 1



 . (26)

The transfer function has no poles because bothC:c1 andI:m1 are now in derivative causality

(Figure 6(b)).

It is worth emphasizing the qualitative aspects of inversion by this method. Model inver-

sion is accomplished by changing the causality at the model interfaces. Changes in causality

propagate through the model automatically and thus requireno change to the model itself. Al-

though transfer functions are given for completeness, the number of poles and zeros is deduced

by counting the number of components in integral causality in the bond graphs of the system and

inverse system, respectively.

Hierarchical systems

Simple bond graphs can be constructed entirely from the standard basic components listed

in Table 2. These models can be used in further bond graphs to create models of greater com-

plexity, namely, hierarchical bond-graph models. Hierarchical bond-graphs offer many of the

benefits that are frequently associated with object-oriented programming techniques.

When working with bond graphs, it is natural to construct models by performing a top-

down decomposition of the system of interest. By encapsulating low-level functionality within

self-contained component models, clutter can be minimizedeasing visual inspection, thus help-

ing the modeler focus on an appropriate level of abstractionat each stage of the model develop-

ment. Such decomposition can also greatly ease the process of verifying that the structure of the

model accurately mimics the structure of the system that it is intended to represent. Subsystem
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encapsulation makes it easy to maintain libraries of components and swap entire classes of com-

ponents within a model. Therefore, it is appropriate in the early stages of model construction

to use very simple subsystem models. As model development progresses, components can be

refined, and subsystems of greater complexity can be constructed, tested, and inserted into the

higher-level model.

Hierarchical models are implemented using external port components, which are equiva-

lent to combined source-sensors. These external ports are connected to other subsystem models

using standard component bonds, with causality assigned inthe same way as for any other bond.

It is therefore possible for the causality of the bonds at theexternal interfaces to change. This

property is particularly useful for embedding bond-graph models within system-of-systems mod-

els, where the subsystem models adapt their causal configuration to the context in which they find

themselves. This feature of external ports without fixed causality is a significant advantage of

bond graphs over block-diagram-based modeling methods.

Hybrid systems

Many useful engineering systems incorporate switches, that is, components that funda-

mentally change the global nature of the system by making or breaking local connections. The

effects of switches on the global system are generally much larger than the local physical effects

of the switching action itself, and thus it is often useful torepresent switches as an instantaneous

change in a system variable.

When the switch establishes a connection within a system, any causal configuration can be

meaningful across the switch. However, when it is used to break a connection, there is generally

a definite causal configuration associated with it. Opening an electrical contact or closing a fluid

valve can be represented on a bond graph by imposing zero flow on the1 junction representing

the wire or pipe in which the switch or valve is placed. Similarly, the imposition of zero effort
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on a0 junction models the effect of breaking a mechanical link.

In certain circumstances, it is desirable to ensure that theinclusion of a switch does not

change the global causality of a model. For example, it is often desired that allC andI components

be assigned integral causality so that no algebraic equations need to be solved. Inertial switches

(ISW) or capacitive switches (CSW), which combine an ideal switching element with anI or

C component, can be used to ensure that there is no change in causality due to the action of the

switch.

Figure 13 gives an example of using aCSW component in a mechanical context. When

the ball is above ground, theCSW is “open” and no force is exerted on the ball; when the ball is

below ground, theCSW acts as an ordinary spring, thus creating a bounce.

Distributed-parameter Systems

Although the bond-graph approach does not explicitly handle distributed-parameter sys-

tems described by partial differential equations, these systems can be approximated usingN

discrete lumps. For example, the flexible beam of Figure S1(a), approximated in S1(c) by a sin-

gle lump, can be better approximated usingN lumped elements each of the form of Figure 14(a).

Using the Bernoulli-Euler approximation, each lump has thebond-graph representation of Figure

14(b).

Figure 14(c) shows the frequency response relating angle and angular velocity at the fixed

end of the beam for differentN . The final choice ofN depends on the bandwidth over which the

approximation is required.
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Case Study 2: An Aircraft Fuel System

The second case study is an aircraft fuel system modeled using bond graphs. The design

presented is a hybrid of three aircraft.

The model that we develop is suitable for preliminary fuel-system architectural design,

typically performed during the conceptual design phase, oras a realistic fuel system substitute for

integration testing during later design phases. More interestingly perhaps for control engineers,

the model is eminently suitable for use in specifying, developing, and verifying complex system

control software, which is the most expensive part of most modern aircraft development.

For architectural design work, the main requirements are that the model should be easy

to modify, easy to analyze, and give reasonably accurate results for minimal effort if the design

changes frequently and questions about system performancemust be answered quickly.

For integration testing and control software development,models must typically be capable

of running in real time, while exhibiting the main features of the system behavior and dynami-

cally exciting all relevant interfaces through which the model is connected to other systems. In

these cases, models are often used by people not closely associated with the system hardware

itself and so must be reliable and not require specialized knowledge of the system in order for

the model to be operated successfully.

Model design

TheFuel model (figure 15(b)) is a hierarchical bond-graph representing a simple aircraft

fuel-management system. The system comprises nine fuel tanks, of which there are six types,

namely, one instance each of theForwardTank, CentreTank, andFeedTank fuel tanks, and

the InnerWingTank (figure 16(a)),OuterWingTank andAftTank types which are each in-
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stantiated twice due to the lateral symmetry of the aircraft. For simplicity, the system is athermal,

and the pipework is assumed to be co-planar and perpendicular to the external gravitational field.

The connections between the tanks form two major subsystems: Refuel(green) andFeed(red)

the respective purposes of which are to load fuel into the aircraft and transfer it from the stor-

age tanks to the feed tank, which supplies the jet engine. These subsystems can also be used to

transfer fuel around the aircraft according to the demands of the flight control system.

Fuel enters the system through the ground refueling point (Refuel:Ground) attached to

the center fuselage tank (CentreTank:F2) and leaves the system through the single jet engine

(Engine:jet). The engine is supplied with fuel from the feed tank (FeedTank:F3).

Each of the six tank types contains aVolume (Figure 16(b)), which contains stored fuel

and inert gas, andValve andPump components (figures 16(c) and 16(d)), which allow fuel to

enter or leave the tank.

The valves contain resistive losses representing the valveorifices and the pipes to which

they are connected. The frictional losses in the pipes are implemented with a simple resistive

component (R:pipe). Losses associated with the valve orifice are implemented using a flow-

modulated resistor (FMR:orifice), the resistance of which is modulated according to the valve

position, which is controlled by an electronic actuator. Inertial switches are used to allow or

disallow the flow of fuel through the valves.

TheValve andPump components contain controllers that regulate the flow of fuel. The

control logic is implemented as a simple text file, which actuates these components according

to the quantity of fuel in the tanks (the system states). The simple aim of the control logic as

implemented is to keep the feed tank as full as possible at alltimes so that the engine does

not run dry. The results of a simulation using this model and the control logic can be seen in

Figure 17 which shows the volume levels of fuel in the tanks asfuel is consumed by the engine.

A real fuel-management system would have additional requirements, such as apportioning the
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remaining fuel between the other tanks to control the centerof gravity of the fuel to within

appropriate longitudinal and lateral limits for the flight mode to enhance agility, or maintain

stability while optimizing range.

Benefits of modeling the system as a bond graph

Implementing the fuel system model as a bond graph provides several benefits over tra-

ditional signal flow models that would typically be producedusing tools such as Simulink or

EASY5. Perhaps the most important benefit is the adaptable nature of the interfaces. After de-

velopment and testing, component and subsystem models mustbe capable of being embedded in

diverse environments and able to adapt to a range of conditions.

Consider the refuel system. Design of pipe geometry requires that pressure drops remain

within certain limits when maximum flow is forced through thepipes, so the model must be able

to accept a flow of fuel as an input at the refueling end, and thepipes must determine the sys-

tem pressure loss. However, to verify that the resulting design meets performance requirements

relating to maximum permissible refuel time, it is necessary to instead perform simulations with

an appropriate fuel pressure applied at the input and fuel flow rates calculated through the pipes

and valves. Signal flow models would require separate models, with a consequent doubling of

the amount of testing required.

The need for additional models would also mean that more new models are used throughout

the design process, with a risk of new errors being introduced. It is generally preferable to use

existing tried-and-tested models wherever possible.

Adaptable interfaces are also beneficial when integrating system models to produce a vir-

tual integrated aircraft model. If all of the systems are produced as bond graphs, all of the

interfaces are guaranteed to transact power, which greatlysimplifies the task of stitching mod-
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els together. The task is further simplified by the fact that the causality of the interfaces can be

changed without producing new models. Thus, an electric fuel pump, which accepts a constant

voltage input during fuel system simulations, can easily beadapted to output a voltage when

connected to a current-producing electrical distributionmodel.

The compact nature of bond graphs also makes them ideal for representing fluid flow,

which is just a particular form of energy transport. Unlike signal flow diagrams, it is not neces-

sary to take any particular care with the sign convention forflows at each port of a component

model. Since the bond-graph sign convention is simply specified by the direction of bonds im-

pinging on a component, there is no difficulty with removing components and embedding them

in other parts of the system model.

It should be noted that producing bond-graph system models does not require that control

engineers give up traditional design tools. Several bond-graph software packages can convert

bond graphs to formats that can be embedded directly within Matlab and Simulink - as m files,

mex files, and S functions – and within other software packages in their native formats. Using

appropriate tools for each stage of work generally yields better results than attempting to use the

most readily available tool for all aspects of system design.

We recommend creating models with specialist modeling tools, running simulations within

appropriate simulation harnesses, and performing controldesign with appropriate design tools.

Pencil and paper can of course be substituted for software atany stage of the development process

except real-time simulation.

Conclusions

This article has presented an introduction to bond graphs for control engineers. Although the

notation can initially appear daunting, the bond graph method is firmly grounded in the familiar
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concepts of energy and power. The essential element to be grasped is that bonds represent power

transactions between components. Engineers can quickly become adept at applying the technique

with just a little practice.

The use of generic components and variables makes it a simplematter to model multi-

domain systems, allowing engineers to analyze complex problems and interactions that might

normally be hidden by more traditional approaches to subsystem division and analysis.

The graphical nature of bond graphs enables modelers to easily identify potentially trou-

blesome areas of their system representations and to quickly determine the form of remedy that

can make the model more appropriate for the task in hand. The method is particularly beneficial

in identifying where supposedly simplifying assumptions and approximations might be counter-

productive.

Simple rules govern the transformation of bond graphs into other system representations,

and readily available software exists to perform conversions automatically. Systems modeled as

bond graphs can thus be easily integrated with familiar control engineering toolsets.

The bond-graph approach is not unique in focusing on energy and in determining causality

after modeling. Alternative approaches with these characteristics are discussed in the sidebar

“Related Paradigms”. However the bond-graph approach is unique in combining these features

with an intuitively appealing graphical modeling and causality analysis formulation.

We believe that the bond-graph method is a useful modeling tool, particularly well suited

for describing physical systems, and can provide a powerfulway for engineers to analyze and

solve the problems that they face.
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f2f1

e1 e2

(a)

e
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Figure 1: Types of bond. (a) A power bond. Theeffort andflowsignal pair of Table 1 are carried

by a single power bond. The half arrow indicates the direction of positive power transport. The

signals at opposite ends are equal, that is,e2 = e1 andf2 = f1. Note that effort× flow = e1f1 =

e2f2 = power. (b) An active bond that carries either effort or flow. The active bond, which

corresponds to a block-diagram signal, can act as an interface between a system modeled as a

bond graph and another system modeled as a block diagram.
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m

(a)

mc

f1 = i1 f2 = i2

e1 = V1 e2 = V2

(b)

f2f1

e1 e2
C:c I:m

(c)

Figure 2: Connecting two components. (a) A mechanical massm and spring with compliancec

are connected together; the mass and spring share the same velocity (flow) v2 = v1 and the same

action and reaction (effort)F1 = F2. (b) An electrical inductor with inductancem and capacitor

with capacitancec are connected together; the components share the same current (flow) i2 = i1

and voltage (effort)V1 = V2. (c) The bond graphI:m andC:c components are connected together

using the power bond of Figure 1(a); these components share aflow f2 = f1 and efforte1 = e2.

The colon notationI:m andC:r associates the labelm with theI component and the labelc with

theC component. The color coding is used to help interpretation;it is not part of the bond-graph

method.
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V1 = e1 V2 = e2

i2 = f2 i3 = f3

i1 = f1

V3 = e3

(a)

V2 = e2 V3 = e3

i1 = f1

i2 = f2 i3 = f3

V1 = e1

(b)

f3

e3

f1

e1

e2 f2

0

(c)

f3

e3

f1

e1

e2 f2

1

(d)

Figure 3: Connecting three components. (a) A parallel connection. This connection obeys Kirch-

hoff’s voltage law; the voltage (effort) is common. (b) A series connection. This connection

obeys Kirchhoff’s current law; the current (flow) is common (c) Bond-graph generalization of

diagram (a). In a0 , or common-effort, junction, the efforts are equal and the flows sum to zero,

that is,e1 = e2 = e3, f1 − f2 − f3 = 0. (d) Bond-graph generalization of diagram (b). In a1 ,

or common-flow, junction, the flows are equal and the efforts sum to zero, that is, f1 = f2 = f3,

e1 − e2 − e3 = 0.
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(d)

Figure 4: Analogous second-order systems. (a) Mechanical system comprising a trolley labeled

m1, a spring labeledk1, and a damper labeledr1. (b) Analogous electrical system comprising

an electrical inductor labeledm1, a capacitor labeledc1, and a resistor labeledr1. (c) Analogous

hydraulic system, comprising a tank with an outlet pipe thathas both resistive and inertial char-

acteristics, corresponding to a flow-dependent pressure drop and the fluid momentum. (d) Bond

graph representing the mechanical, electrical and hydraulic systems. Each system has two energy

ports, one at the left and one at the right, each corresponding to the domain-specific effort/flow

pair of Table 1. Analogous components are the same color, theblue italic text indicating the

signals in each case. ComponentC:c1 models extension of the spring, accumulation of charge

in the capacitor or storage of fluid in the tank. It would typically be parametrized by the spring

stiffnessk in the mechanical domain, by capacitanceC in the electrical domain, and by tank

cross-sectional areaA and fluid densityρ in the hydraulic domain. ComponentI:m1 models the

momentum of the trolley, the lines of the flux in the inductor or the momentum of fluid in the

pipe. It would typically be parametrized by the trolley massm, electrical inductanceL, or by

the pipe lengthl and densityρ of the fluid within it. ComponentR:r1 models the friction of the

damper, the resistance of the resistor or the friction within the pipe. It is typically parametrized

by a damping coefficientb, by an electrical resistanceR, or by a hydraulic loss coefficientCD

and orifice cross-sectional areaA.
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τ1,Ω1
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(a)

V1, i1

τ2,Ω2

(b)

f2 = Ω2

e2 = τ2e1 = τ1

f1 = Ω1
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(c)

f2 = Ω2

e2 = τ2e1 = V1

f1 = i1
GY:k

(d)

Figure 5: Transformers and gyrators. (a) A simple gearbox. Rotational mechanical power is con-

verted between two shafts with gear ration > 1; the device corresponds to thetransformer(TF)

bond graph of (c). (b) a dc motor with power conversion between electrical terminals and the

mechanical shaft, corresponding to thegyrator (GY) bond graph of (d). (c) TheTF component

provides power conversion such thate1 = ne2 andf1 = nf2. (d) TheGY component provides

power conversion such thate2 = kf1 ande1 = kf2, wherek is the back EMF constant of the

motor.
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1
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1
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I:L
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Figure 6: Component causality. (a)R . The topmost bond isacausaland represents anequa-

tion, for which the corresponding electrical component is shown. The middle bond has a causal

stroke (perpendicular end-bar) indicating thate is the output, while the lower bond has a causal

stroke indicating thatf is the output. Because of the causal stroke, these two bonds represent

assignment statementsrather than equations. The corresponding block diagrams for these as-

signment statements are shown. (b)C . This component is similar to theR component except

that the equation is differential, not algebraic. The middle diagram showsintegral causality,

while the lower diagram showsderivative causality. (c) I . This component is similar to the

C component but withe andf reversed. The middle diagram shows derivative causality, while

the lower diagram shows integral causality.
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Figure 7: System causality. (a) Causal bond-graph with causality completed on each component.

As indicated by the causal strokes, theC:c1 component has its preferred causality of flow in

and effort out, theI:m1 component has its preferred causality of effort in and flow out, whereas

theR:r1 component has, in this system, a causality of effort out and flow in. Annotations such

asq1 are for clarity and are not part of the bond-graph notation. (b) Block-diagram. The input

and output of each component corresponds to the causal stroke on the bond-graph components of

(a); theC andI components are inintegralcausality since they lead to block-diagram integrators.

From Table 1, the associated states are the integrated flowq1 and integrated effortp1. The block

diagram and bond graph share the same color coding to indicate the corresponding elements.
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(a)

e2

f2

e1

f1
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e1

f1

0 11
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SS:u SS:y

(c)

Figure 8: Approximation of bond graphs. (a) Three energy storage states. This bond graph might

represent two rotating massesI:m1 andI:m2 connected by a flexible shaftC:c. (b) If the shaft has

very low compliance, the shaft can be explicitly modeled as rigid by replacing theC component

with a zero-flowSf. (c) Since the addition of zero flow to a0 junction does not affect the system

dynamics, the bond graph can be simplified by removing theSf component entirely.
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C:ce
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Figure 9: Simplification of bond graphs. (a) ConnectedI andR pairs. This bond graph might

represent two rigidly connected masses, each of which is connected to a damper. (b) Simplified

version of diagram (a). The parameters of eachI andR component can combine asre = r1 + r2

andme = m1 + m2 to create a simpler model with equivalent properties. (c)TF connected

I andR pairs. This bond graph might represent an electromechanical actuator in which electrical

power is provided to a first-order electrical circuit, with inductancem1 and resistancer1, after

which the power is transformed into mechanical power and applied to a mass-damper with pa-

rametersm2 andr2. (d) Simplified version of diagram (c). The system parameters can combine

to form equivalent parametersre = r1 + n2r2 andme = m1 + n2m2. The interpretation of the

input changes toue = ku in accordance with the elimination of the gain, but the output remains

the same. (e) Subsystem withGY connection. This bond graph can represent a linear electric

pump with inductancem and resistancer. (d) Simplified version of diagram (e). Eliminating the

GY:k component, the causality of the system reverses with respect to the outputSS:y, requiring

the 1 junction to be replaced by a0 junction, and theI:m component to be replaced with the

C:ce component. The parameters associated with the system components also change to accom-

modate the elimination of theGY gain, givingce = m/k2 andre = k2/r. Again, the output

remains the same, but the interpretation of the input changes toue = ku.
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(a)

(b) (c)

(d) (e)

Figure 10: Block-diagram representation of the system described in Figure S1. (a) The top level

system block-diagram comprises three subsystems, namely,a motor, a gearbox, and a flexible

beam. (b) The motor calculates the torque output in responseto a given input voltage and shaft

speed. Note that the resistancesRa andRm (purple) are implemented differently;Rm appears

as a multiplier, whereas thereciprocalof Ra multiplies its input. This difference corresponds to

the different causalities imposed on each of these resistors. The motor gainkm appears twice in

the model; if different numerical values were inadvertently assigned to each instance, the model

would no longer obey physical laws. (c) An alternative motormodel shows how diagram (b)

would need to be modified to cause the model to output shaft speed in response to an applied

load, a change that might be required to permit unit testing of the motor submodel. Note that,

as well as reversing some arrow directions, the integrator1/s corresponding to the motor inertia

(red) must be replaced with a differentiators, and the sign of the signal from the motor torque

to the summing junction must be reversed. (d) The gearbox block diagram includes the gearing,

gear inertia, and friction. Note that the gear ration (brown) appears twice in the model; once

again, different values assigned to each block result in a nonphysical system. (e) The flexible-

beam block diagram comprises the beam compliance, inertia,and linear friction model. Note

that the output torque is calculated by the beam compliance (green), which cannot therefore be

easily removed.
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Figure 11: PID Control. (a) Pure PID.R:kp, C:ki, and I:kd give the proportional, integral

and derivative terms, respectively;I:kd hasderivativecausality. (b) Filtered PID.R:kf and the

associated1 junction give a lowpass filtering effect on the derivative action; I:kd now hasintegral

causality.
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Figure 12: Bicausality and Inversion. (a) Partial inversion. The RCI model of Figure 7 can be

partially inverted by changing the causality at the left-hand system port. The outputf0 of the

model is the flow required to cause the efforte0 to track a desired signal given a disturbancee1.

(b) Bicausality. Using half strokes, each bond can have one of four bicausal configurations. (c)

Inversion. The RCI model of Figure 7 can be inverted by changing the causality at the system

interfaces. These changes propagate through the model and causeC:c1 and I:m1 to be placed

in derivative causality. The output of the modelf0 is the flow required to cause the flowf1 to

track a desired signal given a disturbancee1; e0 is the corresponding effort, ande0f0 is the power

required.
45



Ball

Ground

v

−v

R:air_resistance 1 SS:gravity

I:ball_mass

CSW:ground

0

INTF:intf SS:x

(a)

−2

 0

 2

 4

 6

 8

 10

 0  1  2  3  4  5  6  7  8  9  10
t (s)

x 
(m

)

(b)

Figure 13: Bouncing ball. (a) The bond graph superimposed onthe schematic diagram. The

CSW component models the ground, while theINTF component integrates the flow (velocity)

to give height. (b) In this simulation, the ball is dropped from 10 m. The air resistance reduces

each rebound, while the ground compliance allows negative height.
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Figure 14: A uniform beam. a) An infinitesimal lump of widthδz. The vertical velocityv

is driven by the net forceδF , while the torqueτ is driven by the net angular velocityδΩ. b)

Lumped bond graph. The interaction between angular and linear motion is expressed by the

transformerTF:dz, the linear motion of the lump is expressed byI:dm, and the angular twist

by C:dk. The termR:dr expresses structural damping. c) Frequency responses|g(jω)| for N

lumped elements, whereN = 5, 20, 40.
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Figure 15: A simple aircraft fuel model. (a) Fuel tank layout. (b) Bond graph. The refuel system

is depicted in green; the feed system in red. The system consists of nine tanks of which there are

six types.
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Figure 16: Submodels. (a) Tank. Each tank submodel includesthe Valve andPump compo-

nents, which are located within the tank, and aVolume, which contains the fuel and inert gas.

(b) Volume . This component represents the storage of the fuel and inertgas, which is con-

tained within the tank. The fuel is stored in aC component with an incompressible constitutive

relationship. The gas is stored in aC component with a compressible constitutive relationship.

A TF represents the surface separating the two fluid domains. (c)Valve. (d) Pump. These

components are the electromechanical actuators that control the movement of the fluid within

the fuel system. Interfaces with the dc electrical system are included in the component models.
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Figure 17: Simulation of the hybrid fuel model. The volume offluid in each tank changes as

fuel is consumed by the jet engine. A simple logic controlleraims to keep the feed tank (F3)

replenished from the transfer tanks, using the valves and pumps. The steps at 0.9 m3 are due to

thresholds within the control logic that prevent valve chatter. The volume of fuel in the transfer

tanks never quite reaches zero because residual fuel alwaysremains due to tank geometry; this

behavior is modeled by low-level thresholds in the control logic. A more sophisticated controller

would attempt to also maintain the center of gravity within acceptable limits.
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Bond Graph Translation Rotation Electrical Hydraulic

Effort Force Torque Voltage Pressure

e F N τ N-m V V P Pa

Flow Velocity Angular velocity Current Flow

f v m/s Ω rad/s I A Q m3/s

Integrated effort Momentum Angular momentum Lines of flux Momentum per unit area

p =
∫

edt p kg-m/s h kg-m2/s λV-s p kg/m-s

Integrated flow Position Angle Charge Volume

q =
∫

fdt x m θ rad q C V m3

Table 1: Analogous signals. Systematic modeling, including the bond-graph approach, uses the

concept of analogous signals to bring together different physical domains. One such analogy

is the effort/flow analogy displayed here, where each row contains analogous signals and each

column corresponds to a domain. In each case, effort× flow = power.
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Bond Graph Translation Rotation Electrical Hydraulic

External

Se Applied force Applied torque Applied voltage Applied pressure

De Force sensor Torque sensor Voltmeter Pressure sensor

F N T N/m V V P Pa

Sf Applied velocity Applied rotation Applied current Applied flow

Df Speedometer Tachometer Ammeter Flow meter

v m/s ω rad/s i A Q m3/s

1 port

C Spring Torsional spring Capacitor Accumulator

K N/m K N-m/rad C F K Pa/m3

I Mass Moment of inertia Inductor Flow inertia

m kg J kg-m2 L H I kg/m4

R Damper Rot. Damper Resistor Restrictor

d N-s/m d N-m-s/rad R Ω K Pa-s/m3

Table 2: Analogous components with one energy port. The analogous signals of Table 1 lead to

the analogous components of this table; the first column gives the generic bond-graph compo-

nent, while the remaining columns give the domain-specific analogues.
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Sidebar

Why Bond Graphs Are Better Than Block Diagrams

• Acausal:

– Equation-based

– Causality, that is component input and output, determinedafter modeling

– Causality issues clear

• Energy conserving

– Bonds conveypower

– Automatically obeys laws of physics

• Compact

– Each bond conveystwo related signals

– Connections are localized

– Components are localized

– Topology is closer to the physical system

– Graphical depiction of sign convention

• Reusable subsystems

– Subsystem causality adapts in response to impinging subsystems
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Sidebar

Case Study 1: A laboratory experiment

Figure S1(a) shows a laboratory experiment comprising a flexible beam driven by a dc

motor through a gearbox. As with any physical system, it is upto the engineer to decide which

effects to include and which to ignore. In this case, following the experimental manual, the main

approximations are:

• the armature inductance of the dc motor is ignored,

• the beam is approximated by a rotational mass-spring systemanalogous to that of Figure

4(a), and

• the gearbox is assumed to be rigid and free of backlash.

Figure S1(b) shows the corresponding schematic. The left-hand part shows the conven-

tional electrical model of the motor armature comprising the armature resistancera driven by

the applied voltageV and the back EMFVa. SinceV is the system input, it is labeled by the

conventional symbolu. The connection between the electrical and mechanical systems is given

by the usual dc motor equations

τm = kmia,

Va = kmΩm.

Figure S1(c) gives the bond graph corresponding to this apparatus.

Using the simplification rules of Figure 9, Figure S1(c) can be simplified to give Fig-

ure S1(d), where theGY , TF , and one of theI components have been removed. In terms of the
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original components, the components of the simplified system are

r0 =
k2

m

n2ra

,

re = rg +
rm

n2
,

me = mg +
mm

n2
,

u0 =
n

km

u.

Although the simplified bond-graph retains the same input-output dynamics as the original sys-

tem, it is easier to understand. For example, it is clear thatR:r0 acts as a “natural” derivative

controller as in Figure 11.

Figure S2 gives the frequency response relating the two outputsy = Ωb andyb = τb to the

equivalent system inputu0. The frequency response, which is generated automaticallyfrom the

bond graph and the numerical values of Table S1, is the first step in the control-design process.
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Figure S1: Case Study 1: a laboratory experiment. (a) The Quanser flexible beam experiment.

The dc motor drives the flexible beam through a gearbox, a strain-gage measures the beam de-

flection, and a potentiometer measures the motor angular position. (b) System schematic dia-

gram. For simplicity, the system is approximated as indicated in this mixed electrical/mechanical

schematic diagram; in particular, the armature inductanceis ignored, and the beam is given a

lumped approximation. (c) The system bond graph.R:ra, GY:k, I:mm, andR:rm model the

motor; TF:n, I:mg, andR:rg model the gearbox; andC:cb, I:mb, andR:rb model the beam.

Sf:y andSe:yb measureΩb andτb, respectively. (d) A simplified bond graph. The drive com-

ponents are combined into the four equivalent componentsI:me, R:re, R:r0, andSe:u0.
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Figure S2: Frequency response for the Quanser experiment. The numerical values of Table S1

combined with the bond graph of Figure S1 yield the frequencyresponse ofy = Ωb andyb = τb,

measured in rad/s and N-m respectively, to the equivalent system inputu0, measured in rad/s; the

resonant peak corresponds to the flexure natural frequency of about20 rad/s.
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Component Value Units

km 0.00767 N-m/A

ra 2.6 Ω

mm 3.87e−7 Kg-m2

rm 0.0 N-m-s/rad

n 1

70

mg 2.5200e−5 Kg-m2

rg 0.0 N-m-s/rad

cb 2 rad/N-m

mb 0.0012368 Kg-m2

Table S1: Numerical Values. These numerical values corresponding to each bond-graph compo-

nent in Figure S1 are taken from the Quanser manual [14]
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Sidebar

Related Paradigms

Bond graphs are related to other modeling approaches. Two ofthese of particular interest are

the behavioral approach and energy-based methods such as dissipative systems and the Port-

controlled Hamiltonian approach.

The behavioral approach [15, 16] and the bond-graph approach provide two of the many

ways of describing and understanding dynamical systems. Asdiscussed in more detail in [17],

the two approaches are similar in that:

• the system description does not distinguish inputs and outputs, but rather is viewed as

a constraint on a set of variables: the manifest variables inbehavioral terms and port

variables in bond-graph terms.

• systems are connected without assigning the input/output structure beforehand.

• state-variable descriptions are regarded as representations to be derived from the basic

system representation only when decisions have been made about which variables are to

be regarded as inputs and outputs.

The two approaches are different in that:

• the bond-graph approach isgraphical, whereas the behavioral approach is mathematical

• the bond-graph approach is explicitly based on energy concepts and uses the systematic

modeling approach whereby physical system variables are classified according to Table 1.
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• the behavioral approach handles distributed systems, described by partial differential equa-

tions. The bond-graph approach does not.

It is becoming recognized that energy-based methods are relevant to control engineers, see

[18]. Bond graphs are inherently energy based and thus are related to other energy-based methods

including dissipative systems [19, 20, 21] and, as shown in [22], port-Hamiltonian systems.

60



Sidebar

Further Reading

• Books: A. Mukherjee, R. Karmakar and A.K. Samantaray[23], D.C. Karnopp, D.L. Mar-

golis and R.C. Rosenberg[3], P.J. Gawthrop and L.P.S. Smith[24], P.C. Breedveld and

G. Dauphin-Tanguy[25], F.E. Cellier[26].

• Conference proceedings: [27, 28, 29, 30, 31, 32, 33].

• Journal special issues: [34, 35, 36].

• Web sites:

– Bond Graph Compendium:www.ece.arizona.edu/∼cellier/bg.html

– Software reviews:www.bondgraphs.com/software.html

• Software:

– Model Transformation Tools:mtt.sf.net

– CAMP-G: www.bondgraph.com

– 20-Sim:www.20sim.com

– Dymola:www.dynasim.se

– Symbols 2000:www.symbols2000.com
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