Report on Hybrid

Generated by MTT using :
($\mathrm{mtt}-\mathrm{u}-\mathrm{q}-\mathrm{q}$ Hybrid rep pdf)
Tue Aug 19 14:55:49 BST 2003

Contents

I Hybrid 7
1 Bounce 9
1.1 Bounce_abg.tex 9
1.1.1 Summary information 10
1.1.2 Subsystems 11
1.1.3 CSW 12
1.1.4 INTE 14
1.2 Bounce_struc.tex 16
1.3 Bounce_ode.tex 17
1.4 Bounce_simpar.txt 17
1.5 Bounce_input.txt 18
1.6 Bounce_logic.txt 19
1.7 Bounce_numpar.txt 19
1.8 Bounce_odeso.ps 20
1.9 Bounce_rep.txt 20
2 BouncingRod 23
2.1 BouncingRod_abg.tex 23
2.1.1 Summary information 24
2.1.2 Subsystems 26
2.1.3 CSW 26
2.1.4 INTE 29
2.1.5 ROD 31
2.2 BouncingRod_struc.tex 34
2.3 BouncingRod_ode.tex 34
2.4 BouncingRod_numpar.txt 35
2.5 BouncingRod_input.txt 36
2.6 BouncingRod_logic.txt 37
2.7 BouncingRod_odeso.ps 38
3 Clutch 39
3.1 Clutch_abg.tex 39
3.1.1 Summary information 40
3.1.2 Subsvstems 41
3.1.3 CSW 41
3.1.4 DC 44
3.1.5 Drive 47
3.1.6 Load 49
3.2 Clutch_struc.tex 52
3.3 Clutch_ode.tex 52
3.4 Clutch_dm.tex 53
3.5 Clutch_simpar.txt 53
3.6 Clutch input.txt 54
3.7 Clutch_logic.txt 55
3.8 Clutch_numpar.txt 56
3.9 Clutch_odeso.ps 56
3.10 Clutch_rep.txt 57
4 Weirs 59
4.1 Weirs_abg.tex 59
4.1.1 Summary information 61
4.1.2 Subsystems 62
4.1.3 ISW 63
4.1.4 Weir 65
4.2 Weirs_struc.tex 68
4.3 Weirs_ode.tex 68
4.4 Weirs_switch.txt 69
4.5 Weirs_simpar.tex 69
4.6 Weirs_numpar.tex 70
4.7 Weirs_input.tex 71
4.8 Weirs_logic.tex 72
4.9 Weirs_odeso.ps 73
4.10 Weirs_rep.txt 73

List of Figures

1.1 System Bounce: acausal bond graph 9
1.2 System CSW: acausal bond graph 12
1.3 Svstem INTF: acausal bond graph 14
1.4 System Bounce, representation odeso (-noargs) 21
2.1 System BouncingRod: acausal bond graph 23
2.2 Svstem CSW: acausal bond graph 27
2.3 Svstem INTF: acausal bond graph 29
2.4 Svstem ROD: acausal bond graph 31
2.5 System BouncingRod, representation odeso (-noargs) 38
3.1 Svstem Clutch: acausal bond graph 39
3.2 Svstem CSW: acausal bond graph 42
3.3 Svstem DC: acausal bond graph 44
3.4 Svstem Drive: acausal bond graph 48
3.5 System Load: acausal bond graph 50
3.6 System Clutch, representation odeso (-noargs) 57
4.1 System Weirs: acausal bond graph 60
4.2 System ISW: acausal bond graph 63
4.3 System Weir: acausal bond graph 65
4.4 System Weirs. representation odeso (-noargs) 73

Part I

Hybrid

Chapter 1

Bounce

1.1 Bounce_abg.tex

MTT command:

```
mtt Bounce abg tex
```


Figure 1.1: System Bounce: acausal bond graph

The acausal bond graph of system Bounce, togehter with a schematic diagram is displayed in Figure 1.1 (on page 9) and its label file is listed in Section 1.1.1 (on page 10). The subsystems are listed in Section 1.1.2 (on page 11).

The model uses the CSW switched \mathbf{C} element to simulate contact with the ground. The corresponding switching function (See Section 1.5], is based on the height above the ground h as follows:

$$
i_{s w}= \begin{cases}0 & \text { if } h>0 \tag{1.1}\\ -1 & \text { if } h \leq 0\end{cases}
$$

In other words, the component acts as an ideal spring when the ball is in contact with the ground yet has no effect when the ball is not in contact with the ground.

The ball is modelled as a point mass (the \mathbf{I} component) and a linear resistance to motion (the (the \mathbf{R} component).

The system was simulated for 100 time units and the resultant height is plotted in Figure 1.4 The ball was released at zero velocity from a height of ten units. The bounce height decreases due to the effect of the modelled air resistance.

1.1.1 Summary information

System Bounce::Bouncing ball example (hybrid) ¡Detailed description here ${ }_{i}$

Interface information:

This component has no ALIAS declarations

Variable declarations:

This component has no PAR declarations

Units declarations:

This component has no UNITs declarations

The label file: Bounce_lbl.txt

```
%SUMMARY Bounce: Bouncing ball example (hybrid)
%DESCRIPTION <Detailed description here>
%% Label file for system Bounce (Bounce_lbl.txt)
```



```
% %% Version control history
\circ
%%% $Id: Bounce_lbl.txt,v 1.2 2001/10/05 11:24:30 gawthrop Exp $
% %% $Log: Bounce_lbl.txt,v $
% %% Revision 1.2 2001/10/05 11:24:30 gawthrop
% %% Updated for new mtt features - input.txt etc
% % %
% %% Revision 1.1 1997/09/11 09:54:22 peterg
% %% Initial revision
% % %
```



```
%% Each line should be of one of the following forms:
% a comment (ie starting with %)
% Component-name CR_name arg1,arg2,..argn
% blank
```

\% Component type INTF
intf
\% Component type CSW
ground lin state, k_g
\% Component type I
ball_mass lin flow,m
\% Component type R
air_resistance lin flow, r
\% Component type $S S$
gravity $S S$ external, internal
x SS external, 0

1.1.2 Subsystems

- CSW: Switched C component (1) No subsystems.
- INTF: flow integrator (1) No subsystems.

1.1.3 CSW

Figure 1.2: System CSW: acausal bond graph

The acausal bond graph of system CSW is displayed in Figure 3.2 (on page 42) and its label file is listed in Section 3.1.3 (on page 41). The subsystems are listed in Section 3.1.3 (on page 44).

Summary information

System CSW::Switched C component CSW acts as an C component except when the -s -c option is used. When the -s -c option is used: The component label is used as a variable name (eg Name) In the ode simulation: Name $=1$ implies normal C (closed switch) Name $=0$ implies state=0 (open switch) Name $=-1$ implies state ¿0 (Diode)

Interface information:

Parameter \$1 represents actual parameter effort,c_s
Parameter \$1 represents actual parameter lin
Port out represents actual port in

Variable declarations:

This component has no PAR declarations

Units declarations:

This component has no UNITs declarations

The label file: CSW_lbl.txt

```
%SUMMARY CSW: Switched C component
%DESCRIPTION CSW acts as an C component except when the -s -c option is
%DESCRIPTION When the -s -c option is used:
%DESCRIPTION The component label is used as a variable name (eg Name)
%DESCRIPTION In the ode simulation:
%DESCRIPTION Name = 1 implies normal C (closed switch)
%DESCRIPTION Name = O implies state=0 (open switch)
%DESCRIPTION Name = -1 implies state>0 (Diode)
```

\%ALIAS out in
\%ALIAS $\$ 1$ lin
\%ALIAS \$1 effort,c_s
\%\% Label file for system CSW (CSW_lbl.txt)

\% \% \% Version control history

\% \% \% \$Id: CSW_lbl.txt,v 1.3 1998/07/26 13:30:33 peterg Exp \$
\% \% \% \$Log: CSW_lbl.txt,v \$
\% \% Revision 1.3 1998/07/26 13:30:33 peterg
\% \% \% Added aliases
\% \% \%
\% \%\% Revision 1.2 1997/09/11 09:00:52 peterg
$\%$ \% More documentation.
\% \%
\% \% Revision 1.1 1997/06/16 10:55:20 peterg
\% \%\% Initial revision
\% \%
\% \%\% Revision 1.1 1997/06/03 15:26:09 peterg
\% \% \% Initial revision
\% \%

```
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Each line should be of one of the following forms:
% a comment (ie starting with %)
% Component-name CR_name arg1,arg2,..argn
% blank
```

```
% Component type C
MTT_SWITCH lin effort,c_s
% Component type SS
[in] SS external,external
```


Subsystems

No subsystems.

1.1.4 INTF

Figure 1.3: System INTF: acausal bond graph

The acausal bond graph of system INTF is displayed in Figure 2.3 (on page 29) and its label file is listed in Section 2.1.4 (on page 29). The subsystems are listed in Section 2.1.4 (on page 30).

INTF is a two-port component where the effort on port [out] is the integral of the flow on port [in].

Summary information

System INTF::flow integrator Port [in]: Flow to be integrated Port [out]: Effort $=$ integral of flow on port [in]

Interface information:

Port in represents actual port Flow
Port out represents actual port Integrated flow

Variable declarations:

This component has no PAR declarations

Units declarations:

This component has no UNITs declarations

The label file: INTF_lbl.txt

```
%% Label file for system INTF (INTF_lbl.txt)
%SUMMARY INTF: flow integrator
%DESCRIPTION Port [in]: Flow to be integrated
%DESCRIPTION Port [out]: Effort = integral of flow on port [in]
```



```
% %% Version control history
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id: INTF_lbl.txt,v 1.3 1998/07/16 07:35:10 peterg Exp $
% %% $Log: INTF_lbl.txt,v $
% %% Revision 1.3 1998/07/16 07:35:10 peterg
% %% Aliased version
% %%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
```

```
% Port aliases
%ALIAS in Flow
%ALIAS out Integrated_flow
```

```
% Argument aliases
%% Each line should be of one of the following forms:
% a comment (ie starting with %)
% component-name cr_name arg1,arg2,..argn
% blank
% ---- Component labels ----
% Component type SS
[Flow] SS external,external
[Integrated_flow] SS external,external
```


Subsystems

No subsystems.

1.2 Bounce_struc.tex

MTT command:

```
mtt Bounce struc tex
```

List of inputs for system Bounce			
	Component	System	Repetition
1	gravity	Bounce__gravity	1

List of outputs for system Bounce			
	Component	System	Repetition
1	X	Bounce__x	1

List of states for system Bounce			
	Component	System	Repetition
1	mttC	Bounce__intf__mttC	1
2	MTT_SWITCH	Bounce__ground__MTT_SWITCH	1
3	ball_mass	Bounce__ball_mass	1

1.3 Bounce_ode.tex

MTT command:
mtt Bounce ode tex

$$
\begin{gather*}
\dot{x}_{1}=\frac{x_{3}}{m} \\
\dot{x}_{2}=\frac{\left(-x_{3}\right)}{m} \tag{1.2}\\
\dot{x}_{3}=\frac{\left(k_{g} m x_{2}-m u_{1}-x_{3} r\right)}{m} \\
y_{1}=x_{1} \tag{1.3}
\end{gather*}
$$

1.4 Bounce_simpar.txt

MTT command:

mtt Bounce simpar txt
\# Simulation parameters for system Bounce (Bounce_simpar.txt)
\# Generated by MTT on Sat Jul 25 15:57:56 BST 1998.
\#
\#\# Version control history
\#
\#\# \$Id: Bounce_simpar.txt,v 1.2 2000/12/28 17:45:24 peterg Exp \$
\#\# \$Log: Bounce_simpar.txt,v \$
\#\# Revision 1.2 2000/12/28 17:45:24 peterg
\#\# To RCS
\#\#
\#\# Revision 1.1 1998/10/01 19:21:04 peterg
\#\# Initial revision
\#\#
\#
FIRST=0.0;
LAST=10.0;
DT=0.02;
STEPFACTOR=1;

1.5 Bounceinput.txt

MTT command:

mtt Bounce input txt
\# Numerical parameter file (Bounce_input.txt)
\# Generated by MTT at Wed Jul 2 10:47:49 BST 1997
\# $\% \frac{0}{0} \% \frac{0 \%}{\circ} \% \frac{0}{0} \%$
\# \% \% Version control history
\# $\% \frac{0}{0} \%$
\# \%\% \$Id: Bounce_input.txt,v 1.5 2003/06/11 15:58:14 gawthrop Exp
\# \%\% \$Log: Bounce_input.txt,v \$
\# \%\% Revision 1.5 2003/06/11 15:58:14 gawthrop
\# \%\% Updated examples for latest MTT.
\# \% \%
\# \%\% Revision 1.4 2001/10/05 11:24:29 gawthrop
\# \%\% Updated for new mtt features - input.txt etc
\# \% \%
\# \%\% Revision 1.3 2000/05/18 11:30:14 peterg
\# \%\% Moved switch logic to logic.txt
\# \% \%
\# \%\% Revision 1.2 1998/10/01 19:20:33 peterg
\# \%\% Cahged switch function
\# \% \%
\# \%\% Revision 1.1 1998/07/25 18:35:02 peterg
\# \%\% Initial revision
\# \% \%

\# Set the inputs
\#\# Removed by MTT on Fri Oct 5 10:37:56 BST 2001: mttu(1) = 9.81;
\#\# Removed by MTT on Tue Jun 10 10:22:08 BST 2003: bounce_gravity = 9.81; \# Added by MTT on Fri Oct 05 10:37:59 BST 2001
bounce__gravity = 9.81;

1.6 Bounce_logic.txt

MTT command:

```
mtt Bounce logic txt
# -*-octave-*- Put Emacs into octave-mode
# Simulation parameters for system Bounce (Bounce_logic.txt)
# Generated by MTT on Thu May 18 12:29:15 BST 2000.
###############################################################
## Version control history
###############################################################
## $Id: Bounce_logic.txt,v 1.4 2003/06/11 15:58:24 gawthrop Exp $
## $Log: Bounce_logic.txt,v $
## Revision 1.4 2003/06/11 15:58:24 gawthrop
## Updated examples for latest MTT.
##
## Revision 1.3 2002/09/29 13:14:12 geraint
## Updated names.
##
## Revision 1.2 2000/12/28 17:45:24 peterg
## To RCS
##
## Revision 1.1 2000/05/18 11:29:58 peterg
## Initial revision
##
###############################################################
```

\# Set the switches
\#\# On when below ground level
bounce__ground__mtt_switch_logic = (bounce___intf__mttc < 0);

1.7 Bounce_numpar.txt

MTT command:
mtt Bounce numpar txt

Tue Aug 19 14:55:49 BST 2003
Page 19.

```
# Numerical parameter file (Bounce_numpar.txt)
# Generated by MTT at Wed Jul 2 10:47:47 BST 1997
# %
# %% Version control history
```



```
# %% $Id: Bounce_numpar.txt,v 1.2 2001/10/05 11:24:30 gawthrop Exp
# %% $Log: Bounce_numpar.txt,v $
# %% Revision 1.2 2001/10/05 11:24:30 gawthrop
# %% Updated for new mtt features - input.txt etc
# %%
# %% Revision 1.1 2000/12/28 17:45:24 peterg
# %% TO RCS
# %%
# % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 
# Parameters
k_g=100.0; # Ground stiffness
m = 1.0; # Ball mass
r = 1.0; # Air resistance
```


1.8 Bounce_odeso.ps

MTT command:
mtt Bounce odeso ps
This representation is given as Figure 1.4 (on page 21).

1.9 Bounce_rep.txt

MTT command:

```
mtt Bounce rep txt
# Outline report file for system Bounce (Bounce_rep.txt)
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
```


Figure 1.4: System Bounce, representation odeso (-noargs)

```
%%% $Id: Bounce_rep.txt,v 1.2 2001/10/05 11:24:30 gawthrop Exp $
% %% $Log: Bounce_rep.txt,v $
% %% Revision 1.2 2001/10/05 11:24:30 gawthrop
% %% Updated for new mtt features - input.txt etc
% %%
% %% Revision 1.1 2000/05/19 07:09:19 peterg
% %% Initial revision
% % %
\circ
mtt Bounce abg tex
mtt Bounce struc tex
mtt Bounce ode tex
mtt Bounce simpar txt
mtt Bounce input txt
mtt Bounce logic txt
mtt Bounce numpar txt
mtt Bounce odeso ps
mtt Bounce rep txt
```

Page 21.

Chapter 2

BouncingRod

2.1 BouncingRod abg.tex

MTT command:

mtt BouncingRod abg tex

Figure 2.1: System BouncingRod: acausal bond graph

The acausal bond graph of system BouncingRod is displayed in Figure 2.1(on page 23) and its label file is listed in Section 2.1.1(on page 24). The subsystems are listed in Section 2.1.2. (on page 26).

The system consists of a uniform rod of mass 1 kg , length 2 m (and therefore of inertia about the mass centre of $\frac{1}{3} \mathrm{kgm}^{2}$. The rod is released at an angle of $\frac{\pi}{4}$ from
the vertical, the mass centre is 10 m above the ground and all velocities are
initially zero. The gravitational constant is taken as unity.
The ground is modeled as an ideal compliance in the vertical direction with compliance of $0.1 \mathrm{mN}^{-1}$ and it is assumed that contact takes place at the rod tips only. There is no horizontal resistance to motion. This idealised setup is modeled by a two CSW components, one for each rod tip, modulated by the height of each rod tip above the ground: each CSW is off when the corresponding height is positive.
The system was simulated for 100 time units and the resultant height of each tip is plotted in Figure 2.5. The rod was released at zero velocity from a height of ten units and at an angle of $\frac{\pi}{4}$ radians to the vertical. The oscillations in height are due to rod rotation about its mass centre. The bounce height changes due to energy transfer to and from the rod rotation about its mass centre.

2.1.1 Summary information

System BouncingRod::Two-dimensional bouncing rod (hybrid) A uniform rod bounces on a compliant surface - the CSW component is used.

Interface information:

This component has no ALIAS declarations

Variable declarations:

This component has no PAR declarations

Units declarations:

This component has no UNITs declarations

The label file: BouncingRod_lbl.txt

```
%SUMMARY BouncingRod: Two-dimensional bouncing rod (hybrid)
%DESCRIPTION A uniform rod bounces on a compliant surface -- the
%DESCRIPTION CSW component is used.
%% Label file for system BouncingRod (BouncingRod_lbl.txt)
```



```
% %% Version control history
\circ
% %% $Id: BouncingRod_lbl.txt,v 1.6 2001/10/05 11:24:34 gawthrop Exp $
% %% $Log: BouncingRod_lbl.txt,v $
% %% Revision 1.6 2001/10/05 11:24:34 gawthrop
% %% Updated for new mtt features - input.txt etc
% %%
% %% Revision 1.5 2000/12/04 08:36:23 peterg
% %% Declare pi
% %%
% %% Revision 1.4 2000/05/18 10:30:39 peterg
% %% New SS form
% %%
% %% Revision 1.3 1997/09/11 09:55:25 peterg
% %% Added documentation
% %%
% %% Revision 1.2 1997/09/11 08:37:29 peterg
% %% Added description
% % %
% %% Revision 1.1 1997/07/06 16:18:37 peterg
% %% Initial revision
% %%
```



```
%% Each line should be of one of the following forms:
% a comment (ie starting with %)
% Component-name CR_name arg1,arg2,..argn
% blank
```

```
% Component type CSW
groundL lin effort,epsilon
groundR lin effort,epsilon
% Component type INTF
intfL
intfR
```

\% Component type ROD
Tue Aug 19 14:55:49 BST 2003

Page 25.

```
rod none l;l;j;m
% Component type SS
aL SS O,internal
aR SS O,internal
gravity SS external,internal
hL SS external,0
hR SS external,0
xC SS O,internal
xL SS O,internal
xR SS 0,internal
```


2.1.2 Subsystems

- CSW: Switched C component (2) No subsystems.
- INTF: flow integrator (2) No subsystems.
- ROD: rigid rod in two dimensions (1)
- INTF: flow integrator (1)

2.1.3 CSW

The acausal bond graph of system CSW is displayed in Figure 3.2 (on page 42) and its label file is listed in Section 3.1.3(on page 41). The subsystems are listed in Section 3.1.3 (on page 44).

Summary information

System CSW::Switched C component CSW acts as an C component except when the -s -c option is used. When the -s -c option is used: The component label is used as a variable name (eg Name) In the ode simulation: Name $=1$ implies normal C (closed switch) Name $=0$ implies state $=0$ (open switch) Name $=-1$ implies state $¢ 0$ (Diode)

Interface information:

Parameter \$1 represents actual parameter effort,c_s
Parameter \$1 represents actual parameter lin
Port out represents actual port in

Figure 2.2: System CSW: acausal bond graph

Variable declarations:

This component has no PAR declarations

Units declarations:

This component has no UNITs declarations

The label file: CSW_lbl.txt

```
%SUMMARY CSW: Switched C component
%DESCRIPTION CSW acts as an C component except when the -s -c option is
%DESCRIPTION When the -s -c option is used:
%DESCRIPTION The component label is used as a variable name (eg Name)
%DESCRIPTION In the ode simulation:
%DESCRIPTION Name = 1 implies normal C (closed switch)
%DESCRIPTION Name = 0 implies state=0 (open switch)
%DESCRIPTION Name = -1 implies state>0 (Diode)
```

\%ALIAS out in
\%ALIAS $\$ 1$ lin
\%ALIAS $\$ 1$ effort,c_s

```
%% Label file for system CSW (CSW_lbl.txt)
```



```
% %% Version control history
\circ
% %% $Id: CSW_lbl.txt,v 1.3 1998/07/26 13:30:33 peterg Exp $
% %% $Log: CSW_lbl.txt,v $
% %% Revision 1.3 1998/07/26 13:30:33 peterg
\circ%% Added aliases
\circ
% %% Revision 1.2 1997/09/11 09:00:52 peterg
% %% More documentation.
% % %
% %% Revision 1.1 1997/06/16 10:55:20 peterg
% %% Initial revision
% %%
% %% Revision 1.1 1997/06/03 15:26:09 peterg
% %% Initial revision
% %%
%}%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%% Each line should be of one of the following forms:
% a comment (ie starting with %)
% Component-name CR__name arg1, arg2,..argn
% blank
```

\% Component type C
MTT_SWITCH lin effort, c_s
\% Component type SS
[in] SS external,external

Subsystems

No subsystems.

Figure 2.3: System INTF: acausal bond graph

2.1.4 INTF

The acausal bond graph of system INTF is displayed in Figure 2.3 (on page 29) and its label file is listed in Section 2.1.4 (on page 29). The subsystems are listed in Section 2.1.4 (on page 30).
INTF is a two-port component where the effort on port [out] is the integral of the flow on port [in].

Summary information

System INTF::flow integrator Port [in]: Flow to be integrated Port [out]: Effort = integral of flow on port [in]

Interface information:

Port in represents actual port Flow
Port out represents actual port Integrated_flow

Variable declarations:

This component has no PAR declarations

Units declarations:

This component has no UNITs declarations

The label file: INTF_lbl.txt

```
%% Label file for system INTF (INTF_lbl.txt)
%SUMMARY INTF: flow integrator
%DESCRIPTION Port [in]: Flow to be integrated
%DESCRIPTION Port [out]: Effort = integral of flow on port [in]
```



```
% %% Version control history
```

```
% %% Version control history
```



```
% %% $Id: INTF_lbl.txt,v 1.3 1998/07/16 07:35:10 peterg Exp $
```

% %% \$Id: INTF_lbl.txt,v 1.3 1998/07/16 07:35:10 peterg Exp \$
% %% \$Log: INTF_lbl.txt,v \$
% %% \$Log: INTF_lbl.txt,v \$
%%%Revision 1.3 1998/07/16 07:35:10 peterg
%%%Revision 1.3 1998/07/16 07:35:10 peterg
% %% Aliased version
% %% Aliased version
% %%

```
% %%
```


\% Port aliases
\%ALIAS in Flow
\%ALIAS out Integrated_flow
\% Argument aliases
\%\% Each line should be of one of the following forms:
\% a comment (ie starting with \%)
\% component-name cr_name arg1, arg2,..argn
\% blank
\% ---- Component labels ----
\% Component type SS
[Flow] SS external,external
[Integrated_flow] SS external,external

Subsystems

No subsystems.

2.1.5 ROD

Figure 2.4: System ROD: acausal bond graph

The acausal bond graph of system ROD is displayed in Figure 2.4 (on page 31) and its label file is listed in Section 2.1.5 (on page 31). The subsystems are listed in Section 2.1.5 (on page 34).
This is a special version just for this problem.

Summary information

System ROD::rigid rod in two dimensions Port [1]: Angular torque/velocity - end 1 Port [2]: Angular torque/velocity - end 2 Port [3]: x force/velocity - end 1 Port [4]: x force/velocity - end 2 Port [5]: y force/velocity - end 1 Port [6]: y force/velocity - end 2 Port [7]: x force/velocity - centre Port [8]: y force/velocity - centre

Parameter 1: length from end 1 to mass centre Parameter 2: length from end 2 to mass centre Parameter 3: inertia about mass centre Parameter 4: mass See Section 10.2 of "Metamodelling"

Interface information:

This component has no ALIAS declarations

Variable declarations:

This component has no PAR declarations

Units declarations:

This component has no UNITs declarations

The label file: ROD_lbl.txt

```
%SUMMARY ROD: rigid rod in two dimensions
%DESCRIPTION Port [1]: Angular torque/velocity - end 1
%DESCRIPTION Port [2]: Angular torque/velocity - end 2
%DESCRIPTION Port [3]: x force/velocity - end 1
%DESCRIPTION Port [4]: x force/velocity - end 2
%DESCRIPTION Port [5]: y force/velocity - end 1
%DESCRIPTION Port [6]: y force/velocity - end 2
%DESCRIPTION Port [7]: x force/velocity - centre
%DESCRIPTION Port [8]: y force/velocity - centre
%DESCRIPTION
%DESCRIPTION Parameter 1: length from end 1 to mass centre
%DESCRIPTION Parameter 2: length from end 2 to mass centre
%DESCRIPTION Parameter 3: inertia about mass centre
%DESCRIPTION Parameter 4: mass
%DESCRIPTION See Section 10.2 of "Metamodelling"
%% Label file for system ROD (ROD_lbl.txt)
```



```
% %% Version control history
```

```
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id: ROD_lbl.txt,v 1.2 2000/12/28 17:45:59 peterg Exp $
% %% $Log: ROD_lbl.txt,v $
% %% Revision 1.2 2000/12/28 17:45:59 peterg
% %% To RCS
% %%
% Revision 1.1 1996/11/07 10:57:17 peterg
% Initial revision
%
```



```
%% Each line should be of one of the following forms:
% a comment (ie starting with %)
% Component-name CR_name arg1,arg2,..argn
% blank
%Inertias
J lin flow,$3
m_x lin flow,$4
m_y lin flow,$4
%Integrate angular velocity to get angle
th
%Modulated transformers
s1 lsin flow,$1
s2 lsin flow,$2
c1 lcos flow,$1
c2 lcos flow,$2
% ports
[p1] SS external,external
[p2] SS external,external
[p3] SS external,external
[p4] SS external,external
[p5] SS external,external
[p6] SS external,external
[p7] SS external,external
[p8] SS external,external
```


Subsystems

- INTF: flow integrator (1) No subsystems.

2.2 BouncingRod_struc.tex

MTT command:
mtt BouncingRod struc tex

List of inputs for system BouncingRod			
	Component	System	Repetition
1	gravity	BouncingRod__gravity	1

List of outputs for system BouncingRod			
	Component	System	Repetition
1	hL	BouncingRod__hL	1
2	hR	BouncingRod__hR	1

List of states for system BouncingRod			
	Component	System	Repetition
1	MTT_SWITCH	BouncingRod__groundL__MTT_SWITCH	1
2	MTT_SWITCH	BouncingRod_-_roundR_-MTT_SWITCH	1
3	mttC	BouncingRod__ntfL__mttC	1
4	mttC	BouncingRod__ntfR__mttC	1
5	J	BouncingRod__rod_J	1
6	m_x	BouncingRod__rod__m_x	1
7	m_y	BouncingRod__rod__m_y	1
8	mttC	BouncingRod__rod__th__mttC	1

2.3 BouncingRod_ode.tex

MTT command:
mtt BouncingRod ode tex

$$
\begin{align*}
& \dot{x}_{1}=\frac{\left(\sin \left(x_{8}\right) l m x_{5}-j x_{7}\right)}{(j m)} \\
& \dot{x}_{2}=\frac{\left(\sin \left(x_{8}\right) l m x_{5}+j x_{7}\right)}{(j m)} \\
& \dot{x}_{3}=\frac{\left(-\sin \left(x_{8}\right) l m x_{5}+j x_{7}\right)}{(j m)} \\
& \dot{x}_{4}=\frac{\left(\sin \left(x_{8}\right) l m x_{5}+j x_{7}\right)}{(j m)} \tag{2.1}\\
& \dot{x}_{5}=\frac{\left(-\sin \left(x_{8}\right) l\left(x_{1}+x_{2}\right)\right)}{\varepsilon} \\
& \dot{x}_{6}=0 \\
& \dot{x}_{7}=\frac{\left(-\varepsilon u_{1}+x_{1}-x_{2}\right)}{\varepsilon} \\
& \dot{x}_{8}=\frac{x_{5}}{j}
\end{align*}
$$

2.4 BouncingRod_numpar.txt

MTT command:

```
mtt BouncingRod numpar txt
# Numerical parameter file (BouncingRod_numpar.txt)
# Generated by MTT at Fri Jul 4 14:09:11 BST 1997
# % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % % 
# %% Version control history
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# %% $Id: BouncingRod_numpar.txt,v 1.3 2001/10/05 11:24:34 gawthrop Exp
# %% $Log: BouncingRod_numpar.txt,v $
# %% Revision 1.3 2001/10/05 11:24:34 gawthrop
# %% Updated for new mtt features - input.txt etc
# %%
# %% Revision 1.2 2000/12/28 17:45:59 peterg
# %% To RCS
```

```
# %%
# %% Initial revision
# %%
# Parameters
epsilon = 0.01;
l = 1.0; # Default value
m = 1.0; # Default value
j = l*l*m/3;
```

\# \% \% Revision 1.1 1997/07/06 16:17:27 peterg
\# $\% \frac{0}{0} \%$

2.5 BouncingRod_input.txt

MTT command:

```
mtt BouncingRod input txt
# Numerical parameter file (BouncingRod_input.txt)
# Generated by MTT at Fri Jul 4 14:09:14 BST 1997
```



```
# %% Version control history
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
# %% $Id: BouncingRod_input.txt,v 1.3 2003/06/11 15:58:51 gawthrop
# %% $Log: BouncingRod_input.txt,v $
# %% Revision 1.3 2003/06/11 15:58:51 gawthrop
# %% Updated examples for latest MTT.
# %%
# %% Revision 1.2 2000/12/04 08:27:42 peterg
# %% New version
# %%
# %% Revision 1.1 1997/07/06 16:17:48 peterg
# %% Initial revision
# %%
# %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
```

```
# Set the inputs
## Removed by MTT on Mon Dec 4 08:27:04 GMT 2000: u(1) =
9.81; # gravity (Default value)
## Removed by MTT on Tue Jun 10 10:33:30 BST 2003: bouncingrod_gravity
= 9.81; # Added by MTT on Mon Dec 04 08:27:10 GMT 2000
bouncingrod__gravity = 9.81; # Gravity
```


2.6 BouncingRodJogic.txt

MTT command:

mtt BouncingRod logic txt

```
# -*-octave-*- Put Emacs into octave-mode
# Simulation parameters for system BouncingRod (BouncingRod_logic.txt)
# Generated by MTT on Thu May 18 12:14:35 BST 2000.
###############################################################
## Version control history
###############################################################
## $Id: BouncingRod_logic.txt,v 1.3 2003/06/11 15:59:04 gawthrop Exp $
## $Log: BouncingRod_logic.txt,v $
## Revision 1.3 2003/06/11 15:59:04 gawthrop
## Updated examples for latest MTT.
##
## Revision 1.2 2002/09/29 15:31:39 geraint
## Updated names.
##
## Revision 1.1 2000/12/28 17:45:59 peterg
## To RCS
##
###############################################################
```

\# Set the switches
\#\# Removed by MTT on Tue Jun 10 10:45:53 BST 2003: bouncingrod_groundl_
= (bouncingrod_intfl_mttc <= 0);
\#\# Removed by MTT on Tue Jun 10 10:45:53 BST 2003: bouncingrod_groundr_r
$=$ (bouncingrod_intfr_mttc <= 0);
bouncingrod__groundl__mtt_switch_logic $=$ (bouncingrod___intfl__mttc < 0)
bouncingrod__groundr__mtt_switch_logic $=$ (bouncingrod___intfr__mttc $<=0$)

2.7 BouncingRod_odeso.ps

MTT command:
mtt BouncingRod odeso ps
This representation is given as Figure 2.5 (on page 38).

Figure 2.5: System BouncingRod, representation odeso (-noargs)

Chapter 3

Clutch

3.1 Clutch_abg.tex

MTT command:

```
mtt Clutch abg tex
```


Figure 3.1: System Clutch: acausal bond graph

The acausal bond graph of system Clutch is displayed in Figure 3.1 (on page 39) and its label file is listed in Section 3.1.1 (on page 40). The subsystems are listed in Section 3.1.2 (on page 41). The details of the DC motor and the load are hidden behind a word bond graph so as to focus on the clutch mechanism as modelled by the CSW component. It is natural to model the clutch shaft by a compliance to absorb the shock of engaging the clutch; therefore the drive model contains a CSW component.

Figure 3.6 shows the angular velocities of the motor and load. The clutch is engaged from time t given by $0<t<15$; and a unit input voltage is applied at time $t=0$. All initial conditions are zero.

3.1.1 Summary information

System Clutch::Simple model of a clutch system (Hybrid) Uses CSW component to model the clutch/flexi shaft

Interface information:

This component has no ALIAS declarations

Variable declarations:

This component has no PAR declarations

Units declarations:

This component has no UNITs declarations

The label file: Clutch_lbl.txt

```
%SUMMARY Clutch: Simple model of a clutch system (Hybrid)
%DESCRIPTION Uses CSW component to model the clutch/flexi shaft
%% Label file for system Clutch (Clutch_lbl.txt)
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% Version control history
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
% %% $Id: Clutch_lbl.txt,v 1.2 2000/05/18 10:32:04 peterg Exp $
% %% $Log: Clutch_lbl.txt,v $
% %% Revision 1.2 2000/05/18 10:32:04 peterg
% %% New SS form
% %%
% %% Revision 1.1 1997/09/11 09:38:48 peterg
% %% Initial revision
% %%
% %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
```

\%\% Each line should be of one of the following forms:

```
% a comment (ie starting with %)
% Component-name CR_name arg1,arg2,..argn
% blank
```

```
% Component type DC
motor lin k_m;l_a;r_a;j_m;b_m
% Component type Drive
drive
% Component type Load
load
% Component type SS
e SS external,internal
```


3.1.2 Subsystems

- DC: DC motor (or generator) (1) No subsystems.
- Drive: The clutch/shaft drive subsystem (1)
- CSW: Switched C component (1)
- Load: An inertial/frictional load (1) No subsystems.

3.1.3 CSW

The acausal bond graph of system CSW is displayed in Figure 3.2 (on page 42) and its label file is listed in Section 3.1.3 (on page 41). The subsystems are listed in Section 3.1.3 (on page 44).

Summary information

System CSW::Switched C component CSW acts as an C component except when the -s -c option is used. When the -s -c option is used: The component
label is used as a variable name (eg Name) In the ode simulation: Name $=1$ implies normal C (closed switch) Name $=0$ implies state $=0$ (open switch) Name

$$
=-1 \text { implies state }\langle 0 \text { (Diode) }
$$

Figure 3.2: System CSW: acausal bond graph

Interface information:

Parameter \$1 represents actual parameter effort,c_s
Parameter \$1 represents actual parameter lin
Port out represents actual port in

Variable declarations:

This component has no PAR declarations

Units declarations:

This component has no UNITs declarations

The label file: CSW_lbl.txt

```
%SUMMARY CSW: Switched C component
%DESCRIPTION CSW acts as an C component except when the -s -c opti
%DESCRIPTION When the -s -c option is used:
%DESCRIPTION The component label is used as a variable name (eg
%DESCRIPTION In the ode simulation:
```

```
%DESCRIPTION Name = O implies state=0 (open switch)
```

Name = -1 implies state>0 (Diode)

```
```

Name = 1 implies normal C (closed switch)

```
```

Name = 1 implies normal C (closed switch)

```
\%DESCRIPTION
\%ALIAS out in
\%ALIAS \$1 lin
\%ALIAS \$1 effort,c_s
\%\% Label file for system CSW (CSW_lbl.txt)

\% \% \% Version control history
\(\% ~ \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \% \%\)
\% \% \% \$Id: CSW_lbl.txt,v 1.3 1998/07/26 13:30:33 peterg Exp \$
\% \%\% \$Log: CSW_lbl.txt,v \$
\% \%\% Revision 1.3 1998/07/26 13:30:33 peterg
\% \%\% Added aliases
\% \% \%
\% \%\% Revision 1.2 1997/09/11 09:00:52 peterg
\% \% M More documentation.
\% \% \%
\% \% Revision 1.1 1997/06/16 10:55:20 peterg
\% \%\% Initial revision
\% \% \%
\% \%\% Revision 1.1 1997/06/03 15:26:09 peterg
\% \%\% Initial revision
\% \% \%

\(\%\) Each line should be of one of the following forms:
\% a comment (ie starting with \%)
\% Component-name CR_name arg1,arg2,..argn
\% blank
\% Component type C
MTT_SWITCH lin effort,c_s
\% Component type SS
[in] SS external,external

\section*{Subsystems}

No subsystems.

\subsection*{3.1.4 DC}


Figure 3.3: System DC: acausal bond graph

The acausal bond graph of system DC is displayed in Figure 3.3 (on page 44) and its label file is listed in Section 3.1.4 (on page 44). The subsystems are listed in Section 3.1.4 (on page 47).
\begin{tabular}{|l|l|}
\hline Index & Parameter \\
\hline 1 & Motor gain \(\left(k_{m}\right)\) \\
2 & Armature inductance \(\left(l_{a}\right)\) \\
3 & Armature resistance \(\left(r_{a}\right)\) \\
4 & Inertia \(\left(j_{m}\right)\) \\
5 & Friction coefficient \(\left(b_{m}\right)\) \\
\hline
\end{tabular}

Table 3.1: DC motor parameters

DC is a two-port component representing a DC motor. It has the 5 parameters listed in Table 3.1(on page 44).

\section*{Summary information}

System DC::DC motor (or generator)

\section*{Interface information:}

Parameter \$1 represents actual parameter k_m
Parameter \$2 represents actual parameter l_a
Parameter \$3 represents actual parameter rac and
Parameter \$4 represents actual parameter j \(\mathbf{m}\)
Parameter \$5 represents actual parameter b_m
Port in represents actual port Electrical
Port out represents actual port Mechanical

\section*{Variable declarations:}

This component has no PAR declarations

\section*{Units declarations:}

Port Electrical has domain electrical
Effort units volt
Flow units amp
Port Mechanical has domain rotational
Effort units N*m
Flow units radians/s

The label file: DC_Ibl.txt
```

%SUMMARY DC: DC motor (or generator)
%% Port Alias
%ALIAS in Electrical
%ALIAS out Mechanical
%% Unit definition
%UNITS Electrical electrical volt amp
%UNITS Mechanical rotational N*m radians/s

```
```

%ALIAS \$1 k_m
%ALIAS \$2 l_a
%ALIAS \$3 r_a
%ALIAS \$4 j_m
%ALIAS \$5 b_m

```
\%\% Label file for system DC (DC_lbl.txt)

```

% %% Version control history
% %%%
% %% \$Id: DC_lbl.txt,v 1.7 2001/02/05 03:07:10 geraint Exp \$
%%% \$Log: DC_lbl.txt,v \$
% %% Revision 1.7 2001/02/05 03:07:10 geraint
% %% angular displacement units: changed rads to radians
% %%
% %% Revision 1.6 2000/11/16 09:45:51 peterg
% %% Added unit definitions
% %%
% %% Revision 1.5 1998/07/26 12:49:24 peterg
% %% Corrected some errors
% %%
% %% Revision 1.4 1998/07/26 12:45:33 peterg
%%% Added ports
% %%
% %% Revision 1.3 1998/07/22 12:01:17 peterg
% %% Aliased ports and parameters.
% %%
%%% Revision 1.2 1996/12/04 16:01:42 peterg
% %% Documantation added.
% %%
%%% Revision 1.1 1996/12/04 16:00:56 peterg
% %% Initial revision
% %%

```

\%\% Each line should be of one of the following forms:
\% a comment (ie starting with \%)
\% Component-name CR_name arg1,arg2,..argn
\% blank
```

%Motor gain
k_m lin flow,k_m
% Electrical components
%Inductance
l_a lin effort,l_a
%Resistance
r_a lin flow,r_a
% Mechanical components
%Inertia
j_m lin flow,j_m
%Friction
b_m lin flow,b_m
% Ports
[Electrical] SS external,external
[Mechanical] SS external,external

```

\section*{Subsystems}

No subsystems.

\subsection*{3.1.5 Drive}

The acausal bond graph of system Drive is displayed in Figure 3.4 (on page 48) and its label file is listed in Section 3.1.5 (on page 47). The subsystems are listed in Section 3.1.5 (on page 49).

\section*{Summary information}

System Drive::The clutch/shaft drive subsystem ¡Detailed description here \({ }_{i}\)

\section*{Interface information:}

This component has no ALIAS declarations


Figure 3.4: System Drive: acausal bond graph

\section*{Variable declarations:}

This component has no PAR declarations

\section*{Units declarations:}

This component has no UNITs declarations

\section*{The label file: Drive」bl.txt}
\%SUMMARY Drive: The clutch/shaft drive subsystem \%DESCRIPTION <Detailed description here> \%\% Label file for system Drive (Drive_lbl.txt)
```

% %%
% %% Version control history

```

```

% %% \$Id: Drive_lbl.txt,v 1.3 2002/09/29 13:46:46 geraint Exp \$
% %% \$Log: Drive_lbl.txt,v \$
% %% Revision 1.3 2002/09/29 13:46:46 geraint
% %% Added missing SS entries.
% %%
% %% Revision 1.2 2000/05/18 10:32:32 peterg
% %% New SS form
% %%
% %% Revision 1.1 1997/09/11 09:39:16 peterg
% %% Initial revision

```
```

% % %

```

```

%% Each line should be of one of the following forms:
% a comment (ie starting with %)
% Component-name CR_name arg1,arg2,..argn
% blank
% Component type CSW
clutch lin effort,epsilon
% Component type R
% r_d lin flow,r_d
% Component type SS
v1 SS 0,external
v2 SS 0,external
[in] SS external,external
[out] SS external,external

```

\section*{Subsystems}
- CSW: Switched C component (1) No subsystems.

\subsection*{3.1.6 Load}

The acausal bond graph of system Load is displayed in Figure 3.5 (on page 50) and its label file is listed in Section 3.1.6(on page 49). The subsystems are listed in Section 3.1.6 (on page 52).

\section*{Summary information}

System Load::An inertial/frictional load ¡Detailed description here;

\section*{Interface information:}

This component has no ALIAS declarations

\section*{Rotating load with inertia and friction}


Figure 3.5: System Load: acausal bond graph

\section*{Variable declarations:}

This component has no PAR declarations

\section*{Units declarations:}

This component has no UNITs declarations

\section*{The label file: Load_lbl.txt}
```

%SUMMARY Load: An inertial/frictional load
%DESCRIPTION <Detailed description here>
%% Label file for system Load (Load_lbl.txt)

```

```

% %% Version control history

```

```

% %% \$Id: Load_lbl.txt,v 1.2 2002/09/29 13:46:46 geraint Exp \$
% %% \$Log: Load_lbl.txt,v \$
% %% Revision 1.2 2002/09/29 13:46:46 geraint
% %% Added missing SS entries.
\circ
% %% Revision 1.1 1997/09/11 09:39:29 peterg
% %% Initial revision
\circ%%

```

```

%% Each line should be of one of the following forms:
% a comment (ie starting with %)
% Component-name CR_name arg1, arg2,..argn
% blank

```
```

% Component type I
j_l lin flow,j_l
% Component type R
r_l lin flow,r_l
% Component type SS
[in] SS external,external

```

\section*{Subsystems}

No subsystems.

\subsection*{3.2 Clutch _struc.tex}

MTT command:
mtt Clutch struc tex
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ List of inputs for system Clutch } \\
\hline & Component & System & Repetition \\
\hline 1 & e & Clutch_-e & 1 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{4}{|c|}{ List of outputs for system Clutch } \\
\hline & Component & System & Repetition \\
\hline 1 & v1 & Clutch__drive__v1 & 1 \\
2 & v2 & Clutch__drive__v2 & 1 \\
\hline
\end{tabular}
\begin{tabular}{|l|l|l|l|}
\hline \multicolumn{3}{|c|}{ List of states for system Clutch } \\
\hline & Component & System & Repetition \\
\hline 1 & l_a & Clutch__motor_-__-a & 1 \\
2 & j_m & Clutch__motor_-__-m & 1 \\
3 & MTT_SWITCH & Clutch__drive__clutch__MTT_SWITCH & 1 \\
4 & j_l & Clutch__load_-___l & 1 \\
\hline
\end{tabular}

\subsection*{3.3 Clutch_ode.tex}

MTT command:
mtt Clutch ode tex
\[
\begin{align*}
& \dot{x}_{1}=\frac{\left(j_{m} l_{a} u_{1}-j_{m} x_{1} r_{a}-k_{m} l_{a} x_{2}\right)}{\left(j_{m} l_{a}\right)} \\
& \dot{x}_{2}=\frac{\left(-b_{m} \varepsilon l_{a} x_{2}+\varepsilon j_{m} k_{m} x_{1}-j_{m} l_{a} x_{3}\right)}{\left(\varepsilon j_{m} l_{a}\right)}  \tag{3.1}\\
& \dot{x}_{3}=\frac{\left(j_{l} x_{2}-j_{m} x_{4}\right)}{\left(j_{l} j_{m}\right)} \\
& \dot{x}_{4}=\frac{\left(-\varepsilon x_{4} r_{l}+j_{l} x_{3}\right)}{\left(\varepsilon j_{l}\right)}
\end{align*}
\]
\[
\begin{align*}
& y_{1}=\frac{x_{2}}{j_{m}}  \tag{3.2}\\
& y_{2}=\frac{x_{4}}{j_{l}}
\end{align*}
\]

\subsection*{3.4 Clutch_dm.tex}

MTT command:
mtt Clutch dm tex
\[
\begin{gather*}
A=\left(\begin{array}{cccc}
\frac{\left(-r_{a}\right)}{l_{a}} & \frac{\left(-k_{m}\right)}{j_{m}} & 0 & 0 \\
\frac{k_{m}}{l_{a}} & \frac{\left(-b_{m}\right)}{j_{m}} & \frac{(-1)}{\varepsilon} & 0 \\
0 & \frac{1}{j_{m}} & 0 & \frac{(-1)}{j_{l}} \\
0 & 0 & \frac{1}{\varepsilon} & \frac{\left(-r_{l}\right)}{j_{l}}
\end{array}\right)  \tag{3.3}\\
B=\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right)  \tag{3.4}\\
C=\left(\begin{array}{llll}
0 & \frac{1}{j_{m}} & 0 & 0 \\
0 & 0 & 0 & \frac{1}{j_{l}}
\end{array}\right)  \tag{3.5}\\
D=\binom{0}{0} \tag{3.6}
\end{gather*}
\]

\subsection*{3.5 Clutch_simpar.txt}

MTT command:
mtt Clutch simpar txt
```


Simulation parameters for system Clutch (Clutch_simpar.txt)

Generated by MTT on Sun Jul 26 13:26:44 BST 1998.

\#

Version control history

\#

\$Id: Clutch_simpar.txt,v 1.2 2001/10/05 11:24:35 gawthrop Exp

\$Log: Clutch_simpar.txt,v \$

Revision 1.2 2001/10/05 11:24:35 gawthrop

Updated for new mtt features - input.txt etc

Revision 1.1 1999/12/21 09:13:19 peterg

Initial revision

\#
LAST=20.0;
DT=0.1;
STEPFACTOR=1;

```

\subsection*{3.6 Clutch input.txt}

MTT command:
mtt Clutch input txt
```


Numerical parameter file (Clutch_input.txt)

Generated by MTT at Thu Jul 3 12:17:46 BST 1997

```
```


으ᄋ%%%

%% Version control history

%%%

%% \$Id: Clutch_input.txt,v 1.3 2003/04/12 19:23:15 geraint Exp

%% \$Log: Clutch_input.txt,v \$

%% Revision 1.3 2003/04/12 19:23:15 geraint

%% Updated names with double underscore.

%%

%% Revision 1.2 2002/09/29 13:47:35 geraint

%% Updated names.

%%

```
```


%% Revision 1.1 2000/05/19 07:10:03 peterg

%% Initial revision

%%

```

```


Set the inputs

clutch__e = 1.0; \# e (Default value)

```

\subsection*{3.7 Clutch Jogic.txt}

MTT command:
```

mtt Clutch logic txt

-*-octave-*- Put Emacs into octave-mode

Simulation parameters for system Clutch (Clutch_logic.txt)

Generated by MTT on Thu May 18 12:29:15 BST 2000.

\#

Version control history

\#

\$Id: Clutch_logic.txt,v 1.4 2003/04/12 19:23:15 geraint Exp \$

\$Log: Clutch_logic.txt,v \$

Revision 1.4 2003/04/12 19:23:15 geraint

Updated names with double underscore.

Revision 1.3 2002/09/29 13:47:35 geraint

Updated names.

Revision 1.2 2001/10/05 11:24:35 gawthrop

Updated for new mtt features - input.txt etc

Revision 1.1 2000/05/19 07:11:36 peterg

Initial revision

Revision 1.1 2000/05/18 11:29:58 peterg

Initial revision

\#

Set the switches

```
```

clutch

```
\(\qquad\)
``` drive
``` \(\qquad\)
``` clutch
``` \(\qquad\)
``` mtt_switch_logic \(=((t>=5) \& \&(t<15)) ;\) \#
```


### 3.8 Clutch_numpar.txt

MTT command:

```
mtt Clutch numpar txt
Numerical parameter file (Clutch_numpar.txt)
Generated by MTT at Thu Jul 3 12:12:35 BST 1997
%%
%% Version control history
%%%
%% $Id: Clutch_numpar.txt,v 1.1 2000/12/28 17:46:44 peterg Exp
%% $Log: Clutch_numpar.txt,v $
%% Revision 1.1 2000/12/28 17:46:44 peterg
%% To RCS
%%
%%%
Parameters
b_m = 0.1; # Default value
epsilon = 0.01;
j_l = 1.0; # Default value
j_m = 10.0; # Default value
k_m = 1.0; # Default value
l_a = 0.1; # Default value
r_a = 1.0; # Default value
r_l = 5.0; # Default value
```


### 3.9 Clutch_odeso.ps

MTT command:
mtt Clutch odeso ps
This representation is given as Figure 3.6(on page 57).


Figure 3.6: System Clutch, representation odeso (-noargs)

### 3.10 Clutch_rep.txt

## MTT command:

```
mtt Clutch rep txt
Outline report file for system Clutch (Clutch_rep.txt)
```



```
% %% Version control history
```



```
% %% $Id: Clutch_rep.txt,v 1.3 2001/10/05 11:24:35 gawthrop Exp $
% %% $Log: Clutch_rep.txt, v $
% %% Revision 1.3 2001/10/05 11:24:35 gawthrop
% %% Updated for new mtt features - input.txt etc
% %%
%%% Revision 1.2 2000/05/19 07:16:07 peterg
% %% Added logic
\circ
% %% Revision 1.1 1999/02/21 08:18:25 peterg
% %% Initial revision
% % %
\circ
```

```
mtt Clutch abg tex
mtt Clutch struc tex
mtt Clutch ode tex
mtt Clutch dm tex
mtt Clutch simpar txt
mtt Clutch input txt
mtt Clutch logic txt
mtt Clutch numpar txt
mtt Clutch odeso ps
mtt Clutch rep txt
```


## Chapter 4

## Weirs

### 4.1 Weirs_abg.tex

## MTT command:

mtt Weirs abg tex
The acausal bond graph of system Weirs is displayed in Figure 4.1 (on page 60) and its label file is listed in Section 4.1.1 (on page 61). The subsystems are listed in Section 4.1.2 (on page 62).
Aircraft fuel tanks are often fitted with baffles to reduce fuel slosh. A simple model relating to such a system is shown in Figure 4.1 (on page 60) which corresponds to a single tank containing two dividing weirs. Liquid with flow rate $f$ enters the left-hand compartment; liquid leaks out of the centre compartment at a flow rate determined by gravity and the properties of the corresponding orifice. The Bond Graph appearing in Figure 4.1 (on page 60) represents each of the three compartments by a $\mathbf{C}$ component (labelled tank 1 to tank 3 ), the corresponding pressures are measured by the $\mathbf{S S}$ elements p1-p3. The leak is represented by the $\mathbf{R}$ component labelled leak. The flows over the two weirs are represented by the four ISW components; each weir has a separate ISW component for each flow direction. Each ISW component is switched by the appropriate level.
The system was simulated for 20 time units and the resultant level of each tank partition is plotted in Figure 4.4 (on page 73). Each partition has unit cross section, and the two weir heights are 1 and 2 respectively; the inflow $f$ is given by:

$$
f= \begin{cases}1 & \text { if } t \leq 10  \tag{4.1}\\ 0 & \text { if } t>10\end{cases}
$$

and the leak resistance is linear with flow resistance 5 .


Figure 4.1: System Weirs: acausal bond graph

### 4.1.1 Summary information

System Weirs:Double-weir tanks system (hybrid) ¡Detailed description here $_{\text {}}$

## Interface information:

Parameter \$1 represents actual parameter tank1
Parameter \$2 represents actual parameter tank2
Parameter \$3 represents actual parameter tank3
Parameter \$4 represents actual parameter leak

## Variable declarations:

This component has no PAR declarations

## Units declarations:

This component has no UNITs declarations

## The label file: Weirs_lbl.txt

```
%% Label file for system Weirs (Weirs_lbl.txt)
%SUMMARY Weirs Double-weir tanks system (hybrid)
%DESCRIPTION <Detailed description here>
```



```
% %% Version control history
%}%%%
% %% $Id: Weirs_lbl.txt,v 1.2 2001/10/05 11:24:35 gawthrop Exp $
% %% $Log: Weirs_lbl.txt,v $
% %% Revision 1.2 2001/10/05 11:24:35 gawthrop
% %% Updated for new mtt features - input.txt etc
% %%
% %% Revision 1.1 1999/03/09 00:12:12 peterg
% %% Initial revision
% %%
```



```
% Port aliases
% Argument aliases
%ALIAS $1 tank1
%ALIAS $2 tank2
%ALIAS $3 tank3
%ALIAS $4 leak
%% Each line should be of one of the following forms:
% a comment (ie starting with %)
% component-name cr_name arg1,arg2,..argn
% blank
% ---- Component labels ----
% Component type C
tank1 lin effort,c_1
tank2 lin effort,c_2
tank3 lin effort,c_3
% Component type R
leak lin flow,r_l
% Component type SS
f SS internal,external
p1 SS external,0
p2 SS external,0
p3 SS external,0
% Component type Weir
w1 none epsilon_i;epsilon_r
w2 none epsilon_i;epsilon_r
```


### 4.1.2 Subsystems

- (2)
- ISW: Switched I component (1)


Figure 4.2: System ISW: acausal bond graph

### 4.1.3 ISW

The acausal bond graph of system ISW is displayed in Figure 4.2 (on page 63) and its label file is listed in Section 4.1.3 (on page 63). The subsystems are listed in Section 4.1.3 (on page 65).

## Summary information

System ISW::Switched I component ISW acts as an I component except when the -s -c option is used. When the -s -c option is used: The component label is used as a variable name (eg Name) In the ode simulation: Name $=1$ implies normal I (closed switch) Name $=0$ implies state $=0$ (open switch) Name

$$
=-1 \text { implies state }\langle 0 \text { (Diode) }
$$

## Interface information:

Parameter \$1 represents actual parameter flow,i_s
Parameter \$1 represents actual parameter lin
Port out represents actual port in

## Variable declarations:

This component has no PAR declarations

## Units declarations:

This component has no UNITs declarations

## The label file: ISW_lbl.txt

```
%SUMMARY ISW: Switched I component
%DESCRIPTION ISW acts as an I component except when the -s -c opti
%DESCRIPTION When the -s -c option is used:
%DESCRIPTION The component label is used as a variable name (eg
%DESCRIPTION In the ode simulation:
%DESCRIPTION Name = 1 implies normal I (closed switch)
%DESCRIPTION Name = 0 implies state=0 (open switch)
%DESCRIPTION Name = -1 implies state>0 (Diode)
```

```
%ALIAS out in
%ALIAS $1 lin
%ALIAS $1 flow,i_s
```

\% Label file for system ISW (ISW_lbl.txt)

\% \% \% Version control history

\% \% \$ $1 d$ : ISW_lbl.txt,v 1.2 1998/07/26 13:00:47 peterg Exp \$
\% \%\% \$Log: ISW_lbl.txt,v \$
\% \%\% Revision 1.2 1998/07/26 13:00:47 peterg
\% \% \% Added alaises
\% \% \%
\% \%\% Revision 1.1 1998/07/26 12:57:00 peterg
\% \% \% Initial revision
\% \% \%
\% \%\% Revision 1.1 1997/06/03 15:26:09 peterg
\% \% Initial revision
\% 응


```
%% Each line should be of one of the following forms:
% a comment (ie starting with %)
% Component-name CR_name arg1,arg2,..argn
% blank
```

\% Component type I
MTT_SWITCH lin flow,i_s
\% Component type SS
[in] SS external,external

## Subsystems

No subsystems.

### 4.1.4 Weir



Figure 4.3: System Weir: acausal bond graph

The acausal bond graph of system Weir is displayed in Figure 4.3(on page 65) and its label file is listed in Section 4.1.4 (on page 66). The subsystems are listed in Section 4.1.4 (on page 68).

The weir is modelled by an ISW component in series with an $\mathbf{R}$ component. Physicaly, the former represents the inertia of the fluid together with the switching effect of the weir; the latter represents the flow resistance.
The switching logic is on if the level on either side of the weir reaches the level of the weir.

## Summary information

System Weir: Detailed description here

## Interface information:

Parameter \$1 represents actual parameter i_s
Parameter \$2 represents actual parameter $\mathbf{r}$
Port in represents actual port in
Port out represents actual port out

## Variable declarations:

This component has no PAR declarations

## Units declarations:

This component has no UNITs declarations

## The label file: Weir_lbl.txt

```
#SUMMARY Weir
#DESCRIPTION Detailed description here
System Weir, representation lbl, language txt
File Weir_lbl.txt
Generated by MTT on Fri Oct 5 10:50:46 BST 2001
```

\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#\#\#\# Model Transformation Tools \#\#\#\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#\#
\#\# Version control history

```
 ###
 ## $Id: Weir_lbl.txt,v 1.2 2001/10/05 11:24:35 gawthrop Exp $
 ## $Log: Weir_lbl.txt,v $
 ## Revision 1.2 2001/10/05 11:24:35 gawthrop
 ## Updated for new mtt features - input.txt etc
 ##
 ## Revision 1.2 2001/07/03 22:59:10 gawthrop
 ## Fixed problems with argument passing for CRs
 ##
 ###
Port aliases
#ALIAS in in
#ALIAS out out
Argument aliases
#ALIAS $1 i_s
#ALIAS $2 r
Each line should be of one of the following forms:
a comment (ie starting with #)
component-name cr_name arg1,arg2,..argn
blank
---- Component labels ----
Component type ISW
isw lin flow,i_s
Component type R
r lin flow,r
Component type R
[in] SS external,external
[out] SS external,external
```


## Subsystems

- ISW: Switched I component (1) No subsystems.


### 4.2 Weirs_struc.tex

MTT command:
mtt Weirs struc tex

List of inputs for system Weirs			
	Component	System	Repetition
1	f	Weirs__f	1


List of outputs for system Weirs			
	Component	System	Repetition
1	p1	Weirs_-p1	1
2	p2	Weirs__p2	1
3	p3	Weirs_-_p3	1


List of states for system Weirs			
	Component	System_tank1	Repetition
1	tank1	Weirs__tank	1
2	tank2	Weirs_tank2	1
3	tank3	Weirs__tank3	1
4	MTT_SWITCH	Weirs__w1__isw__MTT_SWITCH	1
5	MTT_SWITCH	Weirs__w2_isw__MTT_SWITCH	1

### 4.3 Weirs_ode.tex

MTT command:

```
mtt Weirs ode tex
```

$$
\begin{gather*}
\dot{x}_{1}=\frac{\left(\varepsilon_{i} u_{1}-x_{4}\right)}{\varepsilon_{i}} \\
\dot{x}_{2}=\frac{\left(c_{2} x_{4} r_{l}-c_{2} x_{5} r_{l}-\varepsilon_{i} x_{2}\right)}{\left(c_{2} \varepsilon_{i} r_{l}\right)} \\
\dot{x}_{3}=\frac{x_{5}}{\varepsilon_{i}}  \tag{4.2}\\
\dot{x}_{4}=\frac{\left(-c_{1} c_{2} \varepsilon_{r} x_{4}-c_{1} \varepsilon_{i} x_{2}+c_{2} \varepsilon_{i} x_{1}\right)}{\left(c_{1} c_{2} \varepsilon_{i}\right)} \\
\dot{x}_{5}=\frac{\left(-c_{2} c_{3} \varepsilon_{r} x_{5}-c_{2} \varepsilon_{i} x_{3}+c_{3} \varepsilon_{i} x_{2}\right)}{\left(c_{2} c_{3} \varepsilon_{i}\right)} \\
y_{1}=\frac{x_{1}}{c_{1}} \\
y_{2}=\frac{x_{2}}{c_{2}}  \tag{4.3}\\
y_{3}=\frac{x_{3}}{c_{3}}
\end{gather*}
$$

### 4.4 Weirs_switch.txt

MTT command:

```
mtt Weirs switch txt
These are the switches deduced from ISW and CSW components
weirs
```

$\qquad$

``` w1
``` \(\qquad\)
``` isw
``` \(\qquad\)
``` mtt_switch 4
weirs
``` \(\qquad\)
``` w2 _isw_ __mtt_switch 5
```


### 4.5 Weirs_simpar.tex

MTT command:

```
mtt Weirs simpar tex
Simulation parameters for system Weirs (Weirs_simpar.txt)
Generated by MTT on Sun Jul 26 13:55:27 BST 1998.
###
Version control history
```

```
##
$Id: Weirs_simpar.txt,v 1.2 2001/10/05 11:24:35 gawthrop Exp $
$Log: Weirs_simpar.txt,v $
Revision 1.2 2001/10/05 11:24:35 gawthrop
Updated for new mtt features - input.txt etc
#
Revision 1.1 1999/12/21 09:22:43 peterg
Initial revision
##
###
```

LAST=19.9;
DT=0.01;
STEPFACTOR=1;

### 4.6 Weirs_numpar.tex

## MTT command:

mtt Weirs numpar tex

```
-*-octave-*- Put Emacs into octave-mode
Numerical parameter file (Weirs_numpar.txt)
Generated by MTT at Tue Mar 2 07:55:47 GMT 1999
%%
%% Version control history
%%%
%% $Id: Weirs_numpar.txt,v 1.1 2000/12/28 17:47:43 peterg Exp $
%% $Log: Weirs_numpar.txt,v $
%% Revision 1.1 2000/12/28 17:47:43 peterg
%% To RCS
%%
으ᄋ%%%
```

\# Parameters
c_1 = 1.0; \# Weirs
c_2 = 1.0; \# Weirs
c_3 = 1.0; \# Weirs
epsilon_i = 0.01; \# weir

```
epsilon_r = 0.1; # weir
r_l = 5.0; # Weirs
```


### 4.7 Weirs_input.tex

## MTT command:

```
mtt Weirs input tex
```

```
-*-octave-*- Put Emacs into octave-mode
Input specification (Weirs_input.txt)
Generated by MTT at Tue Mar 2 07:48:04 GMT 1999
###
Version control history
###
$Id: Weirs_input.txt,v 1.3 2003/06/11 15:59:30 gawthrop Exp $
$Log: Weirs_input.txt,v $
Revision 1.3 2003/06/11 15:59:30 gawthrop
Updated examples for latest MTT.
##
Revision 1.2 2001/10/05 11:24:35 gawthrop
Updated for new mtt features - input.txt etc
##
Revision 1.1 2000/05/19 07:12:04 peterg
Initial revision
##
###
Set the inputs
Removed by MTT on Fri Oct 5 10:47:20 BST 2001: mttu(1) = 1.0*(t<10)
```

\#\# Removed by MTT on Tue Jun 10 10:53:48 BST 2003: weirs_f
= 1.0*(t<10); \# Added by MTT on Fri Oct 05 10:48:01 BST 2001
weirs
$\qquad$ $\mathrm{f}=1.0^{*}(\mathrm{t}<10)$;

### 4.8 Weirs_logic.tex

## MTT command:

```
mtt Weirs logic tex
-*-octave-*- Put Emacs into octave-mode
Simulation parameters for system Weirs (Weirs_logic.txt)
Generated by MTT on Thu May 18 12:29:15 BST 2000.
###
Version control history
###
$Id: Weirs_logic.txt,v 1.4 2003/06/11 15:59:47 gawthrop Exp $
$Log: Weirs_logic.txt,v $
Revision 1.4 2003/06/11 15:59:47 gawthrop
Updated examples for latest MTT.
##
Revision 1.3 2002/09/29 14:23:16 geraint
Updated switch names.
##
Revision 1.2 2001/10/05 11:24:35 gawthrop
Updated for new mtt features - input.txt etc
##
Revision 1.1 2000/05/19 07:13:29 peterg
Initial revision
##
Revision 1.1 2000/05/18 11:29:58 peterg
Initial revision
##
###
```

\# Set the switches
\# First weir - height 1
\# Second weir - height 2
\#\# Removed by MTT on Tue Jun 10 10:54:35 BST 2003: weirs_w1_isw_mt
$=\left(\left(w e i r s \_t a n k 1>1\right) \mid\left(w e i r s \_t a n k 2>1\right)\right)$;
\#\# Removed by MTT on Tue Jun 10 10:54:35 BST 2003: weirs_w2_isw_mt
$=\left(\left(w e i r s \_t a n k 2>2\right) \mid\left(w e i r s \_t a n k 3>2\right)\right)$;
weirs__w1__isw__mtt_switch_logic $=\left(\left(w e i r s \_\_t a n k 1>1\right)\right.$
weirs__w2__isw__mtt_switch_logic $=($ (weirs__tank2 > 2) | (weirs_

### 4.9 Weirs_odeso.ps

## MTT command:

mtt Weirs odeso ps
This representation is given as Figure 4.4 (on page 73).


Figure 4.4: System Weirs, representation odeso (-noargs)

### 4.10 Weirs_rep.txt

MTT command:
mtt Weirs rep txt
\#\# -*-octave-*- Put Emacs into octave-mode
\#\# Outline report file for system Weirs (Weirs_rep.txt)
\#\# Generated by MTT on" Tue Mar 2 22:02:59 GMT 1999.

```
###
Version control history
###
$Id: Weirs_rep.txt,v 1.6 2001/10/05 11:24:35 gawthrop Exp $
$Log: Weirs_rep.txt,v $
Revision 1.6 2001/10/05 11:24:35 gawthrop
```

```
Updated for new mtt features - input.txt etc
##
Revision 1.5 2000/05/19 07:15:04 peterg
Added logic
##
Revision 1.4 1999/12/21 09:24:26 peterg
Euler integration - compiled
##
Revision 1.3 1999/03/02 22:19:22 peterg
Added switch rep
##
Revision 1.2 1999/03/02 22:09:49 peterg
Addded switch rep
##
Revision 1.1 1999/03/02 22:04:11 peterg
Initial revision
##
###
mtt Weirs abg tex # The system description
mtt Weirs cbg ps # The causal bond graph
Uncomment the following lines or add others
mtt Weirs struc tex # The system structure
mtt Weirs dae tex # The system dae
mtt Weirs ode tex
The system ode
mtt Weirs switch txt # The system switches
mtt Weirs ss tex # Steady state
mtt Weirs dm tex # Descriptor matrices (of linearised system)
mtt Weirs sm tex # State matrices (of linearised system)
mtt Weirs tf tex # Transfer function (of linearised system)
mtt Weirs lmfr ps # log modulus of frequency response (of linea
mtt Weirs simpar tex # Simulation parameters
mtt Weirs numpar tex # Numerical simulation parameters
mtt Weirs input tex # Simulation input
mtt Weirs logic tex # Switch logic
mtt Weirs odeso ps # Simulation output
mtt Weirs rep txt
```


## Index

Bounce - abg, 9
Bounce - input, 18
Bounce - lbl, 10
Bounce - logic, 19
Bounce - numpar, 19
Bounce - ode, 17
Bounce - odeso, 20
Bounce - rep, 20
Bounce - simpar, 17
Bounce - struc, 16
Bounce - subsystems, 11
BouncingRod - abg, 23
BouncingRod - input, 36
BouncingRod - lbl, 24
BouncingRod - logic, 37
BouncingRod - numpar, 35
BouncingRod - ode, 34
BouncingRod - odeso, 38
BouncingRod - struc, 34
BouncingRod - subsystems,26
CSW - abg, 12, 26,41
CSW - lbl, 12, 26, 41
CSW - subsystems, 14, 28, 44
Clutch - abg, 39
Clutch - dm, 53
Clutch - input, 54
Clutch - lbl, 40
Clutch - logic, 55
Clutch - numpar, 56
Clutch - ode, 52
Clutch - odeso, 56
Clutch - rep, 57
Clutch - simpar,53

Clutch - struc, 52
Clutch - subsystems, 41
DC - abg, 44
DC - lbl,44
DC - subsystems, 47
Drive - abg, 47
Drive - lbl, 47
Drive - subsystems, 49
INTF - abg, 14, 29
INTF - lbl, 15, 29
INTF - subsystems, 1630
ISW - abg, 63
ISW - lbl, 63
ISW - subsystems, 65
Load - abg, 49
Load - lbl, 49
Load - subsystems, 52]
ROD - abg, 31
ROD - lbl, 31
ROD - subsystems, 34
Weirs - abg, 59
Weirs - input, 71
Weirs - lbl, 61
Weirs - logic, 72
Weirs - numpar, 70
Weirs - ode, 68
Weirs - odeso, 73
Weirs - rep, 73
Weirs - simpar, 69
Weirs - struc, 68
Weirs - subsystems, 62
Weirs - switch, 69
Weir - abg, 65

Weir - lbl, 66
Weir - subsystems, 68

