######################################
##### Model Transformation Tools #####
######################################
# gawk script: rbg_fig2m.awk
# Raw bond-graph conversion from fig to matlab
# P.J.Gawthrop June 1996
# Copyright (c) P.J.Gawthrop, 1996.
###############################################################
## Version control history
###############################################################
## $Id$
## $Log$
## Revision 1.13 1996/12/21 19:47:23 peterg
## Put back under VC
##
# Revision 1.12 1996/08/24 16:30:12 peter
# Fixed error in nonport_regexp.
#
## Revision 1.11 1996/08/19 10:48:57 peter
## Added `-' to the component regexp.
##
## Revision 1.10 1996/08/19 09:03:13 peter
## Parses repetative components: ie suffixed by *n.
##
## Revision 1.9 1996/08/09 08:23:11 peter
## Fixed bug: ports not recognised.
##
## Revision 1.8 1996/08/05 20:12:43 peter
## Now writes a _fig.fig file.
##
## Revision 1.7 1996/08/05 18:44:56 peter
## Now writes out a _cbg file without ----- symbol.
##
## Revision 1.6 1996/08/05 12:17:37 peter
## n_ports now appear in the _abg file instead.
##
## Revision 1.5 1996/08/05 12:01:28 peter
## The _cmp function now returns the number of ports.
##
## Revision 1.4 1996/08/05 10:14:46 peter
## Made ports appear, in order, at top of component lists
##
## Revision 1.3 1996/08/04 20:32:28 peter
## Stopped complaint about missing lbl entry for port components
##
## Revision 1.2 1996/08/04 20:05:25 peter
## Included port components - eg SS:[1]
##
## Revision 1.1 1996/08/04 20:01:58 peter
## Initial revision
##
###############################################################
##############################################################
# This (g)awk script reads a fig file in fig 3.1 format.
# It interprets the picture as: bonds, arrows and components
# as follows:
#
# Bonds are firm (not dashed etc) polylines with 2 line segments -
# fig represents this by a firstline record where
# field 1 = 2 (always 2)
# field 2 = 1 (polyline)
# field 3 = 0 (style is a firm line)
# field 14 = 0 (no forward arrow)
# field 15 = 0 (backward arrow)
# a data field starting with a tab followed by 3 (x,y) cordinates
#
# Arrows are polylines with 1 line segment and an arrow
# fig represents this by a firstline record where
# field 1 = 2 (always 2)
# field 2 = 1 (polyline)
# field 3 = 0 (style is a firm line)
# field 14 = 1 for a forward arrow
# field 15 = 1 for a backward arrow
# an additional data files
# a data field starting with a tab followed by 2(x,y) cordinates
#
#
# Strokes are polylines with 1 line segment and and no arrow
# fig represents this by a firstline record where
# field 1 = 2 (always 2)
# field 2 = 1 (polyline)
# field 3 = 0 (style is a firm line)
# field 14 = 0 (no forward arrow)
# field 15 = 0 (backward arrow)
# a data field starting with a tab followed by 2(x,y) cordinates
#
# Components appear in two files -- the fig file and the lbl file
# these two files are concatenated with the lbl file first
# The lbl file represents components by 3 fields
# field 1 is the name
# field 2 is the CR name
# field 3 is the CR arguments
# The fig file represents components by 14 fields
# field 1 = 4
# fields 12 and 13 are the coordinates
# field 14 is the type:name string terminated by \001
# To prevent text being confused with components, components consist
# of alphanumeric characters and : and _ only.
# The lbl file is used to sort the components.
##############################################################
function exact_match(name1, name2) {
return ((match(name1,name2)>0)&&(length(name1)==length(name2)))
}
function process_lbl() {
# This puts the components in the lable file at the top of the list
# and saves up the corresponding CR and arguments
# note that there may be more than one component per label
if ((match($1,"%")==0)&&(NF>0))
{
i_label++;
name = $1;
CR = $2;
args = $3;
label[i_label,1] = name;
label[i_label,2] = CR;
label[i_label,3] = args
}
}
function fig_info() {
# Grabs the fig-file information for a component
return(sprintf("%s %s %s %s %s %s %s %s %s %s %s ", \
$1, $2, $3, $4, $5, $6, $7, \
$8, $9, $10, $11))
}
function process_text() {
# The text string is field 14 onwards
str = $14;
for (i=15; i<=NF; i++) {
str = sprintf("%s %s", str, $i)
}
# It is terminated by /001 - so delete this termination
str = substr(str,1,length(str)-4);
# A component string contains only alphanumeric _ and :
isa_plain_component = match(str, component_regexp)==0;
# A port is an integer within [] and no alpha characters
isa_port = (match(str, port_regexp)>0)&&(match(str, nonport_regexp)==0);
# A port component is SS followed by : followed by a port string
isa_port_component = 0;
if (match(str, delimiter)) {
split(str,a,delimiter);
isa_port_component = (exact_match(a[1], "SS"))&&
(match(a[2], port_regexp)>0)
}
# A component is a plain or a port component
isa_component = isa_plain_component||isa_port_component;
# Coordinates in fields 12 & 13
x_coord = $12;
y_coord = $13;
# Do the ports
if (isa_port) {
i_port++;
port_index = substr(str,2,length(str)-2);
ports[i_port] = sprintf("%s %s %s", x_coord, y_coord, port_index);
}
# Do the port components
if (isa_port_component) {
i_port_component++;
# Port number is the bit between the []
port_number = substr(a[2],2,length(a[2])-2);
x_port[port_number] = x_coord;
y_port[port_number] = y_coord;
info_port[port_number] = fig_info();
}
# Do the plain components
if (isa_plain_component) {
i_text++;
# Get repetitions (if any)
if (match(str,repetition_regexp) > 0) {
split(str,b,repetition_delimiter);
repetitions = b[2];
str = b[1];
}
else {
repetitions = "1";
};
named_component = (match(str,delimiter) > 0);
if (named_component) {
split(str,a,delimiter);
type = a[1];
name = a[2];
# Check if name is in label file and if used already
found = 0; name_used = 0;
for (i=1; i<=i_label; i++) {
lname = label[i,1];
if ( exact_match(name,lname) ) {
found = 1;
if (name in used) {
name_used = 1;
CR = label[i,2];
args = label[i,3];
}
else {
used[name] = 1
}
break
}
}
if (!found) {
if (isa_plain_component) {
printf(warning_f, name)
}
i_label++;
CR = default_cr;
args = "";
label[i_label,1] = name;
label[i_label,2] = CR;
label[i_label,3] = args
}
# Give it a new entry if already used
if (name_used) {
i_label++;
i_name++;
name = sprintf("%1.0f", i_name);
label[i_label,1] = name;
label[i_label,2] = CR;
label[i_label,3] = args
}
}
# Unnamed component
if (named_component==0) {
i_name++;
name = sprintf("%1.0f", i_name);
type = str;
i_label++;
label[i_label,1] = name;
label[i_label,2] = default_cr;
label[i_label,3] = default_args
}
# Save in associative arrays by name
comp_type[name] = type;
x[name] = x_coord;
y[name] = y_coord;
info[name] = fig_info();
reps[name] = repetitions;
}
}
function process_bond() {
arg_count++;
if ( (arg_count-arrow)==1 )
{
#Save up bond coords
if (NF == (2*bond_coords+1) ) {
i_bond++;
bonds[i_bond] = sprintf("%s %s %s %s %s %s", \
$2, $3, $4, $5, $6, $7);
}
#Save up arrow coords
if ( (arrow)&&(NF==(2*arrow_coords+1)) ) {
i_arrow++;
arrows[i_arrow] = sprintf("%s %s %s %s", $2, $3, $4, $5);
}
#Save up stroke coords
if ( (!arrow)&&(NF==(2*stroke_coords+1)) ) {
i_stroke++;
strokes[i_stroke] = sprintf("%s %s %s %s", $2, $3, $4, $5);
}
}
}
function write_fig() {
# Create _fig.fig file from _abg file - not components
if ( (isa_fig_file)&&((object!=text)||(isa_component==0))) {
if (exact_match($1,data_symbol)) {
field_1 = out_data_symbol
}
else {
field_1 = $1
}
printf field_1 >> fig_file
for (i=2; i<=NF; i++)
printf(" %s", $i) >> fig_file;
printf("\n") >> fig_file
}
}
function process_fig() {
# Test for the fig format first line and data line
data_line = (match($1,data_symbol)>0);
first_line = (data_line==0)&&(NF>min_line_length);
#Process firstline
if (first_line) {
object = $1;
sub_type = $2;
style = $3;
f_arrow = ($14==1)&&(object=polyline);
b_arrow = ($15==1)&&(object=polyline);
arrow = f_arrow||b_arrow;
arg_count = 0;
}
#Process text
if (object==text) {
process_text()
}
# Process bond
if ( \
(data_line)&& \
(object==polyline)&& \
(sub_type==sub_polyline)&& \
(style==firm_style) \
) {
process_bond()
}
write_fig()
}
BEGIN {
sys_name = ARGV[1];
delete ARGV[1];
b_file = sprintf("%s_rbg.m", sys_name);
c_file = sprintf("%s_cmp.m", sys_name);
fig_file = sprintf("%s_fig.fig", sys_name);
warning_f = "WARNING %s \t in fig file but not lbl file - using\n";
warning_l = "WARNING %s \t in lbl file but not fig file - ignoring\n";
warning_p = "WARNING system ports are not consecutively numbered\n";
data_symbol = "----";
out_data_symbol = "\t";
default_cr = "";
default_args = "";
delimiter = ":";
repetition_delimiter = "*";
repetition_regexp = "\\*";
q = "\047";
terminator = "\\001";
component_regexp = "[^0-9a-zA-Z_:\*-]";
port_regexp = "\[[0-9]*\]";
nonport_regexp = "[a-zA-Z]";
isa_fig_file = 0;
min_line_length = 10;
object = 0;
polyline = 2;
sub_polyline=1;
firm_style = 0;
text = 4;
bond_coords = 3;
stroke_coords = 2;
arrow_coords = 2;
i_bond = 0;
i_port = 0;
i_stroke = 0;
i_arrow = 0;
i_label = 0;
i_text = 0;
i_name = 0;
i_port_component = 0;
}
{
# Start of .fig file?
if ( (NF>0) && (match("#FIG", $1) > 0) ) {
isa_fig_file=1;
}
if (isa_fig_file==0) {
process_lbl()
}
else {
process_fig()
}
}
END {
#Print out the matlab functions
printf("function [rbonds, rstrokes,rcomponents,rports,n_ports] = %s_rbg\n", sys_name) > b_file;
printf("%% [rbonds,rstrokes,rcomponents,rports,n_ports] = %s_rbg\n", sys_name) > b_file;
printf("%% Generated by MTT\n\n") > b_file;
printf("function [comp_type, name, cr, arg, repetitions] = %s_cmp(i)\n",\
sys_name) > c_file;
printf("%% [comp_type, name, cr, arg, repetitions] = %s_cmp\n", sys_name) > c_file;
printf("%% Generated by MTT\n\n") > c_file;
printf("rbonds = [\n") >> b_file;
for (i = 1; i <= i_bond; i++)
print bonds[i] >> b_file;
for (i = 1; i <= i_arrow; i++)
print arrows[i], "-1 -1" >> b_file;
printf("];\n") >> b_file;
printf("rstrokes = [\n") >> b_file;
for (i = 1; i <= i_stroke; i++)
print strokes[i] >> b_file;
printf("];\n") >> b_file;
printf("rcomponents = [") >> b_file;
j = 0;
# Do the port components, in order, first
for (i = 1; i <= i_port_component; i++) {
port_type = "SS";
name = sprintf("[%1.0f]", i);
cr = "MTT_port";
arg = i;
if (length(x_port[i])==0)
printf(warning_p);
else {
j++;
print x_port[i], y_port[i], info_port[i] >> b_file;
printf("if i==%1.0f\n", j) >> c_file;
printf("\tcomp_type = %s%s%s;\n", q, port_type, q) >> c_file;
printf("\tname = %s%s%s;\n", q, name, q) >> c_file;
printf("\tcr = %s%s%s;\n", q, cr, q) >> c_file;
printf("\targ = %s%s%s;\n", q, arg, q) >> c_file;
printf("\trepetitions = 1;\n") >> c_file;
print "end" >> c_file
}
}
# Now do the ordinary components (in no particular order)
for (i = 1; i <= i_label; i++) {
name = label[i,1];
cr = label[i,2];
arg = label[i,3];
if (length(x[name])==0)
printf(warning_l, name);
else {
j++;
print x[name], y[name], info[name] >> b_file;
printf("if i==%1.0f\n", j) >> c_file;
printf("\tcomp_type = %s%s%s;\n", q, comp_type[name], q) >> c_file;
printf("\tname = %s%s%s;\n", q, name, q) >> c_file;
printf("\tcr = %s%s%s;\n", q, cr, q) >> c_file;
printf("\targ = %s%s%s;\n", q, arg, q) >> c_file;
printf("\trepetitions = %s;\n", reps[name]) >> c_file;
print "end" >> c_file
}
}
printf("];\n") >> b_file;
# Print the ports list
printf("rports = [\n") >> b_file;
for (i = 1; i <= i_port; i++)
print ports[i] >> b_file;
printf("];\n\n") >> b_file;
# Print the number of ports
printf("n_ports = %1.0f;\n", i_port_component) >> b_file;
}