f2c04ccdad 2021-03-03 1: %%%%%%%%%%%%%%%%%%%%%
f2c04ccdad 2021-03-03 2: % PROGRAMMING
f2c04ccdad 2021-03-03 3: %%%%%%%%%%%%%%%%%%%%%
f2c04ccdad 2021-03-03 4:
f2c04ccdad 2021-03-03 5: % Define number to factorize
f2c04ccdad 2021-03-03 6: x:=42;
f2c04ccdad 2021-03-03 7:
f2c04ccdad 2021-03-03 8: % Factorize x and write out each individual
f2c04ccdad 2021-03-03 9: % factor
f2c04ccdad 2021-03-03 10: factors:=factorize(fix(x))$
f2c04ccdad 2021-03-03 11: x:=0$
f2c04ccdad 2021-03-03 12: for i:=1:length(factors) do begin
f2c04ccdad 2021-03-03 13: q:=part(factors,i);
f2c04ccdad 2021-03-03 14: for j:=1:part(q,2) do begin
f2c04ccdad 2021-03-03 15: x:=x+1;
f2c04ccdad 2021-03-03 16: write "factor ", x, ": ", part(q,1);
f2c04ccdad 2021-03-03 17: end;
f2c04ccdad 2021-03-03 18: end;
f2c04ccdad 2021-03-03 19:
f2c04ccdad 2021-03-03 20: % Procedure to calculate Legendre polynomial
f2c04ccdad 2021-03-03 21: % using recursion
f2c04ccdad 2021-03-03 22: procedure p(n,x);
f2c04ccdad 2021-03-03 23: if n<0 then rederr "Invalid argument to p(n,x)"
f2c04ccdad 2021-03-03 24: else if n=0 then 1
f2c04ccdad 2021-03-03 25: else if n=1 then x
f2c04ccdad 2021-03-03 26: else ((2*n-1)*x*p(n-1,x)-(n-1)*p(n-2,x))/n$
f2c04ccdad 2021-03-03 27:
f2c04ccdad 2021-03-03 28: % Enable fancy output
f2c04ccdad 2021-03-03 29: fancy_output$
f2c04ccdad 2021-03-03 30:
f2c04ccdad 2021-03-03 31: % Calculate p(2,w)
f2c04ccdad 2021-03-03 32: write "P(2,w) = ", p(2,w);
f2c04ccdad 2021-03-03 33:
f2c04ccdad 2021-03-03 34: % Incidentally, p(n,x) can be calculated more
f2c04ccdad 2021-03-03 35: % efficiently as follows
f2c04ccdad 2021-03-03 36: procedure p(n,x);
f2c04ccdad 2021-03-03 37: sub(y=0,df(1/(y^2-2*x*y+1)^(1/2),y,n))/(for i:=1:n product i)$
f2c04ccdad 2021-03-03 38:
f2c04ccdad 2021-03-03 39: write "P(3,w) = ", p(3,w);