
GRG
Version 3.2

Computer Algebra System for
Differential Geometry,

Gravitation and
Field Theory

Vadim V. Zhytnikov

Moscow, 1992–1997 • Chung-Li, 1994

CONTENTS

2 CONTENTS

CHAPTER 1

Introduction

Calculation of various geometrical and physical quantities and equations is
the usual technical problem which permanently arises in geometry, field and
gravity theory. Numerous indices, contractions and components make these
calculations very tedious and error-prone. Since this calculus obeys the well
defined rules the idea to automate this kind of problems using computer is quite
natural. Now there are several computer algebra systems such as Maple, Re-
duce, Mathematica or Macsyma which in principle allow one to do this and
it is not so hard to write a program to calculate, for example, the curvature
tensor or connection. But suppose that we want to make a non-trivial coor-
dinate transformation or tetrad rotation, calculate covariant or Lie derivative,
compute a complicated expression with numerous contraction or raise or lower
some indices. All these operations are typical in differential geometry and field
theory but their realization with the help of general purpose computer algebra
systems requires hard programming since all these systems really know nothing
about covariant properties of geometrical quantities.

The computer algebra system GRG is designed in such a way to make
calculation in differential geometry and field theory as simple and natural as
possible. GRG is based on the computer algebra system Reduce but GRG
has its own simple input language whose commands resembles English phrases.
Working with GRG no any knowledge of programming is required.

GRG understands tensors, spinors, vectors, differential forms and knows
all standard operations with these quantities. Input form for mathematical ex-
pressions is very close to traditional mathematical notation including Einstein
summation rule. GRG knows the covariant properties of these objects, you
can easily raise and lower indices, compute covariant and Lie derivatives, per-
form coordinate and frame transformations. GRG works in any dimension and
allows one to represent tensor quantities with respect to holonomic, orthogonal
and even any other arbitrary frame.

One of the useful features of GRG is that it has a large number of built-in
standard field-theory and geometrical quantities and formulas for their compu-
tation. Thus GRG provides ready solutions to many standard problems.

4 CHAPTER 1. Introduction

Another unique feature of GRG is that it can export results of calculations
into other computer algebra system. You can save your data in to the file in the
format of Maple, Mathematica, Macsyma or Reduce in order to use this
system to proceed analysis of the data. The LATEX output format is supported
as well. In addition GRG is compatible with Reduce graphics shells providing
niece book-quality output with Greek letters, integral signs etc.

The main built-in GRG capabilities are:

• Connection, torsion and nonmetricity.

• Curvature.

• Spinorial formalism.

• Irreducible decomposition of the curvature, torsion, and nonmetricity in
any dimension.

• Einstein equations.

• Scalar field with minimal and non-minimal interaction.

• Electromagnetic field.

• Yang-Mills field.

• Dirac spinor field.

• Geodesic equation.

• Null congruences and optical scalars.

• Kinematics for time-like congruences.

• Ideal and spin fluid.

• Newman-Penrose formalism.

• Gravitational equations for the theory with arbitrary gravitational La-
grangian in Riemann and Riemann-Cartan spaces.

I would like to stress that current GRG version is intended for calculations
in a concrete coordinate map only. It cannot operate with tensors as with
objects having abstract symbolic indices.

This book consist of two main parts. First part contains detailed descrip-
tion of GRG as a programming system. Second part describes all built-in
objects and formulas for their computation.

CHAPTER 2

Programming in GRG

Throughout the chapter commands are printed in typewriter font. The
slanted serif-less font is used for command parameters. The optional parts of
the commands are enclosed in squared brackets [option] and id [,id . . .] stands
for one or several repetitions of id : id or id,id etc. Examples are separated form
the text by horizontal lines and the user input can be easily distinguished
from the GRG output by the prompt <- which precedes every input line.

2.1 Session, Tasks and Commands

To start GRG it is necessary to start Reduce and enter the command On some systems
you have to use
load!_package

grg;

since load is not
defined.

Sometimes it
is better to use two
commands
load grg32; grg;

or
load grg; grg;

(See section ?? for
details.)

load grg;

REDUCE 3.5, 15 Oct 93, patched to 15 Jun 95 ...

1: load grg;

This is GRG 3.2 release 2 (Feb 9, 1997) ...

System directory: c:\reduce\grg32\

System variables are upper-cased: E I PI SIN ...

Dimension is 4 with Signature (-,+,+,+)

<-

Symbol <- is the GRG prompt which shows that now GRG waits for your
input. The GRG task (we prefer this term instead of usual program) consist
of the sequence of commands terminated by semicolon ;. Reading the input
GRG splits it on atoms. There are several types of atoms:

• The identifier or symbol is a sequence of letters and digits starting with a
letter:

6 CHAPTER 2. Programming in GRG

i I alpha1 beta ABC123D Find

The identifiers in GRG may have trailing tilde character ~. Any other char-
acter may be incorporated in the identifier if preceded by the exclamation
sign:

beta~ LIMIT!+

The identifiers in GRG play the role of the variables and functions in
mathematical expressions and words in commands.

• Integer numbers

0 123 104341

• String is a sequence of characters enclosed in double quotes

"file.txt" "This is a string" "dir *.doc"

The strings in GRG are used for file names and operating system com-
mands.

• Nine special two-character atoms

** _| /\ |= ~~ .. <= >= ->

• Any other characters are considered as single-character atoms.

The format of GRG commands is free. They can span one or several lines
and any number of spaces and tabulations can be inserted between two neighbor
atoms.

The GRG session may consist of several independent tasks. The command

Quit;

terminates both GRG and Reduce session and returns the control to the
operating system level. The command

Stop;

terminates current GRG task and brings the session control menu:

<- Stop;

Quit GRG - 0

Start Task - 1

Exit to REDUCE - 2

Type 0, 1 or 2:

2.1. Session, Tasks and Commands 7

The option 0 terminates Reduce session similarly to the command Quit;.
The choice 1 starts new task by bringing GRG to its initial state: all vari-
ables, declarations, substitutions and results of calculations are cleared and all
switches resume their initial positions.† Finally the option 2 terminates GRG
task and returns control to the Reduce command level. In this case GRG can
be restarted later by the command grg;.

The commands in GRG are case insensitive, i.e. command Quit; is equiv-
alent to quit; and QUIT; etc. But notice that unlike Reduce variables and
functions in mathematical expressions in GRG are case sensitive.

2.1.1 Switches

Switches in GRG and Reduce are used to control various system modes
of operation. They are denoted by identifiers and the commands

On switch[,switch. . .];
Off switch[,switch. . .];

turns the switch on and off respectively. Any switch defined by Reduce is
available in GRG as well. In addition GRG defines a couple of its own switches.
The full list of GRG switches is presented in appendix A. The command

[Show] Switch switch;

or equivalently

Show switch;
? switch;

prints current switch position

<- Show Switch TORSION;

TORSION is Off.

<- On torsion,gcd;

<- switch torsion;

TORSION is On.

<- switch exp;

GCD is On

Switches in GRG are case insensitive.

†Usually GRG does good job by resuming initial state and new task turns out to be inde-
pendent of previous ones. But on some rare occasions the initial state cannot be completely
recovered and it is better to restart Reduce and GRG completely.

8 CHAPTER 2. Programming in GRG

2.1.2 Batch File Execution

Usually GRG works in the interactive mode which is not always conve-
nient. The command

[Input] "file";

reads the file and executes commands stored in it. The file names in GRG are
always denoted by strings and exact specification of file is operating system
dependent. The word Input is optional, thus in order to run batch file it suf-
fices to enter its name "file";. The execution of batch file commands can be
suspended by the command

Pause;

After this command GRG enters the interactive mode. One can enter one or
several commands interactively and then resume batch file execution by the
command

Next;

In general no any special end-of-file symbol or command is required in the
GRG batch file but is necessary the symbol $ is recognized by GRG as the
end-of-file mark.

If during the batch file execution an error occurs GRG enter interactive
mode and ask user to input the command which is supposed to replace the er-
roneous one. After the receiving of one command GRG automatically resumes
the batch file execution. The command Pause; can be used if it is necessary
to execute several commands instead of one.

The command

Output "outfile";

redirects all GRG output into the outfile. The outfile can be closed by the
equivalent commands

EndO;

End of Output;

It is convenient to run long-time GRG tasks in background. The way of
doing this depend on the operating system. For example to execute GRG task
in background in UNIX it is necessary to use the following command

reduce < task.grg > grg.out &

Here we assume that the Reduce invoking command is reduce and the file
task.grg contains the GRG task commands:

2.1. Session, Tasks and Commands 9

load grg;

grg command;
grg command;
...

grg command;
quit;

The output of the session will be written into the file grg.out.

Since no proper reaction on errors is possible during the background execu-
tion it is good idea to turn the switch BATCH on. This makes GRG to terminate
the session immediately in the case of any error.

2.1.3 Operating System Commands

The command

System "command";

executes the operating system command . The same command without param-
eters

System;

temporary suspends GRG session and passes the control to the operating sys-
tem command level. The details may depend on the concrete operating system.
In particular in UNIX the command system; may fail but UNIX has some gen-
eral mechanism for suspending running programs: you can press ^Z to suspend
any program and %+ to resume its execution.

2.1.4 Comments

The comment commands

Comment any text;
% any text;

are used to supply additional information to GRG tasks and data saved by the See page ?? about
the Unload com-
mand.

Unload command. The comment can be also attached to the end of any GRG
command

grg command % any text;

2.1.5 Timing

The command

10 CHAPTER 2. Programming in GRG

[Show] Time;

prints time elapsed since the beginning of current GRG task including the per-
centage of so called garbage collections. The garbage collection time can be
also printed by the command

[Show] GC Time;

If percentage of garbage collections grows and exceeds say 30% then mem-
ory of your system is running short and you probably need more RAM.

2.2 Declarations

Any object, variable or function in GRG must be declared. This allows
to locate misprints and makes the system more reliable. Since GRG always
work in some concrete coordinate system (map) the coordinate declaration is
the most important one and must be present in every GRG task.

2.2.1 Dimension and Signature

During installation GRG always defines default value of the dimension and
signature. The information about this default value is printed upon GRG startSee page ?? to find

out how to change
the default dimen-
sion and signature.

in the form of the following (or similar) message line:

Dimension is 4 with Signature (-,+,+,+)

The following command overrides the default dimension and signature

Dimension dim with [Signature] (pm[,pm. . .]);

where dim is the number 2 or greater and pm is + or -. The pm can be preceded
or succeeded by a number which denotes several repetitions of this pm. For
example the declarations

Dimension 5 with Signature (+,+,-,-,-);

Dimension 5 with (2+,-3);

are equivalent and defines 5-dimensional space with the signature diag(+1,+1,−1,

−1,−1).

The important point is that the dimension declaration must be very first in
the task and goes before any other command. Current dimension and signature

2.2. Declarations 11

E I PI INFINITY Mathematical constants e, i, π,∞
FAILED

ECONST Charge of the electron
DMASS Dirac field mass
SMASS Scalar field mass
GCONST Gravitational constant
CCONST Cosmological constants
LC0 LC1 LC2 LC3 Parameters of the quadratic
LC4 LC5 LC6 gravitational Lagrangian
MC1 MC2 MC3

AC0 Nonminimal interaction constant

Table 2.1: Predefined constants

can be printed by the command

[Show] Status;

2.2.2 Coordinates

The coordinate declaration command must be present in every GRG task

Coordinates id [,id . . .];

Only few commands such as informational commands, other declarations, switch
changing commands may precede the coordinate declaration. The only way to
have a tusk without the coordinate declaration is to load the file where coor-
dinates where saved by the Unload command. but no any computation can be See page ?? to find

out how to save
data and declara-
tions into a file.

done before coordinates are declared. Current coordinate list can be printed
by the command

Write Coordinates;

2.2.3 Constants

Any constant must be declared by the command

Constants id [,id . . .];

The list of currently declared constants can be printed by the command

12 CHAPTER 2. Programming in GRG

Write Constants;

There are also a number of built-in constants which are listed in table ??.

2.2.4 Functions

Functions in GRG are the analogues of the Reduce operators but we pre-
fer to use this traditional mathematical term. The function must be declared
by the command

Functions f [(x [,x . . .])][,f [(x [,x . . .])]. . .];

Here f is the function identifier. The optional list of parameters x defines func-
tion with implicit dependence. The x must be either coordinate or constant.
The construction f (*) is a shortcut which declares the function f depending
on all coordinates.

The following example declares three functions fun1, fun2 and fun3. The
function fun1, which was declared without implicit coordinate list, must be
always used in mathematical expressions together with the explicit arguments
like fun1(x+y) etc. The functions fun2 and fun3 can appear in expressions in
similar fashion but also as a single symbol fun2 or fun3

<- Coordinates t, x, y, z;

<- Constant a;

<- Functions fun1, fun2(x,y), fun3(*);

<- Write functions;

Functions:

fun1 fun2(x,y) fun3(t,x,y,z)

<- d fun1(x+a);

DF(fun1(a + x),x) d x

<- d fun2;

DF(fun2,x) d x + DF(fun2,y) d y

<- d fun3;

DF(fun3,t) d t + DF(fun3,x) d x + DF(fun3,y) d y + DF(fun3,z) d z

The functions may have particular properties with respect to their argu-
ments permutation and sign. The corresponding declarations are

2.2. Declarations 13

Symmetric f [,f . . .];
Antisymmetric f [,f . . .];
Odd f [,f . . .];
Even f [,f . . .];

Notice that these commands are valid only after function f was declared by
the command Function.

In addition to user-defined there is also large number of functions predefined
in Reduce. All these functions can be used in GRG without declaration. The
complete list of these functions depends on Reduce versions. Any function
defined in the Reduce package (module) is available too if the package is
loaded before GRG was started or during GRG session. For example the See page ?? to find

out how to load the
Reduce packages.

package specfn contains definitions for various special functions.

Finally there is also special declaration

Generic Functions f (a[,a. . .])[,f (a[,a. . .]). . .];

This command is valid iff the package dfpart.red is installed on your Reduce
system. Here unlike the usual function declaration the list of parameters must
be always present and a can be any identifier preferably distinct from any other
variable. The role of a is also completely different and is explained later. See page ?? to

find out about the
generic functions.The list of declared functions can be printed by the command

Write Functions;

Generic functions in this output are marked by the label *.

2.2.5 Affine Parameter

The variable which plays the role of affine parameter in the geodesic equa-
tion must be declared by the command

Affine Parameter s;

and can be printed by the command

Write Affine Parameter;

14 CHAPTER 2. Programming in GRG

2.2.6 Case Sensitivity

Usually Reduce is case insensitive which means for example that expres-
sion x-X will be evaluated by Reduce as zero. On the contrary all coordi-
nates, constants and functions in GRG are case sensitive, e.g. alpha, Alpha
and ALPHA are all different. Notice that commands and switches in GRG 3.2
remain case insensitive.

Therefore all predefined by GRG constants and all built-in objects must
be used exactly as they presented in this manual GCONST, SMASS etc. The
situation with the constants and functions which predefined by Reduce is
different. The point is that in spite of its default case insensitivity internally
Reduce converts everything into some default case which may be upper or
lower. Therefore depending on the particular Reduce system they must be
typed either as

E I PI INFINITY SIN COS ATAN

or in lower case

e i pi infinity sin cos atan

For the sake of definiteness throughout this book we chose the first upper case
convention.

When GRG starts it informs you about internal case of your particular
Reduce system by printing the message

System variables are upper-cased: E I PI SIN ...

or

System variables are lower-cased: e i pi sin ...

You can find out about the internal case using the command

[Show] Status;

2.3. Objects 15

2.2.7 Complex Conjugation

By default all variables and functions in GRG are considered to be real
excluding the imaginary unit constant I (or i as explained above). But if two
identifiers differ only by the trailing character ~ they are considered as a pair of
complex variables which are conjugated to each other. In the following example
coordinates z and z~ comprise such a pair:

<- Coordinates u, v, z, z~;

z & z~ - conjugated pair.

<- Re(z);

z + z~

2

<- Im(z~);

I*(z - z~)

2

2.3 Objects

Objects play a fundamental role in GRG. They represent mathematical
quantities such as metric, connection, curvature and any other spinor or tensor
geometrical and physical fields and equations. GRG has quite large number
of built-in objects and knows many formulas for their calculation. But you
are not obliged to use the built-in quantities and can declare your own. The
purpose of the declaration is to tell GRG basic properties of a new quantity.

2.3.1 Built-in Objects

An object is characterized by the following properties and attributes:

• Name

• Identifier or symbol

• Type of the component

16 CHAPTER 2. Programming in GRG

• List of indices

• Symmetries with respect to index permutation

• Density and pseudo-tensor property

• Built-in ways of calculation

• Value

The object name is a sequence of words which are usually the common
English name of corresponding quantity. The name is case insensitive and is
used to denote a particular object in commands. So called group names refer
to a collection of closely related objects. In particular the name Curvature

Spinors (see page ??) refers to the irreducible components of the curvature
tensor in spinorial representation. Actual content of the group may depend on
the environment. In particular the group Curvature Spinors includes three
objects in the Riemann space (Weyl spinor, traceless Ricci spinor and scalar
curvature) while in the space with torsion we have six irreducible curvature
spinors.

The object identifier or symbol is an identifier which denotes the object in
mathematical expressions. Object symbols are case sensitive.

The object type is the type of its component: objects can be scalar, vec-
tor or p-form valued. The density and pseudo-tensor properties of the object
characterizes its behaviour under coordinate and frame transformations.

Objects can have the following types of indices:

• Upper and lower holonomic coordinate indices.

• Upper and lower frame indices.

• Upper and lower spinorial indices.

• Upper and lower conjugated spinorial indices.

• Enumerating indices.

The major part of GRG built-in objects has frame indices. The frame inSee page ?? about
the frame in GRG. GRG can be arbitrary but you can easily specify the frame to be holonomic or

say orthogonal. Then built-in object indices become holonomic or orthogonal
respectively.

GRG deals only with the SL(2,C) spinors which are restricted to the 4-
dimensional spaces of Lorentzian signature. The corresponding SL(2,C) indicesSee page ?? about

the spinorial for-
malism in GRG.

take values 0 and 1. The conjugated indices are transformed with the help of
the complex conjugated SL(2,C) matrix. If some spinor is totally symmetric
in the group of n spinorial indices (irreducible spinor) then these indices can

2.3. Objects 17

be replaced by a single so called summed spinorial index of rank n which take
values from 0 to n. The summed spinorial indices provide the most economic
way to store the irreducible spinor components.

Enumerating indices just label a collection of values and have no any co-
variant meaning. Accordingly there is no difference between upper and lower
enumerating indices.

Notice that an index of any type in GRG always runs from 0 up to some
maximal value which depend on the index type and dimensionality: d − 1 for
frame and coordinate indices, and n the spinor indices of the rank n.

GRG understands various types of index symmetries: symmetry, antisym-
metry, cyclic symmetry and Hermitian symmetry. These symmetries can apply
not only to single indices but to any group of indices as well. GRG uses object
symmetries to decrease the amount of memory required to store the object com-
ponents. It stores only components with the indices in certain canonical order
and any other component are automatically restored if necessary by appropri-
ate index permutation. The canonical order of indices is defined as follows: for
symmetry, antisymmetry or Hermitian symmetry indices are sorted in such a
way that index values grows from left to the right. For cyclic symmetry indices
are shifted to minimize the numerical value of the whole list of indices.

Finally there are two special types of objects: equations and connection
1-forms. Equations have all the same properties as any other object but in
addition they have left and right hand side and are printed in the form of
equalities. The connections are used by GRG to construct covariant deriva-
tives. There are only four types of connections: holonomic connection 1-form, See page ?? about

the connections.frame connection 1-form, spinor connection 1-form and conjugated spinor con-
nection 1-form.

Almost all built-in objects have associated built-in ways of calculation (one
or several). Each way is nothing but a formula which can be used to obtain
the object value.

Every object can be in two states. Initially when GRG starts all objects are
in indefinite state, i.e. nothing is known about their value. Since GRG always
works in some concrete frame and coordinate system the object value is a table
of the components. As soon as the value of certain object is obtained either
by direct assignment or using some built-in formula (way of calculation) GRG
remember this value and store it in some internal table. Later this value can be
printed, re-evaluated used in expression etc. The object can be returned to its
initial indefinite state using the command Erase. GRG uses object symmetries
to reduce total number of components to store.

The complete list of built-in GRG objects is given in appendix C. The
chapter 3 also describes built-in objects but in the usual mathematical style.
The equivalent commands

18 CHAPTER 2. Programming in GRG

Show object;
? object;

prints detailed information about the object object including object name, iden-
tifier, list of indices, type of the component, current state (is the value of an
object known or not), symmetries and ways of calculation. Here object is either
object name or its identifier.

The command

Show *;

prints complete list of built-in object names. This list is quite long and the
command

Show c*;

gives list of objects whose names begin with the character c (a–z).

Finally the command

Show All;

prints list of objects whose values are currently known.

Notice that some built-in objects has limited scope. In particular some
objects exists only in certain dimensionality, the quantities which are specific
to spaces with torsion are defined iff switch TORSION is turned on etc.

Let us consider some examples. We begin with the curvature tensor Rabcd

<- Show Riemann Tensor;

Riemann tensor RIM’a.b.c.d is Scalar

Value: unknown

Symmetries: a(3,4)

Ways of calculation:

Standard way (D,OMEGA)

This object has name Riemann Tensor and identifier RIM. The object is Scalar
(0-form) valued and has four frame indices. Frame indices are denoted by the
lower-case characters and their upper or lower position are denoted by ’ or .

respectively. The Riemann tensor is antisymmetric in two last indices which is
denoted by a(3,4).

The curvature 2-form Ωab

<- ? OMEGA;

Curvature OMEGA’e.f is 2-form

Value: unknown

2.3. Objects 19

Ways of calculation:

Standard way (omega)

From spinorial curvature (OMEGAU*,OMEGAD)

has name Curvature and the identifier OMEGA and is 2-form valued.

The traceless Ricci spinor (the quantity which is usually denoted in the
Newman-Penrose formalism as ΦABĊḊ)

<- ? Traceless Ricci Spinor;

Traceless ricci spinor RC.AB.CD~ is Scalar

Value: unknown

Symmetries: h(1,2)

Ways of calculation:

From spinor curvature (OMEGAU,SD,VOL)

Spinorial indices are denoted by upper case characters with the trailing ~ for
conjugated indices. Usual spinorial indices are denoted by a single upper case
letter while summed indices are denoted by several characters. Thus, the trace-
less Ricci spinor has two summed spinorial indices of rank 2 each taking the
values from 0 to 2. The spinor is hermitian h(1,2).

The Einstein equation is an example of equation

<- ? Einstein Equation;

Einstein equation EEq.g.h is Scalar Equation

Value: unknown

Symmetries: s(1,2)

Ways of calculation:

Standard way (G,RIC,RR,TENMOM)

and 1-form Γαβ is an example of the connection

<- Show Holonomic Connection;

Holonomic connection GAMMA^x_y is 1-form Holonomic Connection

Value: unknown

Ways of calculation:

From frame connection (T,D,omega)

The coordinate indices are denoted by the lower-case letters with labels ^ and
_ denoting upper and lower index position respectively. Notice that above
the first “Holonomic connection” is the name of the object while second

20 CHAPTER 2. Programming in GRG

“Holonomic Connection” means that GRG recognizes it as the connection
and will use GAMMA to construct covariant derivatives for quantities having the
coordinate indices. You can define any number of other holonomic connectionsSee page ?? about

the covariant
derivatives.

and use them in the covariant derivatives on the equal footing with the built-in
object GAMMA.

The notation in which command Show prints information about a particular
object is the same as in the new object declaration and is explained in details
below.

2.3.2 Macro Objects

There is also another class of built-in objects which are called macro ob-
jects. The main difference between the usual and macro objects is that macro
quantities has no permanent storage to their components instead they are cal-
culated dynamically only when its component is required in some expression.
In addition they do not have names and are denoted only by the identifier only.
Usually macro objects play auxiliary role. The complete list of macro objects
can be found in appendix B.

The example of macro objects are the Christoffel symbols of second and
first kind {αβγ} and [α,βγ] having identifiers CHR and CHRF respectively

<- Show CHR;

CHR^x_y_z is Scalar Macro Object

Symmetries: s(2,3)

<- ? CHRF;

CHRF_u_v_w is Scalar Macro Object

Symmetries: s(2,3)

2.3.3 New Object Declaration

GRG has very large number of built-in quantities but you are not obliged
to use them in your calculations instead you can define new quantities. The
command

New Object ID [ilst] [is ctype] [with [Symmetries] slst];

declares a new object. The words New or Object are optional (but not both)
so the above command are equivalent to

2.3. Objects 21

Object ID [ilst] [is ctype] [with [Symmetries] slst];
New ID [ilst] [is ctype] [with [Symmetries] slst];

Here ID is an identifier of a new object. The identifier can contain letters a–z,
A–Z but neither digits nor any other symbols. The identifier must be unique
and cannot coincide with the identifier of any other built-in or user-defined
object.

The ilist is the list of indices having the form

ipos itype[,ipos itype. . .]

where ipos defines the index position and itype specifies its type. The coordinate
holonomic and frame indices are denoted by single lower-case letters with ipos

’ upper frame index
. lower frame index
^ upper holonomic index
_ lower holonomic index

The frame and holonomic indices in GRG take values from 0 to d− 1 where d
is the current space dimensionality.

Spinorial indices are denoted by upper case letters with trailing ~ for conju-
gated spinorial indices: A, B~ etc. Summed spinorial index of rank n is denoted
by n upper-case letters. For example ABC denotes summed spinorial index of
the rank 3 (runs from 0 to 3) and AB~ denotes conjugated summed index of the
rank 2 (values 0, 1, 2). The upper position for spinorial indices are denoted
either by ’ or ^ and lower one by . or _.

Finally the enumerating indices are denoted by a single lower-case letter
followed either by digits or by dim. For example the index declared as i2 runs
from 0 to 2 while specification a13 denotes index whose values runs from 0 to
13. The specification idim denotes enumerating index which takes the values
from 0 to d− 1. Upper of lower position for enumerating indices are identical,
thus in this case symbols ’ . ^ _ are equivalent.

The ctype defines the type of new object component:

Scalar [Density dens]
p-form [Density dens]
Vector [Density dens]

This part of the declaration can be omitted and then the object is assumed to
be scalar-valued. The dens defines pseudo-scalar and density properties of the
object with respect to coordinate and frame transformations:

[sgnL][*sgnD][*L^n][*D^m]

where D and L is the coordinate transformation determinant det(∂xα
′
/∂xβ)

22 CHAPTER 2. Programming in GRG

and frame transformation determinant det(Lab) respectively. If sgnL or sgnD is
specified then under appropriate transformation the object must be multiplied
on the sign of the corresponding determinant (pseudo tensor). The specification
L^n or D^m means that the quantity must be multiplied on the appropriate
degree of the corresponding determinant (tensor density). The parameters p,
n and m may be given by expressions (must be enclosed in brackets) but value
of these expressions must be always integer and positive in the case of p.

The symmetry specification slst is a list

slst1 [,slst1 . . .]

where each element slst1 describes symmetries for one group of indices and has
the form

sym(slst2 [,slst2 . . .])

The sym determines type of the symmetry

s symmetry
a antisymmetry
c cyclic symmetry
h Hermitian symmetry

and slst2 is either index number i or list of index numbers (i [,i . . .]) or another
symmetry specification of the form slst1 . Notice that nth object index can be
present only in one of the slst1 .

Let us consider an object having four indices. Then the following symmetry
specifications are possible

s(1,2,3,4) total symmetry

a(1,2),s(3,4) antisymmetry in first pair of indices and
symmetry in second pair

s((1,2),(3,4)) symmetry in pair permutation

s(a(1,2),a(3,4)) antisymmetry in first and second pair of indices
and symmetry in pair permutation

The last example is the well known symmetry of Riemann curvature tensor.
The specification a(1,2),s(2,3) is erroneous since second index present in
both parts of the specification which is not allowed.

Declaration for new equations is completely similar

[New] Equation ID [ilst] [is ctype] [with [Symmetries] slst];

GRG knows four types of connections:

• Frame Connection 1-form ωab having first upper and second lower frame
indices

2.3. Objects 23

• Holonomic Connection 1-form Γαβ having first upper and second lower
coordinate indices

• Spinor Connection 1-form ωAB with lower spinor index of rank 2

• Conjugated Spinor Connection ωȦḂ 1-form with lower conjugated spinor
index of rank 2

Each of these connections are used to construct covariant derivatives with re-
spect to corresponding indices. In addition they are properly transformed under
the coordinate change and frame rotation. There are complete set of built-in
connections but you can declare a new one by the command

[New] Connection ID’a.b [is 1-form];
[New] Connection ID^m_n [is 1-form];
[New] Connection ID.AB [is 1-form];
[New] Connection ID.AB~ [is 1-form];

Notice that any new connection must belong to one of the listed above types
and have indicated type and position of indices. This representation of connec-
tion is chosen in GRG for the sake of definiteness.

There is one special case when new object can be declared without explicit
New Object declaration. Let us consider the following example:

<- Coordinates t, x, y, z;

<- www=d x;

<- Show www;

www is 1-form

Value: known

If we assign the value to some identifier id (www in our example) and this See page ??
about assignment
command.

identifier is not reserved yet by any other object then GRG automatically
declares a new object without indices labeled by the identifier id and having
the type of the expression in the right-hand side of the assignment (1-form in
our example). Notice that the id must not include digits since digits represent
indices and any new object with indices must be declared explicitly.

The command

Forget ID;

completely removes the user-defined object with the identifier ID.

Finally let us consider some examples:

<- Coordinates t, x, y, z;

24 CHAPTER 2. Programming in GRG

<- New RNEW’a.b_c_d is scalar density sgnD with a(3,4);

<- Show RNEW;

RNEW’a.b_x_y is Scalar Density sgnD

Value: unknown

Symmetries: a(3,4)

<- Null Metric;

<- Connection omnew.AA;

<- Show omnew;

omnew.AB is 1-form Spinor Connection

Value: unknown

Here the first declaration defines a new scalar valued pseudo tensor RNEWabγδ
which is antisymmetric in the last pair of indices. Second declaration introduce
new spinor connection omnew. Notice that new connection is automatically
declared 1-form and the type of connection is derived by the type of new object
indices (lower spinorial index of rank 2 in our example).

2.4 Assignment Command

The assignment command sets the value to the particular components of
the object. In general it has the form

[Name] comp = expr [,comp = expr . . .];

or for equations

[Name] comp = lhs=rhs[,comp = lhs=rhs. . .];

Here Name is the optional object name. If the object has no indices then comp
is the object identifier. If the object has indices then comm consist of identifier
with additional digits denoting indices. For example the following command
assigns standard spherical flat value to the frame θa

Frame

T0 = d t,

T1 = d r,

T2 = r*d theta,

T3 = r*SIN(theta)*d phi;

and the command

RIM0123 = 100;

2.4. Assignment Command 25

assigns the value to the R0
123 component of the Riemann tensor. Notice that

in this notation each digit is considered as one index, thus it does not work
if the value of some index is greater than 9 (e.g. if dimensionality is 10 or
greater). In this case another notation can be used in which indices are added
to the object identifier as a list of digits enclosed in brackets

[Name] ID(n[,n. . .]) = expr;

In particular the command

RIM(0,1,2,3) = 100;

is equivalent to the example above.

The assignment set value only to the certain components of an object leav-
ing other components unchanged. But if before assignment the object was in
indefinite state (no value is known) then assignment turns it to the definite
state and all other components of the object are assumed to be zero.

The digits standing for object indices in the left-hand side of an assignment
can be replaced by identifiers

[Name] ID(id [,id . . .]) = expr;

Such assignment is called tensorial one. For example the following tensorial
assignment set the value to the curvature 2-form Ωab

OMEGA(a,b) = d omega(a,b) + omega(a,m)/\omega(m,b);

This command is equivalent to d× d of assignments where a and b take values
from 0 to d − 1 (d is the space dimensionality). Notice that identifiers in the
left-hand side of tensorial assignment must not coincide with any predefined
or declared by the user constant or coordinate. It is possible to mix digits and
identifiers:

FT(0,a) = 0;

Here FT is identifier of the built-in object EM Tensor which is the electromag-
netic strength tensor Fab and this command sets the electric part of the tensor
to zero.

The assignment command takes into account symmetries of the objects.
For example EM Tensor is antisymmetric and in order to assign value say to
the components F01 = −F10 it suffices to do this just for one of them

<- Coordinates t, x, y, z;

<- EM Tensor FT01=111, FT(3,2)=222;

<- Write FT;

26 CHAPTER 2. Programming in GRG

EM tensor:

FT = 111

t x

FT = -222

y z

We can see that GRG automatically transforms indices to the canonical order.
This rule works in the case or tensorial assignment as well

<- Coordinates t, x, y, z;

<- Function ff;

<- EM Tensor FT(a,b)=ff(a,b);

<- Write FT;

EM tensor:

FT = ff(0,1)

t x

FT = ff(0,2)

t y

FT = ff(0,3)

t z

FT = ff(1,2)

x y

FT = ff(1,3)

x z

FT = ff(2,3)

y z

<- FT(2,1);

- ff(1,2)

In this case both parameters a and b runs from 0 to 3 but GRG assigns the
value only to the components having indices in the canonical order a<b. GRG
follows this rule also if in the left-hand side of tensorial assignment digits are
mixed with parameters which may sometimes produce unexpected result:

<- Coordinates t, x, y, z;

<- Function ee;

2.4. Assignment Command 27

<- FT(0,a)=ee(a);

<- Write FT;

EM tensor:

FT = ee(1)

t x

FT = ee(2)

t y

FT = ee(3)

t z

<- Erase FT;

<- FT(3,a)=ee(a);

<- Write FT;

EM tensor:

0

Observe the difference between these two assignments (the command Erase

FT; destroys the previously assigned value). In fact second assignment assigns
no values since 3 and a are not in the canonical order 3≥a for a running from 0
to 3. Notice the difference from the case when all indices in the left-hand side
are given by the explicit numerical values. In this case GRG automatically
transforms the indices to their canonical order and FT(3,2)=222; is equivalent
to FT(2,3)=-222;.

Finally there is one more form of the tensorial assignment which can be
applied to the summed spinorial indices. Let us consider the spinorial analogue
of electromagnetic strength tensor ΦAB . This spinor is irreducible (i.e. sym-
metric in AB). The corresponding GRG built-in object Undotted EM Spinor

(identifier FIU) has one summed spinorial index of rank 2. Let us consider two
different assignment commands

<- Coordinates u, v, z, z~;

z & z~ - conjugated pair.

<- Null Metric;

<- Function ee;

<- FIU(a)=ee(a);

<- Write FIU;

Undotted EM spinor:

28 CHAPTER 2. Programming in GRG

FIU = ee(0)

0

FIU = ee(1)

1

FIU = ee(2)

2

<- Erase FIU;

<- FIU(a+b)=ee(a,b);

<- Write FIU;

Undotted EM spinor:

FIU = ee(0,0)

0

FIU = ee(0,1)

1

FIU = ee(1,1)

2

In the first case a is treated as a summed index and runs from 0 to 2 but in
the second case a and b are considered as usual single SL(2,C) spinorial indices
each having values 0 and 1.

The notation for the object components in the left-hand side of assignment
do not distinguishes upper and lower indices. Actually the indices are always
assumed to be in the default position. You can always check the default in-
dex types and positions using the command Show object;. For example the
Riemann Tensor has first upper and three lower frame indices and the com-
mand RIM0123=100; and RIM(0,1,2,3)=100; both assign value to the R0

123

component of the tensor where indices are represented with respect to the cur-
rent frame.

2.5 Geometry

The number of built-in objects in GRG is rather large. They all described
in chapter 3 and appendices B and C. In this section we consider only the most
important ones.

2.5. Geometry 29

2.5.1 Metric, Frame and Line-Element

The line-element in GRG is defined by the following equation

ds2 = gab θ
a⊗ θb (2.1)

where θa = haµdx
µ is the frame 1-form and gab is the frame metric. The

corresponding built-in objects are Frame (identifier T) and Metric (identifier G).
There are also the “inverse” counterparts ∂a = hµa∂µ (Vector Frame, identifier
D) and gab (Inverse Metric, identifier GI). To determine the metric properties
of the space you can assign some values to both the metric and the frame. There
are two well known special cases. First is the usual coordinate formalism in
which frame is holonomic θa = dxα. In this case there is no difference between
frame and coordinate indices. Another representation is known as the tetrad
(in dimension 4) formalism. In this case frame metric equals to some constant
matrix gab = ηab and significant information about line-element “is encoded”
in the frame.

In general both metric and frame can be nontrivial but not necessarily. If
no any value is given by user to the frame when GRG automatically assumes
that frame is holonomic

θa = dxα (2.2)

Thus if we assign the value to metric only we automatically get standard co-
ordinate formalism. On the contrary if no value is assigned to the metric then
GRG automatically assumes

gab = diag(+1,−1, . . .) (2.3)

where +1 and −1 on the diagonal of the matrix correspond to the current
signature specification.

Notice that current signature is printed among other information by the
command

[Show] Status;

and current line-element is printed by the command

ds2;

or equivalently

Line-Element;

Finally if neither frame nor metric are specified by user then both these
quantities acquire default value and we automatically obtain flat space of the
default signature:

30 CHAPTER 2. Programming in GRG

<- Dimension 4 with Signature(-,+,+,+);

<- Coordinates t, x, y, z;

<- ds2;

Assuming Default Metric.

Metric calculated By default. 0.05 sec

Assuming Default Holonomic Frame.

Frame calculated By default. 0.05 sec

2 2 2 2 2

ds = - d t + d x + d y + d z

2.5.2 Spinors

Spinorial representations exist in spaces of various dimensions and sig-
natures but in GRG spinors are restricted to the 4-dimensional spaces of
Lorentzian signature (−,+,+,+) or (+,−,−,−) only. Another restriction is that
in the spinorial formalism the metric must be the standard null metric:

gab = gab = ±


0 −1 0 0
−1 0 0 0

0 0 0 1
0 0 1 0

 (2.4)

where upper sign correspond to the signature (−,+,+,+) and lower sign to the
signature (+,−,−,−). There is special command

Null Metric;

which assigns this standard value to the metric.

Thus spinorial frame (tetrad) in GRG must be null

ds2 = ±(−θ0⊗ θ1 − θ1⊗ θ0 + θ2⊗ θ3 + θ3⊗ θ2) (2.5)

and conjugation rules for this tetrad must be

θ0 = θ0, θ1 = θ1, θ2 = θ3, θ3 = θ2 (2.6)

For the sake of efficiency the sigma-matrices σaAḂ for such a tetrad are
chosen in the simplest form. The only nonzero components of the matrices are

σ0
11̇ = σ1

00̇ = σ2
10̇ = σ3

01̇ = 1 (2.7)

σ0
11̇ = σ1

00̇ = σ2
10̇ = σ3

01̇ = ∓1 (2.8)

2.6. Expressions 31

2.5.3 Connection, Torsion and Nonmetricity

As was explained above GRG recognizes four types of connections: holo-
nomic Γαβ , frame ωab, spinorial ωAB and conjugated spinorial ωȦḂ . Accord-
ingly there are four built-in objects: Holonomic Connection (id. GAMMA),
Frame Connection (id. omega), Undotted Connection (id. omegau), Dotted
Connection (id. omegad). Connections are used in GRG in covariant deriva-
tives. In addition they are properly transformed under frame and coordinate
transformations.

By default the connection in GRG are assumed to be Riemannian. In
particular in this case holonomic connection is nothing but Christoffel symbols
Γαβ = {αβπ}dxπ. If it is necessary to work with torsion and/or nonmetricity
then the switches TORSION and/or NONMETR must be turned on. In this case the See page ?? about

the built-in connec-
tions.

Riemannian analogues or the aforementioned four connections are available as
well.

2.6 Expressions

Expressions in GRG can be algebraic (scalar), vector or p-form valued.
GRG knows all the usual mathematical operations on algebraic expressions,
exterior forms and vectors.

2.6.1 Operations and Operators

The operations known to GRG are presented in the form of the table.
Operations are subdivided into six groups separated by horizontal lines. Op-
erations in each group have equal level of precedence and the precedence level
decreases from the top to the bottom of the table. As in usual mathematical
notation we can use brackets () to change operation precedence.

Other constructions which can be used in expression are described below.

2.6.2 Variables and Functions

Operator listed in the table 2.2 act on the following types of the operands:

(i) integer numbers (e.g. 0, 123),

(ii) symbols or identifiers (e.g. I, phi, RIM0103),

(iii) functional expressions (e.g. SIN(x), G(0,1) etc).

Valid identifier must belong to one of the following types:

32 CHAPTER 2. Programming in GRG

Operation Description Grouping
[v1,v2] Vector bracket
@ x Holonomic vector ∂x
d a Exterior differential
d ω d ~a ⇔ (d(~a))
a Dualization
ω
~ e Complex conjugation

a1**a2 Exponention
a1^ a2
e / a Division e/a1/a2 ⇔ (e/a1)/a2
a * e Multiplication
v | a Vector acting on scalar v|ω1/\ω2*a
v _| ω Interior product m
v1 . v2 Scalar product v|(ω1/\(ω2*a))
v . o
o1 . o2
ω1 /\ ω2 Exterior product

+ e Prefix plus
- e Prefix minus

e1 + e2 Addition
e1 - e2 Subtraction

Table 2.2: Operation and operators. Here: e is any expression, a is any scalar
valued (algebraic) expressions, v is any vector valued expression, x is a coordi-
nate, o is any 1-form valued expression, ω is any form valued expression.

2.6. Expressions 33

• Coordinate.

• User-defined or built-in constant.

• Function declared with the implicit dependence list.

• Component of an object.

Any valid functional expression must belong to one of the following types:

• User-defined function.

• Function defined in Reduce (operator).

• Component of built-in or user-defined object in functional notation.

• Some special functional expressions listed below.

2.6.3 Derivatives

The derivatives in GRG and Reduce are written as

DF(a,x [,n][,x [,n]. . .])

where a is the differentiated expression, x is the differentiation variable and
integer number n is the repetition of the differentiation. For example

DF(f(x,y),x,2,y) =
∂3f(x, y)

∂2x∂y

There are also another type of derivatives

DFP(a,x [,n][,x [,n]. . .])

They are valid only after Generic Function declaration if the package dfpart See section ??
about the generic
functions.

is installed on your system.

2.6.4 Complex Conjugation

Symbol ~~ in the sum of terms is an abbreviation:

e + ~~ = e + ~e
e - ~~ = e - ~e

Functions Re and Im gives real and imaginary parts of an expression:

Re(e) = (e+~e)/2
Im(e) = I*(-e+~e)/2

34 CHAPTER 2. Programming in GRG

2.6.5 Sums and Products

The following expressions represent sum and product

Sum(iter [,iter . . .],e)
Prod(iter [,iter . . .],e)

where e is the summed expression and iter defines summation variables. The
range of summation can be specified by two methods. First “long” notation is

id = low..up

and the identifier id runs from low up to up. Both low and up can be given by
arbitrary expressions but value of these expressions must be integer. The low
can be omitted

id = up

and in this case id runs from 0 to up. The identifier id should not coincide with
any built-in or user-defined variable.

In “short” notation iter is just identifier id and its range is determined
using the following rules

• Mixed letter-digit id runs from 0 to d−1 where d is the space dimensionality.

Aid j2s

• The id consisting of lower-case letters runs from 0 to d− 1

j a abc kkk

• The id consisting of upper-case letters runs from 0 to the number of let-
ters in id , e.g. the following identifiers run from 0 to 1 and from 0 to 3
respectively

B ABC

• Letters with one trailing digit run from 0 to the value of this digit. Both
id below runs from 0 to 3:

j3 A3

• Letters with two digits run from the value of the first digit to the value of
the second digit. The id below run from 2 to 3:

j23 A23

2.6. Expressions 35

• Letters with 3 or more digits are incorrect

j123

Two or more summation parameters are separated either by commas or by
one of the relational operators

< > <= =>

This means that only the terms satisfying these relations will be included in
the sum. For example

Sum(i24<=ABC,k=1..d-1,f(i24,ABC,k)) =

4∑
i=2

3∑
a=0
i≤a

d−1∑
k=1

f(i, a, k)

GRG’s Sum and Prod should not be confused with Reduce’s SUM and PROD Use SUM, PROD or
sum, prod depend-
ing on Reduce in-
ternal case as ex-
plained on page ??.

which are also available in GRG. GRG’s Sum apply to any scalar, vector or
form-valued expressions and always expanded by GRG into the appropriate
explicit sum of terms. On the contrary SUM defined in Reduce can be applied
to the algebraic expressions only. GRG leaves such expression unchanged and
passes it to the Reduce algebraic evaluator. Unlike Sum the summation limits
in SUM can be given by algebraic expressions. If value of these expressions is
integer then result of the SUM will be the same as for Sum but if summation
limits are symbolic sometimes Reduce is capable to find a closed expression
for such a sum but not always. See the following example

<- Coordinates t, x, y, z;

<- Function f;

<- Constants n, m;

<- Sum(k=1..3,f(k));

f(3) + f(2) + f(1)

<- SUM(f(n),n,1,3);

f(3) + f(2) + f(1)

<- SUM(n,n,1,m);

m*(m + 1)

2

<- SUM(f(n),n,1,m);

SUM(f(n),n,1,m)

36 CHAPTER 2. Programming in GRG

2.6.6 Einstein Summation Rule

According to the Einstein summation rule if GRG encounters some un-
known repeated identifier id then summation over this id is performed. The
range of the summation variable is determined according to the “short” nota-
tion explained in the previous section.

2.6.7 Object Components and Index Manipulation

The components of built-in or user-defined object can be denoted in expres-
sions by two methods which are similar to the notation used in the left-hand
side of the assignment command. The first method uses the object identifier
with additional digits denoting the indices T0, RIM0213. The second method
uses the functional notation T(0), RIM(0,2,1,3), OMEGA(j,k).

In functional notation the default index type and position can be changed
using the markers: ’ upper frame, . lower frame, ^ upper holonomic, _

lower holonomic. For example expression RIM(a,b,m,n) gives components of
Riemann tensor with the default indices Rabmn (first upper frame and three
lower frame indices) while expression RIM(’a,’b,_m,_n) gives Rabµν with two
upper frame and two lower coordinate indices. For enumerating indices position
markers are ignored and only ’ and . works for spinorial indices.

In the spinorial formalism each frame index can be replaced by a pair ifSee page ??
about spinorial
formalism.

spinorial indices according to the formulas:

Aaσa
BḊ = ABḊ, Baσ

a
BḊ = BBḊ

Accordingly any frame index can be replaced by a pair of spinorial indices.
Similarly one summed spinorial index or rank n can be replaced by n single
spinor indices. There is only one restriction. If an object has several frame
and/or summed spinorial indices then all must be represented in such expanded
form. In the following example the null frame θa is printed in the usual and

spinorial θBĊ representations. The relationship θaσa
BĊ − θBĊ = 0 is verifies

as well

<- Coordinates u, v, z, z~;

z & z~ - conjugated pair.

<- Null Metric;

<- Frame T(a)=d x(a);

<- ds2;

2.6. Expressions 37

2

ds = (-2) d u d v + 2 d z d z~

<- T(a);

a=0 : d u

a=1 : d v

a=2 : d z

a=3 : d z~

<- T(B,C);

B=0 C=0 : d v

B=0 C=1 : d z~

B=1 C=0 : d z

B=1 C=1 : d u

<- T(a)*sigmai(a,B,C)-T(B,C);

0

2.6.8 Parts of Equations and Solutions

The functional expressions

LHS(eqcomp)
RHS(eqcomp)

give access to the left-hand and right-hand side of an equation respectively.
Here eqcomp is the component of the equation as explained in the previous
section.

The LHS, RHS also provide access to the n’th solution if eqcomp is Sol(n). See page ?? about
solutions.

2.6.9 Lie Derivatives

The Lie derivative is given by the expression

38 CHAPTER 2. Programming in GRG

Lie(v,objcomp)

where objcomp is the component of an object in functional notation. For ex-
ample the following expression is the Lie derivative of the metric £vgab

Lie(vec,G(a,b));

The index manipulations in the Lie derivatives are permitted. In particular the
expression

Lie(vec,G(^m,b));

is the Lie derivative of the frame £vg
µ
b ≡ £vh

µ
a and must vanish.

2.6.10 Covariant Derivatives and Differentials

The covariant differential

Dc(objcomp[,conn[,conn. . .]])

and covariant derivative

Dfc(v,objcomp[,conn[,conn. . .]])

Here objcomp is an object component in functional notation and v is a vector-
valued expression. The optional parameters conn are the identifiers of connec-
tions. If conn is omitted then GRG uses default connection for each type ofSee page ?? about

the built-in connec-
tions.

indices: frame, coordinate, spinor and conjugated spinor. If conn is indicated
then GRG uses this connection instead of default one for appropriate type of
indices. For example expression

Dc(OMEGA(a,b))

is the covariant differential of the curvature 2-form DΩab. This expression
should vanish in Riemann space and should be proportional to the torsion in
Riemann-Cartan space. Here GRG will use default object Frame connection

(id. omega). The expression

Dc(OMEGA(a,b),romega)

is similar but it uses another built-in connection Riemann frame connection

(id. romega) which are different if torsion or nonmetricity are nonzero. The
index manipulations are allowed in the covariant derivatives. For example the
expression

Dfc(v,RIC(^m,_n))

gives the covariant derivative of the curvature of the Ricci tensor with first
coordinate upper and second coordinate lower indices ∇vRµν .

2.6. Expressions 39

2.6.11 Symmetrization

The functional expressions works iff the switch EXPANDSYM is on

Asy(i [,i . . .],e)
Sy(i [,i . . .],e)
Cy(i [,i . . .],e)

They produce antisymmetrization, symmetrization and cyclic symmetrization
of the expression e with respect to i without corresponding 1/n or 1/n!.

2.6.12 Substitutions

The expression

SUB(sub[,sub. . .],e)

is similar to the analogous expression in Reduce with two generalizations: (i)
it applies not only to algebraic but to form and vector valued expression e as
well, (ii) as in Let command sub can be either the relation l = r or solution See page ?? about

solutions.Sub(n).

2.6.13 Conditional Expressions

The conditional expression

If(cond,e1,e2)

chooses e1 or e2 depending on the value of the boolean expression cond .

Boolean expression appears in (i) the conditional expression If, (ii) in
For all Such That substitutions. Any nonzero expression is considered as
true and vanishing expression as false. Boolean expressions may contain the
following usual relations and logical operations: < > <= >= = |= not and or.
They also may contain the following predicates

OBJECT(obj) Is obj an object identifier or not
ON(switch) Test position of the switch
OFF(switch)
ZERO(object) Is the value of the object zero or not
HASVALUE(object) Whether the object has any value or not
NULLM(object) Is the object the standard null metric

Here object is an object identifier.

The expression ERROR("message") causes an error with the "message". It
can be used to test any required conditions during the batch file execution.

40 CHAPTER 2. Programming in GRG

2.6.14 Functions in Expressions

Any function which appear in expression must be either declared by the
Function declaration or be defined in Reduce (in Reduce functions are called
operators). In general arguments of functions in GRG must be algebraic ex-
pression with one exception. If one (and only one) argument of some function f
is form-valued ω = adx+ bdy then GRG applies f to the algebraic multipliers
of the form f(ω) = f(a)dx + f(b)dy. The same rule works for vector-valued
arguments. Let us consider the example in the Reduce operator LIMIT is
applied to the form-valued expression

<- Coordinates t, x, y, z;

<- www=(x+y)^2/(x^2-1)*d x+(x+y)/(x-z)*d y;

<- www;

2 2

x + 2*x*y + y x + y

(-----------------) d x + (-------) d y

2 x - z

x - 1

<- LIMIT(www,x,INFINITY);

d x + d y

I would like to remind also that depending on the particular Reduce sys-
tem Reduce operators must be used in GRG in upper LIMIT or lower case
limit. See page ?? for more details.

Any function or operator defined in the Reduce package can be used in
GRG as well. Some examples are considered in section ??.

2.6.15 Expression Evaluation

GRG evaluates expressions in several steps:

(1) All GRG-specific constructions such as Sum, Prod, Re, Im etc are ex-
plicitly expanded.

(2) If expression contains components of some built-in or user defined object
they are replaced by the appropriate value. If the object is in indefinite state
(no value of the object is known) then GRG tries to calculate its value by theSee page ?? about

the Find command. method used by the Find command. The automatic object calculation can be
prevented by turning the switch AUTO off. If due to some reason the object

2.6. Expressions 41

cannot be calculated then expression evaluation is terminated with the error
message.

(3) After all object components are replaced by their values GRG performs
all “geometrical” operations: exterior and interior products, scalar products
etc. If expression is form-valued when it is reduced to the form a dx0∧dx1 . . .+
b dx1 ∧+ . . . where a and b are algebraic expressions (similarly for the vector-
valued expressions).

(4) The Reduce algebraic simplification routine is applied to the algebraic
expressions a, b. Final expression consist of exterior products of basis coordi- In the anholonomic

mode the basis bi ∧
bj . . . is used in-
stead. See section
??.

nate differentials dxi ∧dxj . . . (or basis vectors ∂xi) multiplied by the algebraic
expressions. The algebraic expressions contain only the coordinates, constants
and functions.

2.6.16 Controlling Expression Evaluation

There are many Reduce switches which control algebraic expression eval-
uation. The number of these switches and details of their work depend on the
Reduce version. Here we consider some of these switches. All examples below
are made with the Reduce 3.5. On other Reduce versions result may be a
bit different.

Switches EXP and MCD control expansion and reduction of rational expres-
sions to a common denominator respectively.

<- (x+y)^2;

2 2

x + 2*x*y + y

<- Off EXP;

<- (x+y)^2;

2

(x + y)

<- On EXP;

<- 1/x+1/y;

x + y

x*y

<- Off MCD;

<- 1/x+1/y;

42 CHAPTER 2. Programming in GRG

-1 -1

x + y

These switches are normally on.

Switches PRECISE and REDUCED control evaluation of square roots:

<- SQRT(-8*x^2*y);

2*SQRT(- 2*y)*x

<- On REDUCED;

<- SQRT(-8*x^2*y);

2*SQRT(y)*SQRT(2)*I*x

<- Off REDUCED;

<- On PRECISE;

<- SQRT(-8*x^2*y);

2*SQRT(y)*SQRT(2)*I*x

<- On REDUCED, PRECISE;

<- SQRT(-8*x^2*y);

2*SQRT(y)*SQRT(2)*ABS(x)

Combining rational expressions the system by default calculates the least
common multiple of denominators but turning the switch LCM off prevents this
calculation.

Switch GCD (normally off) makes the system search and cancel the greatest
common divisor of the numerator and denominator of rational expressions.
Turning GCD on may significantly slow down the calculations. There is also
another switch EZGCD which uses other algorithm for g.c.d. calculation.

Switches COMBINELOGS and EXPANDLOGS control the evaluation of loga-
rithms

<- On EXPANDLOGS;

<- LOG(x*y);

LOG(x) + LOG(y)

<- LOG(x/y);

2.6. Expressions 43

LOG(x) - LOG(y)

<- Off EXPANDLOGS;

<- On COMBINELOGS;

<- LOG(x)+LOG(y);

LOG(x*y)

By default all polynomials are considered by Reduce as the polynomials
with integer coefficients. The switches RATIONAL and COMPLEX allow rational
and complex coefficients in polynomials respectively:

<- (x^2+y^2+x*y/3)/(x-1/2);

2 2

2*(3*x + x*y + 3*y)

3*(2*x - 1)

<- On RATIONAL;

<- (x^2+y^2+x*y/3)/(x-1/2);

2 1 2

x + ---*x*y + y

3

1

x - ---

2

<- Off RATIONAL;

<- 1/I;

1

I

<- (x^2+y^2)/(x+I*y);

2 2

x + y

I*y + x

44 CHAPTER 2. Programming in GRG

<- On COMPLEX;

<- 1/I;

- I

<- (x^2+y^2)/(x+I*y);

x - I*y

Switch RATIONALIZE removes complex numbers from the denominators of the
expressions but it works even if COMPLEX is off.

Turning off switch EXP and on GCD one can make the system to factor
expressions

<- Off EXP;

<- On GCD;

<- x^2+y^2+2*x*y;

2

(x + y)

Similar effect can be achieved by turning on switch FACTOR. Unfortunately this
works only when GRG prints expressions and internally expressions remain in
the expanded form. To make GRG to work with factored expressions internally
one must turn on FACTOR and AEVAL. The GRG switch AEVAL make GRG
to use an alternative Reduce routine for algebraic expression evaluation and
simplification. This routine works well with FACTOR on. Possibly it is good ideaSee section ??

about configuration
files.

to turn switch AEVAL on by default. This can be done using GRG configuration
files.

2.6.17 Substitutions

The substitution commands in GRG are the same as the corresponding
Reduce instructions

[For All x [,x . . .] [Such That cond]] Let sub[,sub. . .];
[For All x [,x . . .] [Such That cond]] Match sub[,sub. . .];

where sub is either relation l = r or the solution in the form Sol(n). After theSee page ?? about
solutions. substitution is activated every appearance of l will be replaced by r . The For

All substitutions have additional list of parameters x and will work for any
value of x . The optional condition cond imposes restrictions on the value of
the parameters x . The cond is the boolean expression (see page ??).

The substitution can be deactivated by the command

2.6. Expressions 45

[For All x [,x . . .] [Such That cond]] Clear sub[,sub. . .];

Notice that the variables x must be exactly the same as in the corresponding
For All Let command.

The difference between Match and Let is that the former matches the de-
grees of the expressions exactly while Let matches all powers which are greater
than one indicated in the substitution:

<- Const a;

<- (a+1)^8;

8 7 6 5 4 3 2

a + 8*a + 28*a + 56*a + 70*a + 56*a + 28*a + 8*a + 1

<- Let a^3=1;

<- (a+1)^8;

2

85*a + 86*a + 85

<- Clear a^3;

<- Match a^3=1;

<- (a+1)^8;

8 7 6 5 4 2

a + 8*a + 28*a + 56*a + 70*a + 28*a + 8*a + 57

Substitutions can be used for various purposes, for example: (i) to define
additional mathematical relations such as trigonometric ones; (ii) to “assign”
value to the user-defined and built-in constants; (iii) to define differentiation
rules for functions.

After some substitution is activated it applies to every evaluated expression
but value of the objects calculated before remain unchanged. The command
Evaluate re-simplifies the value of the object

Evaluate object;

here object is the object name, or identifier, or the group object name. Let
us consider a simple GRG task which calculates the volume 4-form of some
metric

<- Coordinates t, x, y, z;

<- Constant a;

<- Tetrad T0=d t, T1=d x, T2=SIN(a)*d y+COS(a)*d z,

46 CHAPTER 2. Programming in GRG

T3=-COS(a)*d y+SIN(a)* d z;

<- Find and Write Volume;

Volume :

2 2

VOL = (SIN(a) + COS(a)) d t /\ d x /\ d y /\ d z

We see that Reduce do not know the appropriate trigonometric rule. Thus
we are going to apply substitution

<- For all x let SIN(x)^2 = 1-COS(x)^2;

<- Write Volume;

Volume :

VOL = d t /\ d x /\ d y /\ d z

The situation has been improved. But actually, the internal representation
of VOL remains unchanged. Write by default re-simplifies expressions before
printing. By turning switch WRS off we can prevent this re-simplification:

<- Off WRS;

<- Write Volume;

Volume :

2 2

VOL = (SIN(a) + COS(a)) d t /\ d x /\ d y /\ d z

Now we can apply Evaluate:

<- Evaluate Volume;

<- Write Volume;

Volume :

VOL = d t /\ d x /\ d y /\ d z

We see that the internal value of VOL now has been replaced by re-simplified
expression.

Notice that the command

Evaluate All;

applies Evaluate to all objects whose value is currently known.

2.6.18 Generic Functions

Unfortunately Reduce lacks the notion of partial derivative of a function.
The expression DF(f(x,y),x) is treated by Reduce as the “derivative of the

2.6. Expressions 47

expression f(x,y) with respect to the variable x” rather than the “derivative of
the function f with respect to its first argument”. Due to this Reduce cannot
handle chain differentiation rule etc. This problem is fixed by the package dfpart
written by H. Melenk. This package introduces notion of generic function and
partial derivative DFP. If dfpart is installed on your Reduce system GRG
provides the interface to these facilities.

Let us consider an example. First we declare one usual and two generic
functions

<- Coordinates t, x, y, z;

<- Function f;

<- Generic Function g(a,b), h(b);

<- Write Functions;

Functions:

g*(a,b) h*(b) f

Generic functions must be always declared with the list of parameters (a and
b in our example). These parameters play the role of labels which denotes
arguments of the generic function and the partial derivatives with respect to
these arguments are defined. Due to this generic functions allow the chain
differentiation rule

<- DF(f(SIN(x),y),x);

DF(f(SIN(x),y),x)

<- DF(g(SIN(x),y),x);

COS(x)*g (SIN(x),y)

a

Here subscript a denotes the derivative of the function g with respect to the
first argument. The operator DFP is introduced to denotes such derivatives in
expressions:

<- DF(g(x,y)*h(y),b);

0

<- DFP(g(x,y)*h(y),b);

g (x,y)*h(y) + h (y)*g(x,y)

b b

48 CHAPTER 2. Programming in GRG

If switch DFPCOMMUTE is turned on then DFP derivatives commute.

2.7 Using Built-in Formulas In Calculations

GRG has large number of built-in objects and almost each object has built-
in formulas or so called ways of calculation which can be used to find the value
of the object. This section explains how these formulas (ways) can be used.

2.7.1 Find Command

Almost each GRG built-in object has associated ways of calculation. Each
way is nothing but a formula or equation which allows to compute the value of
the object. All these formulas are described in the usual mathematical style in
chapter 3. The command

Show object;

or equivalently

? object;

prints information about object’s ways of calculation.

The command Find applies built-in formulas to calculate the object value

Find object [way];

where object is the object name, or identifier, or group object name. The
optional specification way indicates the particular way if the object has several
built-in ways of calculation.

Consider the curvature 2-form Ωab (object Curvature, id. OMEGA):

<- Show Curvature;

Curvature OMEGA’a.b is 2-form

Value: unknown

Ways of calculation:

Standard way (omega)

From spinorial curvature (OMEGAU*,OMEGAD)

We can see that this object has two built in ways of calculation. First way
named Standard way is the usual equation Ωab = dωab + ωam ∧ ωmb. Second
way under the name From spinorial curvature uses spinor ←→ tensor rela-
tionship to compute the curvature 2-form using its spinor analogues ΩAB and
ΩȦḂ as the source data. The ways of calculation are printed by the command

2.7. Using Built-in Formulas In Calculations 49

Show in the form

wayname (SI [,SI . . .])

where wayname is the way name and the SI are the identifiers of the source See Eq. (??) on
page ??.objects which are present in the right-hand side of the equation. The value of

these objects must be known before the formula can be applied.

The way in the Find command allows one to choose the particular way
which can be done by two methods. In the first form way is just the name
exactly as it printed by the Show command

wayname

or Using standard way or By standard way if the way name is Standard

way. Another method to specify the way is to indicate the appropriate source
object

From object
Using object

where object is the name or the identifier of the source object. For example
second (spinorial) way of calculation for the curvature 2-form can be chosen by
the following equivalent commands

Find curvature from spinorial curvature;

Find curvature using OMEGAU;

while first way is activated by the commands

Find curvature by standard way;

Find curvature using omega;

Recall that object identifiers are case sensitive and omega is the identifier of
the frame connection 1-form ωab and should not be confused with OMEGA.

The way specification in the Find can be omitted and in this case GRG
uses the following algorithm to choose a particular way of calculation. Observe
that the identifier of the undotted curvature 2-form ΩAB is marked by the
symbol ∗. This label marks so called main objects. If no way of calculation is
specified when GRG tries to choose the way, browsing the way list form top
to the bottom, for which the value of the main object is already known. If no
switch way exists then GRG just picks up the first way in the list. Therefore
in our example the command

Find curvature;

will use the second way if the value of the object ΩAB (id. OMEGAU) is known
and second way otherwise.

50 CHAPTER 2. Programming in GRG

As soon as some way of calculation is chosen GRG tries to calculate the
values of the source objects which are present in the right-hand side of cor-
responding equations. GRG tries to do this by applying the Find command
without way specification to these objects. Thus a single Find can cause quite
long chain of calculations. This recursive work is reflected by the appropriate
tracing messages. The tracing can be eliminated by turning off switch TRACE.

Here we present the sample GRG session which computes curvature 2-form
for the flat gravitational waves

<- Cord u, v, z, z~;

z & z~ - conjugated pair.

<- Null Metric;

<- Function H(u,z,z~);

<- Frame T0=d u, T1=d v+H*d u, T2=d z, T3=d z~;

<- ds2;

2 2

ds = (- 2*H) d u + (-2) d u d v + 2 d z d z~

<- Find Curvature;

Sqrt det of metric calculated. 0.16 sec

Volume calculated. 0.16 sec

Vector frame calculated From frame. 0.16 sec

Inverse metric calculated From metric. 0.16 sec

Frame connection calculated. 0.22 sec

Curvature calculated. 0.22 sec

<- Write Curvature;

Curvature:

1

OMEGA = (- DF(H,z,2)) d u /\ d z + (- DF(H,z,z~)) d u /\ d z~

2

1

OMEGA = (- DF(H,z,z~)) d u /\ d z + (- DF(H,z~,2)) d u /\ d z~

3

2

OMEGA = (- DF(H,z,z~)) d u /\ d z + (- DF(H,z~,2)) d u /\ d z~

0

2.7. Using Built-in Formulas In Calculations 51

3

OMEGA = (- DF(H,z,2)) d u /\ d z + (- DF(H,z,z~)) d u /\ d z~

0

Finally we want to emphasize that ways associated with some object may
depend on the concrete environment. In particular the Standard way for the
curvature 2-form is always available but second way which is essentially related
to spinors works only in the 4-dimensional spaces of Lorentzian signature and See page ?? about

the spinorial for-
malism.

iff the metric is null. If some way is not valid in the current environment it
simply disappears from the way list printed by the Show.

It should be noted also that the Find object; command works only if the
object is in the indefinite state and is rejected if the value of the object is
already known. If you want to re-calculate the object then previous value must
be cleared by the Erase command.

2.7.2 Erase command

The command

Erase object;

destroys the object value and returns it to initial indefinite state. It can be
used also to free the memory.

2.7.3 Zero command

Command

Zero object;

assigns zero values to all object components.

2.7.4 Normalize command

Command

Normalize object;

applies to equations. It replaces equalities of the form l = r by the equalities
l − r = 0 and re-simplifies the result.

52 CHAPTER 2. Programming in GRG

2.7.5 Evaluate command

The command

Evaluate object;

re-simplifies existing value of the object. This command is useful if we want
to apply new substitutions to the object whose value is already known. TheSee page ?? about

substitutions. command

Evaluate All;

re-simplifies all objects whose value is currently known.

2.8 Printing Result of Calculations

2.8.1 Write Command

The command

Write object;

prints value of the object. Here object id the object name or identifier. Group
names denoting a collection of several objects and macro object identifiers canSee page ?? about

macro objects. be used in the Write command as well. In addition word All can be used to
print all currently known objects.

The command Write can print declarations as well if object is functions,
constants, or affine parameter.

The command

Write object[,object. . .] to "file";

or equivalently

Write object[,object. . .] > "file";

writes result into the "file". Notice that Write always destroys previous con-
tents of the file. Therefore we have another command

Write to "file";
Write > "file";

which redirects all output into the file. The standard output can be restored
by the commands

EndW;

End of Write;

By default Write re-simplifies the expressions before printing them. ThisSee page ?? about
substitutions.

2.8. Printing Result of Calculations 53

is convenient when substitutions are activated but slows down the printing
especially for very large expressions. The re-simplification can be abolished
by turning off switch WRS. If switch WMATR is turned on then GRG prints all
2-index scalar-valued objects in the matrix form

<- Coordinates t, x, y, z;

<- On wmatr;

<- Find and Write metric;

Assuming Default Metric.

Metric calculated By default. 0.06 sec

Metric:

[-1 0 0 0]

[]

[0 1 0 0]

[]

[0 0 1 0]

[]

[0 0 0 1]

Write prints frame, spinor and enumerating indices as numerical subscripts
while holonomic indices are printed as the coordinate identifiers. If frame is
holonomic and there is no difference between frame and coordinate indices then
by default all frame indices are also labelled by the appropriate identifiers. But
is switch HOLONOMIC is turned off they are still printed as numbers.

2.8.2 Print Command

The Write command described in the previous section prints value of an
object. This value must be calculated beforehand by the Find command or
established by the assignment. The command Print evaluates expression and
immediately prints its value. It has several forms

[Print] expr [For iter];
For iter Print expr;

Here expr is expression to be evaluated and iter indicates that expression must
be evaluated for several value of some variable. The specification iter is com-
pletely the same as is the Sum expression and is described in details in section
?? on page ??. It consists of the list of parameters separated by commas , or
relational operators < > => =<. For example the command

G(a,b) for a<b;

54 CHAPTER 2. Programming in GRG

prints off-diagonal components of the metric.

Both word Print and For parts of the command can be omitted and it is
possible just to enter an expression

expr;

and it will be evaluated and printed. The expression can contain indefinite
identifiers and by default GRG treats them similarly to the variables in the
For part of the Print command. The range of such parameters are deter-
mined by the short summation variable specification as explained on page ??.
For example the following four commands are equivalent. they all print the
components of the holonomic metric gαβ

Print g(a,b) for a,b;

For a,b Print g(a,b);

g(a,b) for a,b;

g(a,b);

Here the parameters a, b run from 0 to d− 1.

Unfortunately such treatment of unknown variables may create some con-
fusion since occasionally misprinted identifier may be recognizes by GRG as
an iteration variable. If switch NOFREEVARS is turned on then GRG becomes
more scrupulous and any unknown variable will cause the error.

2.8.3 Controlling the Output

There are several switches and commands which allow one to change output
form of expressions. One needs to stress that all these facilities have no influence
on the internal form of expressions, they alter the printout only.

Switches ALLFAC and command Factor control factoring of subexpressions.
In the on default position ALLFAC makes the system search for a common factor
and print it outside the expression. The command

Factor expr [,expr . . .];

makes the system collect together terms with different powers of subexpressions
expr . Command

RemFac expr [,expr . . .];

removes the action of the previous Factor command.

<- Constants a,b,c;

<- a*(a+b+1)^2;

2.8. Printing Result of Calculations 55

2 2

a*(a + 2*a*b + 2*a + b + 2*b + 1)

<- Off ALLFAC;

<- a*(a+b+1)^2;

3 2 2 2

a + 2*a *b + 2*a + a*b + 2*a*b + a

<- Factor b;

<- a*(a+b+1)^2;

2 2 3 2

b *a + b*(2*a + 2*a) + a + 2*a + a

<- On ALLFAC;

<- a*(a+b+1)^2;

2 2

b *a + 2*b*a*(a + 1) + a*(a + 2*a + 1)

Normally Reduce prints terms in some canonical order. The switch REVPRI

prints terms in reverse order and command

Order expr [,expr . . .];

specifies the required order of subexpressions explicitly.

<- Constants a,b,c;

<- (a+b*c)^3;

3 2 2 2 3 3

a + 3*a *b*c + 3*a*b *c + b *c

<- On REVPRI;

<- (a+b*c)^3;

3 3 2 2 2 3

b *c + 3*a*b *c + 3*a *b*c + a

<- Order c,a,b;

<- (a+b*c)^3;

3 2 2 2 3 3

a + 3*c*a *b + 3*c *a*b + c *b

56 CHAPTER 2. Programming in GRG

<- Off REVPRI;

<- (a+b*c)^3;

3 3 2 2 2 3

c *b + 3*c *a*b + 3*c*a *b + a

By default Reduce prints fractions in two-dimensional format but turning
off switch RATPRI prevents this facility. Switch DIV in the on position makes the
system divide each term of the numerator by the denominator and to print the
denominator in the form of negative powers. Switch RAT works in combination
with the Factor command. In the on position it makes the system divide each
term collected by the Factor in the numerator by the denominator.

<- Const a,b,c;

<- (a+b+1)^2/a;

2 2

a + 2*a*b + 2*a + b + 2*b + 1

a

<- Off RATPRI;

<- (a+b+1)^2/a;

2 2

(a + 2*a*b + 2*a + b + 2*b + 1)/a

<- On DIV;

<- (a+b+1)^2/a;

-1 2 -1 -1

a + a *b + 2*a *b + a + 2*b + 2

<- Factor b;

<- (a+b+1)^2/a;

2 -1 -1 -1

b *a + 2*b*(a + 1) + a + a + 2

<- Off DIV;

<- (a+b+1)^2/a;

2 2

(b + 2*b*(a + 1) + a + 2*a + 1)/a

2.8. Printing Result of Calculations 57

<- On RAT;

<- (a+b+1)^2/a;

2 2

b /a + 2*b*(a + 1)/a + (a + 2*a + 1)/a

<- On RATPRI;

<- (a+b+1)^2/a;

2 2

b a + 1 a + 2*a + 1

---- + 2*b*------- + --------------

a a a

One needs to realize that output form transformations may require a long
time and memory expense. There is a special switch PRI which allows one
to minimize this expense. If PRI is turned off then the system will print all
expressions exactly in their internal form and output control does not work.
This is the fastest way to print result of calculations.

The command Line Length n; sets the output line length to n.

2.8.4 LATEX and Graphics Output

Some versions of Reduce running under Windows, OS/2 or X-windows are
equipped with the graphic shells which provide book-style output with Greek
characters, integral signs etc. GRG is compatible with these systems. This
graphic regime is activated by switch FANCY.

Graphic output mode internally uses some subset of the LATEX language.
Switch LATEX makes GRG to print the output in the LATEX format. This output
can be written into a file and later directly inserted in a document. Notice that
turning off switch LATEX returns graphic output mode with switch FANCY on
while turning off FANCY automatically turns off LATEX as well and returns usual
character output mode.

In graphic regime the derivatives are printed in ∂f/∂x notation. Switch
DFINDEXED makes the system to print derivatives in the indexed notation fx.

The following expressions is the scalar curvature of the Bondi metric ob-
tained by GRG and directly inserted in this manual

R =
(
4 e2 β+2 γ cos(θ)

∂ U

∂ r
r2 − 8 e4 β cos(θ)

∂ β

∂ θ
−

58 CHAPTER 2. Programming in GRG

4 e2 β+2 γ cos(θ)
∂ γ

∂ r
U r2 + 12 e4 β cos(θ)

∂ γ

∂ θ
+

12 e2 β+2 γ cos(θ)U r + 4 e2 β+2 γ ∂2 U

∂ r ∂ θ
sin(θ) r2 +

e4 γ (
∂ U

∂ r
)2 sin(θ) r4 + 4 e2 β+2 γ ∂ U

∂ r

∂ β

∂ θ
sin(θ) r2 +

4 e2 β+2 γ ∂ U

∂ θ

∂ γ

∂ r
sin(θ) r2 + 12 e2 β+2 γ ∂ U

∂ θ
sin(θ) r −

4 e2 β+2 γ ∂
2 V

∂ r2
sin(θ) r − 8 e2 β+2 γ ∂ V

∂ r

∂ β

∂ r
sin(θ) r −

8 e2 β+2 γ ∂ V

∂ r
sin(θ) + 8 e2 β+2 γ ∂2 β

∂ r ∂ θ
sin(θ)U r2 −

8 e2 β+2 γ ∂
2 β

∂ r2
sin(θ)V r + 8 e2 β+2 γ ∂ β

∂ r
sin(θ)V −

8 e4 β
∂2 β

∂ θ2
sin(θ) − 12 e4 β (

∂ β

∂ θ
)2 sin(θ) + 16 e4 β

∂ β

∂ θ

∂ γ

∂ θ
sin(θ) −

8 e2 β+2 γ (
∂ γ

∂ r
)2 sin(θ)V r + 8 e2 β+2 γ ∂ γ

∂ r

∂ γ

∂ θ
sin(θ)U r2 +

4 e4 β
∂2 γ

∂ θ2
sin(θ) − 8 e4 β (

∂ γ

∂ θ
)2 sin(θ) + 4 e4 β sin(θ)

)
/(

2 e4 β+2 γ sin(θ) r2
)

2.8.5 Exporting Data Into Other Systems

Capabilities of major modern computer algebra systems are approximately
equivalent but not quite. One system is better in doing one things and other
is better for other purposes. It may happen that tools which you need are
available only in one particular systems. GRG provides quite unique facility
to export the data into other computer algebra systems. Turning on one of
the following switches establishes the output mode in which all expressions are
printed in the input language of other CAS. This output can be saved into a
file and later you can use this CAS to proceed you analysis of the data. At
present GRG supports five output modes which are controlled by the switches
MACSYMA for Macsyma
MAPLE for Maple
MATH for Mathematica
REDUCE for Reduce
GRG for GRG

Notice the last switch allows one to print the data in the form which can be
later inserted into GRG task.

2.9. Advanced Facilities 59

2.9 Advanced Facilities

2.9.1 Solving Equations

GRG provides simple interface to the Reduce algebraic equation solver.
The command

Solve l=r [,l=r . . .] for expr [,expr . . .];

resolves equations l=r with respect to expressions expr . This command has also
other form

Solve equation for expr [,expr . . .];

where equation is the name or identifier of some built-in or user-defined equa-
tion. Both form of the Solve command works with form and scalar valued
equations as well but expr must be algebraic. The resulting solutions are stored
in the special object Solutions (identifier Sol). They can be printed by the
command

Write Solutions;

Left and right hand sides of n’th solution can be used in expression as LHS(Sol(n))
or RHS(Sol(n)). The expression Sol(n) referring to the n’th solution can be
used in the SUB and Let substitutions as well:

<- Coordinates t, x, y, z;

<- Solve x^2-2*x=5, y=9 for x, y;

<- Write Solutions;

Solutions:

Sol(0) : y = 9

Sol(1) : x = - SQRT(6) + 1

Sol(2) : y = 9

Sol(3) : x = SQRT(6) + 1

<- SUB(Sol(1),(x-1)^2);

6

<- Let Sol(3);

<- (x-1)^2;

6

60 CHAPTER 2. Programming in GRG

Solutions can be cleared by the command

Erase Solutions;

One need to stress that Solve is capable to solve algebraic relations only.
Solving algebraic relations Reduce knows already that the function ASIN is
inverse to SIN. The command

Inverse f1,f2;

tells the system that functions f1 and f2 are inverse to each other.

2.9.2 Saving Data for Later Use

It is very convenient to have facilities to save results of calculations in a
form fitted for restoring and further manipulation. For this purpose GRG has
two special commands: Unload and Load.

The command

Unload object > "file";
Unload object To "file";

writes object value into "file" in some special format. Here object is name or
identifier of an object.

The data can be later restored with help of the command

Load "file";

The command Unload always overwrites previous "file" contents. To save
several objects in one file one must use the following sequence of commands

Unload > "file";
Unload object;
Unload object;
...

Unload object;
End Of Unload;

Here command Unload > "file"; opens "file" and End Of Unload; closes it.
The last command has the short form

EndU;

In fact presented above sequence of commands can be abbreviated as

Unload object[,object. . .] > "file";

2.9. Advanced Facilities 61

One needs to stress that only the commands Unload ...; can be used
between Unload > ... and End Of Unload;. If this rule does not hold then
Load may fail to restore the file. The only additional command which can be
used among these Unload object; commands is the comment % text;. This
command insertes the comment text into the "file". Later when "file" will be
restored by the Load the text message will be printed. This allows one to attach
comments to unreadable files produced by Unload command.

As in other commands object in Unload command is either the name or
identifier of an object. Names Coordinates, Constants and Functions can
also be used to save declarations. And finally, the command

Unload All > "file";

saves all objects whose value is currently known and all declarations. Moreover, See section ??
about anholonomic
basis.

in the anholonomic basis mode this command saves full information about an
anholonomic basis.

When data or coordinates declarations are restored from a file they re-
place current values. Function and constant declarations are added to current
declarations.

One should realize that serious troubles may appear when different coordi-
nates are used in the current session and in the restored file. Even the order of
coordinates is extremely important. We strongly recommend saving all decla-
rations (especially coordinates) in addition to other objects. It ensures at least
that will GRG print a warning message if some contradictions are detected
between current declarations and declarations stored into a file. The best way
to avoid these troubles is to use the command

Unload All > "file";

Loading the file saved by this command at the very beginning of a new GRG
task completely restores the previous GRG state with all data and declarations.

Sometimes one needs to prevent the Load/Unload operations with coordi-
nates. If switch UNLCORD is turned off (normally on) then all Load and Unload

operations with coordinates are blocked.

Since Unload writes data in human-unreadable form there is the command

Show [File] "file";

or equivalently

? [File] "file";
File "file";

which prints short information about objects and declarations contained in the
"file". It also prints comments contained in the file.

62 CHAPTER 2. Programming in GRG

2.9.3 Coordinate Transformations

Command

New Coordinates new [,new . . .] with old=expr [,old=expr . . .];

introduces new coordinates new and defines how old coordinates old are ex-
pressed in terms of new ones. If the specified transformation is nonsingular
GRG converts all existing objects to the new coordinate system.

The New Coordinates command properly transforms all objects having
coordinate indices. The transformation of frame indices depend on the switch
HOLONOMIC. In general case when frame is not holonomic then objects having
frame indices remain unchanged and only their components are transformed
into the new coordinate system. But if frame is holonomic then by default all
frame indices are transformed similarly to the coordinate ones. Notice that in
such situation the frame after transformation once again will be holonomic in
the new coordinate system. But if switch HOLONOMIC is turned off the system
distinguishes frame and coordinate indices in spite of the current frame type.
In such situation the holonomic frame ceases to be holonomic after coordinate
transformation.

2.9.4 Frame Transformations

Spinorial rotations are performed by the command

[Make] Spinorial Rotation [((expr00,expr01), (expr10,expr11))];

where expressions exprAB comprise the SL(2,C) transformation matrix

φ′A = LA
BφB , exprAB = LA

B

If the specified matrix is really a SL(2,C) one then GRG performs appro-
priate transformation on all objects whose value is currently known.

Matrix specification in the command can be omitted

[Make] Spinorial Rotation;

In this case the SL(2,C) matrix LA
B must be specified as the value of a special

object Spinorial Transformation LS.A’B (identifier LS).

Command for frame rotation is analogously

[Make] Rotation [((expr00,expr01,...), (expr10,expr11,...),...)];

with the nonsingular d× d rotation matrix

A′a = LabA
b, exprab = Lab

2.9. Advanced Facilities 63

GRG verifies that this matrix is a valid rotation by checking that frame metric
gab remains unchanged under this transformation

g′ab = LmaL
n
bgmn = gab

Once again the matrix specification can be omitted and transformation
Lab can be specified as the value of the object Frame Transformation L’a.b

(identifier L)

[Make] Rotation;

Frame rotation commands correctly transform frame and spinor connection
1-forms.

Finally, there is a special form of the frame transformation command

Change Metric [((expr00,expr01,...), (expr10,expr11,...),...)];

The only difference between this command and Make Rotation is that Change
Metric does not impose any restriction on the transformation matrix and trans-
formed metric does not necessary coincides with the original one.

Sometimes it is convenient to keep some object unchanged under the frame
transformation. The command

Hold object;

makes the system to keep the object unchanged during frame and spinor trans-
formations. The command

Release object;

discards the action of the Hold command.

2.9.5 Algebraic Classification

The command

Classify object;

performs algebraic classification of the object specified by its name or identi-
fier. Currently GRG knows algorithms for classifying the following irreducible
spinors

XABCD Weyl spinor type
XABĊḊ Traceless Ricci spinor type
XAB Electromagnetic stress spinor type
XAḂ Vector in the spinorial representation

64 CHAPTER 2. Programming in GRG

The Classify command can be applied to any built-in or user-defined
object having one of the listed above types of indices. Notice that all spinorsSee page ?? about

summed spinor in-
dices.

must be irreducible (totally symmetric in dotted and undotted indices) and
XABĊḊ, XAḂ must be Hermitian. Groups of the irreducible indices must be
represented as a single summed index.

GRG uses the algorithm by F. W. Letniowski and R. G. McLenaghan
[Gen. Rel. Grav. 20 (1988) 463-483] for Petrov-Penrose classification of Weyl
spinor XABCD. The obvious simplification of this algorithm is applied to the
spinor analog of electromagnetic strength tensor XAB . The spinor XABĊḊ is
classified by the algorithm by G. C. Joly, M. A. H. McCallum and W. Seixas
[Class. Quantum Grav. 7 (1990) 541-556, Class. Quantum Grav. 8 (1991)
1577-1585].

The classification process is accompanied by the tracing messages which can
be eliminated by turning off the switch TRACE. On the contrary if one turns on
the switch SHOWEXPR then GRG prints all expressions which appear during the
classification to let you check whether the decision about nonvanishing of these
expressions is really correct or not. This facility is important also in classifying
XABĊḊ and XAḂ since algebraic type for this objects may depend on the sign
of some expressions which cannot be determined by GRG correctly.

2.9.6 Reduce Packages and Functions in GRG

Any procedure or function defined in Reduce package can be used in
GRG. The package must be loaded either before GRG is started or during
GRG session by one of the equivalent commands

[Use] Package package;
Load package;

where package is the package name. Notice that an identifier must be used
for the package name unlike the Load "file"; command described in section
??. Let us consider some examples. The Reduce package specfn contains
definitions of various special functions and below we demonstrate 11th Legendre
polynomial

<- Coordinates t, x, y, z;

<- package specfn;

<- LEGENDREP(11,x);

10 8 6 4 2

x*(88179*x - 230945*x + 218790*x - 90090*x + 15015*x - 693)

256

2.9. Advanced Facilities 65

Another example demonstrates the taylor package

<- Coordinates t, x, y, z;

<- www=d(E^(x+y)*SIN(x));

<- www;

x + y x + y

(E *(COS(x) + SIN(x))) d x + (E *SIN(x)) d y

<- load taylor;

<- TAYLOR(www,x,0,5);

y y

y y y 2 E 4 E 5 6 y y 2

(E + 2*E *x + E *x - ----*x - ----*x + O(x)) d x + (E *x + E *x

6 15

y y

E 3 E 5 6

+ ----*x - ----*x + O(x)) d y

3 30

You can also define your own operators and procedures in Reduce and
later use them in GRG. In the following example file lasym.red contains a defi-
nition of little Reduce procedure which computes a leading term of asymptotic
expansion of the rational function at large values of some variable. This file is
inputted in Reduce before GRG is started

1: in "lasym.red";

procedure leadingterm(w,x);

lterm(num(w),x)/lterm(den(w),x);

leadingterm

end;

2: load grg;

This is GRG 3.2 release 2 (Feb 9, 1997) ...

System directory: c:\red35\grg32\

System variables are upper-cased: E I PI SIN ...

66 CHAPTER 2. Programming in GRG

Dimension is 4 with Signature (-,+,+,+)

<- Coordinates t, r, theta, phi;

<- OMEGA01=(123*r^3+2*r+t)/(r+t)^5*d theta/\d phi;

<- OMEGA01;

3

123*r + 2*r + t

(---) d theta /\ d phi

5 4 3 2 2 3 4 5

r + 5*r *t + 10*r *t + 10*r *t + 5*r*t + t

<- LEADINGTERM(OMEGA01,r);

123

(-----) d theta /\ d phi

2

r

2.9.7 Anholonomic Basis Mode

GRG may work in both holonomic and anholonomic basis modes. In the
first default case, values of all expressions are represented in a natural holo-
nomic (coordinate) basis: dxµ, dxµ ∧xν . . . for exterior forms and ∂µ = ∂/∂xµ

for vectors. In the second case an arbitrary basis bi = biµdx
µ is used for forms

and inverse vector basis ei = eµi ∂µ for vectors (biµe
µ
j = δij). You can specify this

basis assigning a value to built-in object Basis (identifier b). If Basis is not
specified by user then GRG assumes that it coincides with the frame bi = θi.

Frame should not be confused with basis. Frame θa is used only for “ex-
ternal” purposes to represent tensor indices while basis bi and vector basis
ei is used for “internal” purposes to represent form and vector valued object
components.

The command

Anholonomic;

switches the system to the anholonomic basis mode and the command

Holonomic;

switches it back to the standard holonomic mode.

Working in anholonomic mode GRG creates some internal tables for ef-
ficient calculation of exterior differentiation and complex conjugation. In an-
holonomic mode the command

2.9. Advanced Facilities 67

Unload All > "file";

automatically saves these tables into the "file". Subsequent

Load "file";

restores the tables and automatically switches the current mode to anholonomic
one. Note that automatic anholonomic mode saving/restoring works only if All
is used in Unload command.

One can find out the current mode with the help of the command

[Show] Status;

2.9.8 Synonymy

Sometimes GRG commands may be rather long. For instance, in order to
find the curvature 2-form Ωab from the spinorial curvature ΩAB and ΩȦḂ the
following command should be used

Find Curvature From Spinorial Curvature;

Certainly, this command is clear but typing of such long phrases may be very
dull. GRG has synonymy mechanism which allows one to make input much
shorter.

The synonymous words in commands and object names are considered to
be equivalent. The complete list of predefined GRG synonymy is given in
appendix D. Here we present just the most important ones

Connection Con

Constants Const Constant

Coordinates Cord

Curvature Cur

Dotted Do

Equation Equations Eq

Find F Calculate Calc

Functions Fun Function

Next N

Show ?

Spinor Spin Spinorial Sp

Switch Sw

Symmetries Sym Symmetric

Undotted Un

Write W

68 CHAPTER 2. Programming in GRG

Words in each line are considered as equivalent in all commands. Thus the
above command can be abbreviated as

F cur from sp cur;

Section ?? explains how to change built-in synonymy and how to define a
new one.

2.9.9 Compound Commands

Sometime one may need to perform several consecutive actions with one
object. In this case we can use so called compound commands to shorten the
input. Internally GRG replaces each compound command by several usual
ones. For example the compound command

Find and Write Einstein Equation;

to a pair of usual ones

Find Einstein Equation;

Write Einstein Equation;

Actions (commands) can be attached to the end of the compound command as
well:

Find, Write Curvature and Erase It;

m
Find & Write & Erase Curvature;

m
Find Curvature;

Write Curvature;

Erase Curvature;

Note that we have used , and & instead of and in this example. All these
separators are equivalent in compound commands.

Now let us consider the case when one needs to perform a single action
with several objects. The command

Write Frame, Vector Frame and Metric;

is equivalent to

Write Frame;

Write Vector Frame;

Write Metric;

2.10. Tuning GRG 69

Way specification can be attached to the Find command:

Find QT, QP From Torsion using spinors;

m
Find QT From Torsion using spinors;

Find QP From Torsion using spinors;

One can combine several actions and several objects. For example, the com-
mand

Find omega, Curvature by Standard Way and Write and Erase Them;

is equivalent to the sequence of (2 objects)× (3 commands) = 6 commands

Find omega by Standard Way;

Find Curvature by Standard Way;

Write omega;

Write Curvature;

Erase omega;

Erase Curvature;

Note that the way specification is attached only to “left” commands (Find in
our case).

The compound commands mechanism works only with Find, Erase, Write
and Evaluate commands.

And finally, GRG always replaces Re-command; by Erase and command;.
For example

Re-Calculate Maxwell Equations;

m
Erase and Calculate Maxwell Equations;

You can see how GRG expand compound commands into the usual ones
by turning switch SHOWCOMMANDS on.

2.10 Tuning GRG

GRG can be tuned according to your needs and preferences. The config-
uration files allow one to change some default settings and the environment
variable grg defines the system directory which can be used as the depository
for frequently used files.

70 CHAPTER 2. Programming in GRG

2.10.1 Configuration Files

The configuration files allows one to establish

• Default dimension and signature.

• Initial position of switches.

• Reduce packages which must be preloaded.

• Synonymy.

• Default GRG start up method.

There are two configuration files. First global configuration file grgcfg.sl
defines the settings during system installation when GRG is compiled. These
global settings become permanent and can be changed only if GRG is recom-
piled. The local configuration file grg.cfg allows one to override global settings
locally. When GRG starts it search the file grg.cfg in current directory (folder)
and if it is present uses the corresponding settings.

Below we are going to explain how to change settings in both global and
local configuration files but before doing this we must emphasize that this need
some care. First, the configuration files use LISP command format which differs
from usual GRG commands. Second, is something is wrong with configuration
file then no clear diagnostic is provided. Finally, if global configuration is
damaged you will not be able to compile GRG. The best strategy is to make
a back-up copy of the configuration files before start editing them. Notice that
lines preceded by the percent sign % are ignored by the system (comments).

Both local grg.cfg and global grgcfg.sl configuration files have similar struc-
ture and can include the following commands.

Command

(signature!> - + + + +)

establishes default dimension 5 with the signature (−,+,+,+,+). Do not forget
! and spaces between + and -. This command must be present in the global
configuration file grgcfg.sl otherwise GRG cannot be compiled.

The commands

(on!> page)

(off!> allfac)

change default switch position. In this example we turn on the switch PAGE

(this switch is defined in DOS Reduce only and allows one to scroll back and
forth through input and output) and turn off switch ALLFAC.

The command

2.10. Tuning GRG 71

(package!> taylor)

makes the system to load Reduce package taylor during GRG start.

The command of the form

(synonymous!>

(affine aff)

(antisymmetric asy)

(components comp)

(unload save)

)

defines synonymous words. The words in each line will be equivalent in all
GRG commands.

Finally the command

(setq ![autostart!] nil)

alters default GRG start up method. It makes sense only in the global config-
uration file grgcfg.sl. By default GRG is launched by single command

load grg;

which firstly load the program into memory and then automatically starts it.
Unfortunately on some systems this short method does not work properly:
GRG shows wrong timing during computations, the quit; command returns
the control to Reduce session instead of terminating the whole program. If
the aforementioned option is activated then GRG must be launched by two
commands

load grg;

grg;

which fixes the problems. Here first command just loads the program into
memory and second one starts it manually. Notice that one can always use
commands

load grg32;

grg;

to start GRG manually. Command load grg32; always loads GRG into
memory without starting it independently on the option under consideration.

72 CHAPTER 2. Programming in GRG

2.10.2 System Directory

The environment variable grg or GRG defines so called GRG system direc-
tory (folder). The way of setting this variable is operating system dependent.
For example the following commands can be used to set grg variable in DOS,
UNIX and VAX/VMS respectively:

set grg=d:\xxx\yyy\ DOS
setenv grg /xxx/yyy/ UNIX
define grg SYS$USER:[xxx.yyy] VAX/VMS

The value of the variable grg must point out to some directory. In DOS
and UNIX the directory name must include trailing \ or / respectively. The
command

[Show] Status;

prints current system directory.

When GRG tries to input some batch file containing GRG commands it
first searches it in the current working directory and if the file is absent then it
tries to find it in the system directory. Therefore if you have some frequently
used files you can define the system directory and move these files there. In this
case it is not necessary to keep them in each working directory. Notice GRG
uses the same strategy when opening local configuration file grg.cfg. Thus if
system directory is defined and it contains the file grg.cfg the settings contained
in this file effectively overrides global settings without recompiling GRG.

2.11 Examples

In this section we want to demonstrate how GRG can be applied to solve
simple but realistic problem. We want to calculate the Ricci tensor for the
Robertson-Walker metric by three different methods.

First GRG task (program)

Coordinates t,r,theta,phi;

Function a(t);

Frame T0=d t, T1=a*d r, T2=a*r*d theta, T3=a*r*SIN(theta)*d phi;

ds2;

Find and Write Ricci Tensor;

RIC(_j,_k);

defines the Robertson-Walker metric using the tetrad formalism with the or-
thonormal Lorentzian tetrad θa. Using built-in formulas for the Ricci tensor the

2.11. Examples 73

only one command is required to accomplish out goal Find and Write Ricci

Tensor;. The command ds2; just shows the metric we are dealing with. No-
tice that command Find ... gives the tetrad components of the Ricci tensor
Rab. Thus, in addition we print coordinate components of the tensor Rµν by
the command RIC(_j,_k);. The hard-copy of the corresponding GRG session
is presented below

<- Coordinates t, r, theta, phi;

<- Function a(t);

<- Frame T0=d t, T1=a*d r, T2=a*r*d theta, T3=a*r*SIN(theta)*d phi;

<- ds2;

Assuming Default Metric.

Metric calculated By default. 0.16 sec

2 2 2 2 2 2 2 2 2 2 2

ds = - d t + (a) d r + (a *r) d theta + (SIN(theta) *a *r) d phi

<- Find and Write Ricci Tensor;

Sqrt det of metric calculated. 0.21 sec

Volume calculated. 0.21 sec

Vector frame calculated From frame. 0.21 sec

Inverse metric calculated From metric. 0.21 sec

Frame connection calculated. 0.38 sec

Curvature calculated. 0.49 sec

Ricci tensor calculated From curvature. 0.54 sec

Ricci tensor:

- 3*DF(a,t,2)

RIC = ----------------

00 a

74 CHAPTER 2. Programming in GRG

2

DF(a,t,2)*a + 2*DF(a,t)

RIC = --------------------------

11 2

a

2

DF(a,t,2)*a + 2*DF(a,t)

RIC = --------------------------

22 2

a

2

DF(a,t,2)*a + 2*DF(a,t)

RIC = --------------------------

33 2

a

<- RIC(_j,_k);

- 3*DF(a,t,2)

j=0 k=0 : ----------------

a

2

j=1 k=1 : DF(a,t,2)*a + 2*DF(a,t)

2 2

j=2 k=2 : r *(DF(a,t,2)*a + 2*DF(a,t))

2 2 2

j=3 k=3 : SIN(theta) *r *(DF(a,t,2)*a + 2*DF(a,t))

Tracing messages demonstrate that GRG automatically applied several built-
in equations to obtain required value of Rab. The metric is automatically
assumed to be Lorentzian gab = diag(−1, 1, 1, 1). First GRG computed the
frame connection 1-form ωab. Next the curvature 2-form Ωab was computed
using standard equation (??) on page ??. Finally the Ricci tensor was obtained
using relation (??) on page ??.

Second GRG task is similar to the first one:

Coordinates t,r,theta,phi;

Function a(t);

Metric G00=-1, G11=a^2, G22=(a*r)^2, G33=(a*r*SIN(theta))^2;

ds2;

2.11. Examples 75

Find and Write Ricci Tensor;

The only difference is that now we work in the coordinate formalism by as-
signing value to the metric rather than frame. The frame is assumed to be
holonomic automatically.

<- Coordinates t, r, theta, phi;

<- Function a(t);

<- Metric G00=-1, G11=a^2, G22=(a*r)^2, G33=(a*r*SIN(theta))^2;

<- ds2;

Assuming Default Holonomic Frame.

Frame calculated By default. 0.11 sec

2 2 2 2 2 2 2 2 2 2 2

ds = - d t + (a) d r + (a *r) d theta + (SIN(theta) *a *r) d phi

<- Find and Write Ricci Tensor;

Sqrt det of metric calculated. 0.22 sec

Volume calculated. 0.22 sec

Vector frame calculated From frame. 0.22 sec

Inverse metric calculated From metric. 0.27 sec

Frame connection calculated. 0.33 sec

Curvature calculated. 0.60 sec

Ricci tensor calculated From curvature. 0.60 sec

Ricci tensor:

- 3*DF(a,t,2)

RIC = ----------------

t t a

2

RIC = DF(a,t,2)*a + 2*DF(a,t)

r r

2 2

RIC = r *(DF(a,t,2)*a + 2*DF(a,t))

theta theta

2 2 2

RIC = SIN(theta) *r *(DF(a,t,2)*a + 2*DF(a,t))

phi phi

Once again GRG uses the same built-in formulas to compute the Ricci tensor
but now all quantities have holonomic indices instead of tetrad ones.

Finally the third task demonstrate how GRG can be used without built-
in equations. Once again we use coordinate formalism and declare two new

76 CHAPTER 2. Programming in GRG

objects the Christoffel symbols Chr and Ricci tensor Ric (since GRG is case
sensitive they are different from the built-in objects CHR and RIC). Next we use
well-known equations to compute these quantities

Coordinates t,r,theta,phi;

Function a(t);

Metric G00=-1, G11=a^2, G22=(a*r)^2, G33=(a*r*SIN(theta))^2;

ds2;

New Chr^a_b_c with s(2,3);

Chr(j,k,l)= 1/2*GI(j,m)*(@x(k)|G(l,m)+@x(l)|G(k,m)-@x(m)|G(k,l));

New Ric_a_b with s(1,2);

Ric(j,k) = @x(n)|Chr(n,j,k) - @x(k)|Chr(n,j,n)

+ Chr(n,m,n)*Chr(m,j,k) - Chr(n,m,k)*Chr(m,n,j);

Write Ric;

The hard-copy of the corresponding session is

<- Coordinates t, r, theta, phi;

<- Function a(t);

<- Metric G00=-1, G11=a^2, G22=(a*r)^2, G33=(a*r*SIN(theta))^2;

<- ds2;

Assuming Default Holonomic Frame.

Frame calculated By default. 0.16 sec

2 2 2 2 2 2 2 2 2 2 2

ds = - d t + (a) d r + (a *r) d theta + (SIN(theta) *a *r) d phi

<- New Chr^a_b_c with s(2,3);

<- Chr(j,k,l)=1/2*GI(j,m)*(@x(k)|G(l,m)+@x(l)|G(k,m)-@x(m)|G(k,l));

Inverse metric calculated From metric. 0.27 sec

<- New Ric_a_b with s(1,2);

<- Ric(j,k)=@x(n)|Chr(n,j,k)-@x(k)|Chr(n,j,n)+Chr(n,m,n)*Chr(m,j,k)

-Chr(n,m,k)*Chr(m,n,j);

<- Write Ric;

The Ric:

- 3*DF(a,t,2)

Ric = ----------------

t t a

2

Ric = DF(a,t,2)*a + 2*DF(a,t)

r r

2.11. Examples 77

2 2

Ric = r *(DF(a,t,2)*a + 2*DF(a,t))

theta theta

2 2 2

Ric = SIN(theta) *r *(DF(a,t,2)*a + 2*DF(a,t))

phi phi

78 CHAPTER 2. Programming in GRG

CHAPTER 3

Formulas

This chapter describes in usual mathematical manner all GRG built-in objects
and formulas. The description is extremely short since it is intended for ref-
erence only. If not stated explicitly we use lower case greek letters α,β,... for
holonomic (coordinate) indices; a,b,c,d,m,n for anholonomic frame indices and
i,j,k,l for enumerating indices.

To establish the relationship between GRG built-in object6s and mathematical
quantities we use the following notation

Frame Connection omega’a.b = ωab

This equality means that there is built-in object named Frame Connection

having identifier omega which represent the frame connection 1-form ωab. If the
name is omitted then we deal with macro object (see page ??). The notation
for indices in the left-hand side of such equalities is the same as in the New

object declaration and is explained on page ??.

This chapter contains not only definitions of all built-in objects but all formulas
which GRG knows and can apply to find their value. If an object has several
formulas for its computation when each formula is given together with the
corresponding name which is printed in the typewriter font. In the case then
an object has only one associated formula the way name is usually omitted.

3.1 Dimension and Signature

Let us denote the space-time dimensionality by d and n’th element of the
signature specification diag(+1,−1,...) by diagn (n runs from 0 to d− 1).

There are several macro objects which gives access to the dimension and sig-
nature

dim = d (3.1)

sdiag.idim = diagi (3.2)

80 CHAPTER 3. Formulas

sgnt = sign = s =

d−1∏
i=0

diagi (3.3)

mpsgn = diag0 (3.4)

pmsgn = −diag0 (3.5)

The macros (two equivalent ones) which give access to coordinates

X^m = x^m = xµ (3.6)

3.2 Metric, Frame and Basis

Frame θa and metric gab plays the fundamental role in GRG. Together they
determine the space-time line element

ds2 = gab θ
a⊗ θb = gµν dx

µ⊗ dxν (3.7)

The corresponding objects are

Frame T’a = θa = haµdx
µ (3.8)

Metric G.a.b = gab (3.9)

and “inverse” objects are

Vector Frame D.a = ∂a = hµa∂µ (3.10)

Inverse Metric GI’a’b = gab (3.11)

The frame can be computed by two ways. First, By default frame is assumed
to be holonomic

θa = dxα (3.12)

and From vector frame

θa = |hµa |−1dxµ (3.13)

The vector frame can be obtained From frame

∂a = |haµ|−1∂µ (3.14)

The metric can be computed By default

gab = if a = b then diaga else 0 (3.15)

3.2. Metric, Frame and Basis 81

or From inverse metric

gab = |gab|−1 (3.16)

The inverse metric can be computed From metric

gab = |gab|−1 (3.17)

The holonomic metric gµν and frame haµ are given by the macro objects:

g_m_n = gµν (3.18)

gi^m^n = gµν (3.19)

h’a_m = haµ (3.20)

hi.a^m = hµa (3.21)

The metric determinants and related densities

Det of Metric detG = g = det|gab| (3.22)

Det of Holonomic Metric detg = det|gµν | (3.23)

Sqrt Det of Metric sdetG =
√
sg (3.24)

The volume d-form

Volume VOL = υ =
√
sg θ0 ∧ . . .∧ θd−1 =

1

d!
Ea0...ad−1

θa0 ∧ . . .∧ θad−1 (3.25)

The so called s-forms play the role of basis in the space of the 2-forms

S-forms S’a’b = Sab = θa ∧ θb (3.26)

The basis and corresponding inverse vector basis are used when GRG works
in the anholonomic mode See page ??.

Basis b’idim = bi = biµdx
µ (3.27)

Vector Basis e.idim = ei = bµi ∂µ (3.28)

The basis can be computed From frame

bi = θi (3.29)

or From vector basis

bi = |bµi |
−1dxµ (3.30)

The vector basis can be computed From basis

ei = |biµ|−1∂µ (3.31)

82 CHAPTER 3. Formulas

3.3 Delta and Epsilon Symbols

Macro objects for Kronecker delta symbols

del^m_n = δµν (3.32)

delh’a.b = δab (3.33)

and totally antisymmetric tensors

eps.a.b.c.d = Eabcd, E0123 =
√
sg (3.34)

epsi’a’b’c’d = Eabcd, E0123 =
s
√
sg

(3.35)

epsh_m_n_k_l = Eµνκλ, E0123 =
√
sdet|gµν | (3.36)

epsih^m^n^k^l = Eµνκλ, E0123 =
s√

sdet|gµν |
(3.37)

The definition for epsilon-tensors is given for dimension 4. The generalization
to other dimensions is obvious.

3.4 Dualization

We use the following definition for the dualization operation. For any p-form

ωp =
1

p!
ωα1...αpdx

α1 ∧ . . . ∧ dxαp (3.38)

the dual (d− p)-form is

∗ωp =
1

p!(d− p)!
Eα1...αd−p

β1...βp ωβ1...βp
dxα1 ∧ . . . ∧ dxαd−p (3.39)

The equivalent relation which also uniquely defines the ∗ operation is

∗(θa1 ∧ . . . ∧ θap) = (−1)p(d−p)∂ap . . . ∂a1 υ (3.40)

With such convention we have the following identities

∗ ∗ ωp = s(−1)p(d−p) ωp (3.41)

∗υ = s (3.42)

∗1 = υ (3.43)

3.5. Spinors 83

3.5 Spinors

The notion of spinors in GRG is restricted to 4-dimensional spaces of Lorentzian
signature (−,+,+,+) or (+,−,−,−) only. In this section the upper sign relates to
the signature (−,+,+,+) and lower one to (+,−,−,−).

In addition to work with spinors the metric must have the following form which
we call the standard null metric

gab = gab = ±


0−1 0 0
−1 0 0 0

0 0 0 1
0 0 1 0

 (3.44)

Such value of the metric can be established by the command Null metric;.

Therefore the line-element for spinorial formalism has the form

ds2 = ±(−θ0⊗ θ1 − θ1⊗ θ0 + θ2⊗ θ3 + θ3⊗ θ2) (3.45)

We require also the conjugation rules for this null tetrad (frame) be

θ0 = θ0, θ1 = θ1, θ2 = θ3, θ3 = θ2 (3.46)

For such a metric and frame we fix sigma-matrices in the following form

σ0
11̇ = σ1

00̇ = σ2
10̇ = σ3

01̇ = 1 (3.47)

σ0
11̇ = σ1

00̇ = σ2
10̇ = σ3

01̇ = ∓1 (3.48)

The sigma-matrices obey the rules

gmnσ
m
AḂσ

n
CḊ =∓εACεḂḊ (3.49)

σaMṄσbMṄ =∓gab (3.50)

The antisymmetric SL(2,C) spinor metric

εAB = εAB = εȦḂ = εȦḂ =

(
0 1
−1 0

)
(3.51)

can be used to raise and lower spinor indices

ϕA = ϕB ε
BA, ϕA = εAB ϕ

B (3.52)

The following macro objects represent standard spinorial quantities

DEL’A.B = δAB (3.53)

84 CHAPTER 3. Formulas

EPS.A.B = εAB (3.54)

EPSI’A’B = εAB (3.55)

sigma’a.A.B~ = σaAḂ (3.56)

sigmai.a’A’B~ = σa
AḂ (3.57)

The relationship between tensors and spinors is established by the sigma-
matrices

Xa←→XAȦ = Aaσa
AȦ (3.58)

Xa←→XAȦ = Aaσ
a
AȦ (3.59)

where sigma-matrices are given by Eq. (??) We shall denote similar equations
by the sign ←→ conserving alphabetical relationship between tensor indices in
the left-hand side and spinorial one in the right-hand side: a←→AȦ, b←→BḂ.

There is one quite important special case. Any real antisymmetric tensor Xab

are equivalent to the pair of conjugated irreducible (symmetric) spinors

Xab = X[ab] ←→ XAȦBḂ = εABXȦḂ + εȦḂXAB

XAB =
1

2
XAȦBḂε

ȦḂ , XȦḂ =
1

2
XAȦBḂε

AB (3.60)

The explicit form of these relations for the sigma-matrices (??) is

X0 =X13 X0̇ =X12

X1 =− 1
2 (X01 −X23) X1̇ =− 1

2 (X01 +X23)

X2 =−X02 X2̇ =−X03

(3.61)

and the “inverse” relation

X01 =−X1 −X1̇, X23 =X1 −X1̇,

X02 =−X2, X12 =X0̇,

X03 =−X2̇, X13 =X0

(3.62)

We shall apply the relations (??) and (??) to various antisymmetric quantities.
In particular the Spinorial S-forms

Undotted S-forms SU.AB = SAB (3.63)

Dotted S-forms SD.AB~ = SȦḂ (3.64)

The Standard way to compute these quantities uses relations (??)

Sab = θa ∧ θb ←→ εABSȦḂ + εȦḂSAB (3.65)

3.6. Connection, Torsion and Nonmetricity 85

Spinorial S-forms are self dual

∗SAB = iSAB , ∗SȦḂ = −iSȦḂ (3.66)

and exteriorly orthogonal

SAB ∧ SCD = − i
2
υ(εACεBD + εADεBC), SAB ∧ SĊḊ = 0 (3.67)

There is one subtle pint concerning tensor quantities in the spinorial formalism.
Since spinorial null tetrad is complex with the conjugation rule θ2 = θ3 all
tensor quantities represented in this frame also becomes complex with similar
conjugation rules for any tensor index. There is special macro object cci which
performs such “index conjugation”: cci0=0, cci(1)=1, cci2=3, cci(3)=2.
Therefore the correct expression for the θa is ~T(cci(a)) but not ~T(a).

3.6 Connection, Torsion and Nonmetricity

Covariant derivatives and differentials for quantities having frame and coordi-
nate indices are

DXa
b = dXa

b + ωam ∧Xm
b − ωmb ∧Xa

m (3.68)

DXµ
ν = dXµ

ν + Γµπ ∧Xπ
ν − Γπν ∧Xµ

π (3.69)

The corresponding built-in connection 1-forms are

Frame Connection omega’a.b = ωab = ωabµdx
µ (3.70)

Holonomic Connection GAMMA^m_n = Γµν = Γµνπdx
π (3.71)

Frame connection can be computed From holonomic connection

ωab = Γab + dhµb h
a
µ (3.72)

and inversely holonomic connection can be obtained From frame connection

Γµν = ωµν + dhbν h
µ
b (3.73)

By default these connections are Riemannian (i.e. symmetric and metric com-
patible). To work with nonsymmetric connection with torsion the switch
TORSION must be turned on. Then the torsion 2-form is

Torsion THETA’a = Θa =
1

2
QapqS

pq, Qabc = Γabc − Γacb (3.74)

86 CHAPTER 3. Formulas

Finally to work with non metric-compatible spaces with nonmetricity the switch
NONMETR must be turned on. The nonmetricity 1-form is

Nonmetricity N.a.b = Nab = Nabµdx
µ, Nabµ = −∇µgab (3.75)

In general any torsion or nonmetricity related object is defined iff the corre-
sponding switch is on.

If either TORSION or NONMETR is on then Riemannian versions of the connection
1-forms are available as well

Riemann Frame Connection romega’a.b =
{}
ω ab (3.76)

Riemann Holonomic Connection RGAMMA^m_n =
{}

Γ
µ
ν (3.77)

The Riemann holonomic connection can be obtained From Riemann frame

connection
{}

Γ
µ
ν =

{}
ω µν + dhbν h

µ
b (3.78)

If torsion is nonzero but nonmetricity vanishes (TORSION is on, NONMETR is off)
then the difference between the connection and Riemann connection is called
the contorsion 1-form

Contorsion KQ’a.b =
Q

K
a
b =

Q

K
a
bµdx

µ = Γab−
{}

Γ
a
b (3.79)

If nonmetricity is nonzero but torsion vanishes (TORSION is off, NONMETR is on)
then the difference between the connection and Riemann connection is called
the nonmetricity defect

Nonmetricity Defect KN’a.b =
N

K
a
b =

N

K
a
bµdx

µ = Γab−
{}

Γ
a
b (3.80)

Finally if both torsion and nonmetricity are nonzero (TORSION and NONMETR

are on) then we

Connection Defect K’a.b = Ka
b = Ka

bµdx
µ = Γab−

{}

Γ
a
b (3.81)

Ka
b =

Q

K
a
b+

N

K
a
b (3.82)

For the sake of convenience we introduce also macro objects which compute
the usual Christoffel symbols

CHR^m_n_p = {µνπ} =
1

2
gµτ (∂πgντ + ∂νgπτ − ∂τgνπ) (3.83)

3.6. Connection, Torsion and Nonmetricity 87

CHRF_m_n_p = [µ,νπ] =
1

2
(∂πgνµ + ∂νgπµ − ∂µgνπ) (3.84)

CHRT_m = {ππµ} =
1

2det|gαβ |
∂µ (det|gαβ |) (3.85)

The connection, frame, metric, torsion and nonmetricity are related to each
other by the so called structural equations which in the most general case read

Dθa + Θa = 0

Dgab +Nab = 0 (3.86)

or in the equivalent “explicit” form

ωab ∧ θb = −ta, ta = dθa + Θa,

ωab + ωba = nab, nab = dgab +Nab
(3.87)

The solution to equations (??) are given by the relation

ωab =
1

2

[
−∂a tb + ∂b ta + nab +

(
∂a (∂b tc − nbc) + ∂b nac

)
θc
]

(3.88)

For various specific values of nab and ta equations (??) and (??) can be used
for different purposes.

In the most general case (??) is the Standard way to compute connection
1-form ωab. The torsion and nonmetricity are included in these equations
depending on the switches TORSION and NONMETR.

The same equation (??) with nab = dgab and ta = dθa is the Standard way to

find Riemann frame connection
{}
ω ab.

If torsion is nonzero then ωab can be computed From contorsion

ωab =
{}
ω ab+

Q

K
a
b (3.89)

where
{}
ω ab is given by Eq. (??).

Similarly if nonmetricity is nonzero then ωab can be computed From nonmetricity

defect

ωab =
{}
ω ab+

N

K
a
b (3.90)

where
{}
ω ab is given by Eq. (??).

Finally if both torsion and nonmetricity are nonzero then ωab can be computed
From connection defect

ωab =
{}
ω ab +Ka

b (3.91)

88 CHAPTER 3. Formulas

where
{}
ω ab is given by Eq. (??).

The Riemannian part of connection in Eqs. (??), (??), (??) are directly com-
puted by Eq. (??) (not via the object romega).

The contorsion
Q

K a
b is obtained From torsion by (??) with ta = Θa, nab = 0.

The nonmetricity defect
N

K a
b is obtained From nonmetricity by (??) with

ta = 0, nab = Nab.

Analogously (??) with ta = Θa, nab = Nab is the Standard way to compute
the connection defect Ka

b.

The torsion Θa can be calculated From contorsion

Θa = −
Q

K
a
b ∧ θb (3.92)

or From connection defect

Θa = −Ka
b ∧ θb (3.93)

The nonmetricity Nab can be computed From nonmetricity defect

Nab =
N

Kab +
N

Kba (3.94)

or From connection defect

Nab = Kab +Kba (3.95)

3.7 Spinorial Connection and Torsion

Spinorial connection is defined in GRG iff nonmetricity is zero and switch
NONMETR is turned off. The upper sign in this section correspond to the signa-
ture (−,+,+,+) while lower one to the signature (+,−,−,−).

Spinorial connection is defined by the equation

DXA
Ḃ

= dXA
Ḃ ∓ ω

A
M XM

Ḃ ± ω
Ṁ
Ḃ X

A
Ṁ (3.96)

where due to antisymmetry of the frame connection ωab = ω[ab] we have
Spinorial connection 1-forms

ωab ←→ εABωȦḂ + εȦḂωAB (3.97)

Undotted Connection omegau.AB = ωAB (3.98)

Dotted Connection omegad.AB~ = ωȦḂ (3.99)

3.7. Spinorial Connection and Torsion 89

The spinorial connection 1-forms ωAB and ωȦḂ can be calculated From frame

connection by the standard spinor ←→ tensor relation (??).

Inversely the frame connection ωab can be found From spinorial connection

by relation (??).

Since ωab is real the spinorial equivalents ωAB and ωȦḂ can be computed from
each other By conjugation

ωȦḂ = ωAB , ωAB = ωȦḂ (3.100)

If torsion is nonzero (TORSION is on) when we have in addition the Riemann

spinorial connection

Riemann Undotted Connection romegau.AB =
{}
ω AB (3.101)

Riemann Dotted Connection romegad.AB~ =
{}
ω ȦḂ (3.102)

The Riemann spinorial connection
{}
ω AB can be calculated by Standard way

{}
ωAB= ±i ∗ [dSAB ∧ θCĊ − εC(AdSB)M ∧ θMĊ]θCĊ (3.103)

The conjugated relation is used for
{}
ω ȦḂ .

The Spinorial contorsion 1-forms

Undotted Contorsion KU.AB =
Q

K AB (3.104)

Dotted Contorsion KD.AB~ =
Q

K ȦḂ (3.105)

are the spinorial analogues of the contorsion 1-form

Q

Kab←→ εAB
Q

KȦḂ +εȦḂ
Q

KAB (3.106)

The spinorial contorsion 1-forms
Q

KAB and
Q

KȦḂ can be calculated From contorsion

by the standard spinor ←→ tensor relation (??).

Inversely the contorsion
Q

Kab can be found From spinorial contorsion by
relation (??).

The spinorial equivalents
Q

KAB and
Q

KȦḂ can be computed from each other By
conjugation

Q

KȦḂ=
Q

KAB ,
Q

KAB=
Q

KȦḂ (3.107)

The Standard way to find ωAB is

ωAB =
{}
ω AB+

Q

KAB (3.108)

where
{}
ω AB is given directly by Eq. (??). The conjugated Eq. is used for ωȦḂ .

90 CHAPTER 3. Formulas

3.8 Curvature

The curvature 2-form

Curvature OMEGA’a.b = Ωab =
1

2
Rabcd S

cd (3.109)

can be computed By standard way

Ωab = dωab + ωan ∧ ωnb (3.110)

The Riemann curvature tensor is given by the relation

Riemann Tensor RIM’a.b.c.d = Rabcd = ∂d ∂c Ωab (3.111)

The Ricci tensor
Ricci Tensor RIC.a.b = Rab (3.112)

can be computed From Curvature

Rab = ∂b ∂m Ωma (3.113)

or From Riemann tensor

Rab = Rmamb (3.114)

The
Scalar Curvature RR = R (3.115)

can be computed From Ricci Tensor

R = Rmn g
mn (3.116)

The Einstein tensor is given by the relation

Einstein Tensor GT.a.b = Gab = Rab −
1

2
gabR (3.117)

If nonmetricity is nonzero (NONMETR is on) then we have

Homothetic Curvature OMEGAH =
h

Ω (3.118)

A-Ricci Tensor RICA.a.b =
A

Rab (3.119)

S-Ricci Tensor RICS.a.b =
S

Rab (3.120)

3.9. Spinorial Curvature 91

They can be calculated From curvature by the relations

h

Ω = Ωnn (3.121)

A

Rab = ∂b ∂m Ω[ma] (3.122)

S

Rab = ∂b ∂m Ω(ma) (3.123)

and the scalar curvature can be computed From A-Ricci tensor

R =
A

Rmng
mn (3.124)

3.9 Spinorial Curvature

Spinorial curvature is defined in GRG iff nonmetricity is zero and switch
NONMETR is turned off. The upper sign in this section correspond to the signa-
ture (−,+,+,+) while lower one to the signature (+,−,−,−).

The Spinorial curvature 2-forms

Undotted Curvature OMEGAU.AB = ΩAB (3.125)

Dotted Curvature OMEGAD.AB~ = ΩȦḂ (3.126)

is related to the curvature 2-form Ωab by the standard relation

Ωab ←→ εABΩȦḂ + εȦḂΩAB (3.127)

The spinorial curvature 1-forms ΩAB and ΩȦḂ can be calculated From curvature

by the relation (??).

The frame curvature Ωab can be found From spinorial curvature by relation
(??).

The ΩAB and ΩȦḂ can be computed from each other By conjugation

ΩȦḂ = ΩAB , ΩAB = ΩȦḂ (3.128)

The Standard way to calculate ΩAB is

ΩAB = dωAB ± ωAM ∧ ωMB (3.129)

The conjugated relation is used for ΩȦḂ .

92 CHAPTER 3. Formulas

3.10 Curvature Decomposition

In general curvature consists of 11 irreducible pieces. If nonmetricity is nonzero
then one can perform decomposition

Rabcd =
A

Rabcd+
S

Rabcd,
A

Rabcd = R[ab]cd,
S

Rabcd = R(ab)cd (3.130)

Here the S-part of the curvature vanishes identically if nonmetricity is zero and
we consider further decomposition of A and S parts independently.

First we consider the A-part of the curvature. It can be decomposed into 6
pieces

A

Rabcd =
w

Rabcd+
c

Rabcd+
r

Rabcd+
a

Rabcd+
b

Rabcd+
d

Rabcd (3.131)

Here first three terms are the well-known irreducible pieces of the Riemannian
curvature while last three terms vanish if torsion is zero. The corresponding
2-forms are

Weyl 2-form OMW.a.b =
w

Ωab =
1

2

w

Rabcd S
cd (3.132)

Traceless Ricci 2-form OMC.a.b =
c

Ωab =
1

2

c

Rabcd S
cd (3.133)

Scalar Curvature 2-form OMR.a.b =
r

Ωab =
1

2

r

Rabcd S
cd (3.134)

Ricanti 2-form OMA.a.b =
a

Ωab =
1

2

a

Rabcd S
cd (3.135)

Traceless Deviation 2-form OMB.a.b =
b

Ωab =
1

2

b

Rabcd S
cd (3.136)

Antisymmetric Curvature 2-form OMD.a.b =
d

Ωab =
1

2

d

Rabcd S
cd (3.137)

The Standard way to find these quantities is given by the following formulas.

r

Ωab =
1

d(d− 1)
RSab (3.138)

c

Ωab =
1

(d− 2)
[Cam θ

m∧ θb − Cbm θm∧ θa] , Cab =
A

R (ab) −
1

d
gabR (3.139)

a

Ωab =
1

(d− 2)
[Aam θ

m∧ θb −Abm θm∧ θa] , Aab =
A

R [ab] (3.140)

d

Ωab =
1

12
∂b ∂a (

A

Ωmn ∧ θm∧ θn) (3.141)

3.10. Curvature Decomposition 93

b

Ωab =
1

2

[
∂b (θm∧

A0

Ω am)− ∂a (θm∧
A0

Ω bm)

]
(3.142)

where
A0

Ω ab =
A

Ωab−
c

Ωab−
r

Ωab−
a

Ωab−
d

Ωab

And finally
w

Ωab =
A

Ωab−
c

Ωab−
r

Ωab−
a

Ωab−
b

Ωab−
d

Ωab (3.143)

If d = 2 then
A

Ω ab turns out to be irreducible and coincides with the scalar
curvature irreducible piece

A

Ωab =
r

Ωab (3.144)

Now we consider the decomposition of the S curvature part which is nonzero
iff nonmetricity is nonzero. First we consider the case d ≥ 3. In this case we
have 5 irreducible components

S

Rabcd =
h

Rabcd+
sc

Rabcd+
sa

Rabcd+
v

Rabcd+
u

Rabcd (3.145)

The corresponding 2-forms are

Homothetic Curvature 2-form OSH.a.b =
h

Ωab =
1

2

h

Rabcd S
cd (3.146)

Antisymmetric S-Ricci 2-form OSA.a.b =
sa

Ωab =
1

2

sa

Rabcd S
cd (3.147)

Traceless S-Ricci 2-form OSC.a.b =
sc

Ωab =
1

2

sc

Rabcd S
cd (3.148)

Antisymmetric S-Curvature 2-form OSV.a.b =
v

Ωab =
1

2

v

Rabcd S
cd

(3.149)

Symmetric S-Curvature 2-form OSU.a.b =
u

Ωab =
1

2

u

Rabcd S
cd (3.150)

The Standard way to compute the decomposition is

h

Ωab = − 1

(d2 − 4)

[
θa ∧ ∂b

h

Ω + θb ∧ ∂a
h

Ω − gab
h

Ωd

]
(3.151)

sa

Ωab =
d

(d2 − 4)

[
θa ∧ (

S

R [bm] ∧ θm) + θb ∧ (
S

R [am] ∧ θm)− 2

d
gab

S

R cdS
cd

]
(3.152)

sc

Ωab =
1

d

[
θa ∧ (

S

R (bm) ∧ θm) + θb ∧ (
S

R (am) ∧ θm)

]
(3.153)

94 CHAPTER 3. Formulas

v

Ωab =
1

4

[
∂a (

S0

Ω bm ∧ θm) + ∂b (
S0

Ω am ∧ θm)

]
(3.154)

where
S0

Ω ab =
S

Ωab−
h

Ωab−
sa

Ωab−
sc

Ωab

And finally
u

Ωab =
S

Ωab−
h

Ωab−
sa

Ωab−
sc

Ωab−
v

Ωab (3.155)

If d = 2 then only the h- and sc-components are nonzero. The
sc

Ω ab are given
by (??) and

h

Ωab =
S

Ωab−
sc

Ωab (3.156)

object exists if and has n components

Rabcd
d3(d−1)

2

{}

Rabcd
d2(d2−1)

12

A

Rabcd
d2(d−1)2

4

S

Rabcd
d2(d2−1)

4

w

Rabcd d ≥ 4 d(d+1)(d+2)(d−3)
12

c

Rabcd d ≥ 3 (d+2)(d−1)
2

r

Rabcd 1

a

Rabcd d ≥ 3 d(d−1)
2

b

Rabcd d ≥ 4 d(d−1)(d+2)(d−3)
8

d

Rabcd d ≥ 4 d(d−1)(d−2)(d−3)
24

h

Rabcd
d(d−1)

2
sa

Rabcd d ≥ 3 d(d−1)
2

sc

Rabcd
(d+2)(d−1)

2
v

Rabcd d ≥ 4 d(d+2)(d−1)(d−3)
8

u

Rabcd d ≥ 3 (d−2)(d+4)(d2−1)
8

3.11 Spinorial Curvature Decomposition

Spinorial curvature is defined in GRG iff nonmetricity is zero and switch
NONMETR is turned off. The upper sign in this section correspond to the signa-

3.11. Spinorial Curvature Decomposition 95

ture (−,+,+,+) while lower one to the signature (+,−,−,−).

Let us introduce the spinorial analog of the curvature tensor

Rabcd←→ RABCDεȦḂεĊḊ +RȦḂĊḊεABεCD

+RABĊḊεȦḂεCD +RȦḂCDεABεĊḊ, (3.157)

RABCD = −i ∗ (ΩAB ∧ SCD), RABĊḊ = i ∗ (ΩAB ∧ SĊḊ) (3.158)

RȦḂĊḊ = RABCD, RȦḂCD = RABĊḊ (3.159)

The quantities RABCD and RABĊḊ can be used to compute the Curvature

spinors (≡ Curvature components)

Weyl Spinor RW.ABCD = CABCD (3.160)

Traceless Ricci Spinor RC.AB.CD~ = CABĊḊ (3.161)

Scalar Curvature RR = R (3.162)

Ricanti Spinor RA.AB = AAB (3.163)

Traceless Deviation Spinor RB.AB.CD~ = BABĊḊ (3.164)

Scalar Deviation RD = D (3.165)

All these spinors are irreducible (totally symmetric).

Weyl spinor CABCD From spinor curvature is

Cabcd←→CABCDεȦḂεĊḊ + CȦḂĊḊεABεCD (3.166)

CABCD = R(ABCD) (3.167)

Traceless Ricci spinor CABȦḂ From spinor curvature is

Cab←→CABȦḂ (3.168)

CABĊḊ = ±(RABĊḊ +RĊḊAB) (3.169)

Scalar curvature From spinor curvature is

R = 2(RMN
MN +RṀṄ

ṀṄ
) (3.170)

Antisymmetric Ricci spinor AAB From spinor curvature is

Aab←→AABεȦḂ +AȦḂεAB (3.171)

AAB = ∓R M
(A| M |B) (3.172)

96 CHAPTER 3. Formulas

Traceless deviation spinor BABȦḂ From spinor curvature is

Bab←→BABȦḂ (3.173)

BABĊḊ = ±i(RABĊḊ −RĊḊAB) (3.174)

Deviation trace From spinor curvature is

D = −2i(RMN
MN −RṀṄ

ṀṄ
) (3.175)

Note that spinors CABȦḂ , BABȦḂ are Hermitian

CABĊḊ = CCDȦḂ , BABĊḊ = BCDȦḂ (3.176)

Finally we introduce the decomposition for the spinorial curvature 2-form

ΩAB =
w

ΩAB+
c

ΩAB+
r

ΩAB+
a

ΩAB+
b

ΩAB+
c

ΩAB (3.177)

where the Undotted curvature 2-forms

Undotted Weyl 2-form OMWU.AB =
w

ΩAB (3.178)

Undotted Traceless Ricci 2-form OMCU.AB =
c

ΩAB (3.179)

Undotted Scalar Curvature 2-form OMRU.AB =
r

ΩAB (3.180)

Undotted Ricanti 2-form OMAU.AB =
a

ΩAB (3.181)

Undotted Traceless Deviation 2-form OMBU.AB =
b

ΩAB (3.182)

Undotted Scalar Deviation 2-form OMDU.AB =
d

ΩAB (3.183)

are given by

w

ΩAB =CABCDS
CD (3.184)

c

ΩAB =±1

2
CABĊḊS

ĊḊ (3.185)

r

ΩAB =
1

12
SABR (3.186)

a

ΩAB =±A M
(A SM |B) (3.187)

b

ΩAB =∓ i
2
BABĊḊS

ĊḊ (3.188)

d

ΩAB =
i

12
SABD (3.189)

3.12. Torsion Decomposition 97

3.12 Torsion Decomposition

The torsion tensor

Qabc = Qa[bc], Θa =
1

2
Qabc S

bc (3.190)

consists of three irreducible pieces

Qabc =
c

Qabc +
t

Qabc +
a

Qabc (3.191)

object exists if and has n components

Qabc
d2(d−1)

2
c

Qabc d ≥ 3 d(d2−4)
3

t

Qabc d
a

Qabc d ≥ 3 d(d−1)(d−2)
6

The corresponding union of three objects Torsion 2-forms is

Traceless Torsion 2-form THQC’a =
c

Θ
a =

1

2

c

Qa
bc S

bc (3.192)

Torsion Trace 2-form THQT’a =
t

Θ
a =

1

2

t

Qa
bc S

bc (3.193)

Antisymmetric Torsion 2-form THQA’a =
a

Θ
a =

1

2

a

Qa
bc S

bc (3.194)

And the auxiliary quantities

Torsion Trace QT’a = Qa (3.195)

Torsion Trace 1-form QQ = Q = −∂a Θa (3.196)

Antisymmetric Torsion 3-form QQA =
a

Q= θa ∧Θa (3.197)

The torsion trace Qa = Qmam can be obtained From torsion trace 1-form

Qa = ∂a Q (3.198)

The Standard way for the irreducible torsion 2-forms is

t

Θ
a = − 1

(d− 1)
θa ∧Q (3.199)

98 CHAPTER 3. Formulas

t

Θ
a =

1

3
∂a

a

Q (3.200)

c

Θ
a = Θa−

t

Θ
a−

a

Θ
a (3.201)

The rest of this section is valid in dimension 4 only.

In this case one can introduce the torsion pseudo trace

Torsion Pseudo Trace QP’a = P a =
∗
Qma

m,
∗
Qa

bc =
1

2
EbcpqQapq (3.202)

which can be computed From antisymmetric torsion 3-form

P a = ∂a ∗
a

Q (3.203)

Finally let us consider the spinorial representation of the torsion. Below the
upper sign corresponds to the signature (−,+,+,+) and lower one to the signatureSee page ?? or ??.

(+,−,−,−).

First we introduce the spinorial analog of the torsion tensor

Qabc ←→ QAȦBCεḂĊ +QAȦḂĊεBC (3.204)

where

QAȦBC = −i ∗ (ΘAȦ ∧ SBC), QAȦḂĊ = i ∗ (ΘAȦ ∧ SḂĊ) (3.205)

These spinors are reducible but the

Traceless Torsion Spinor QC.ABC.D~ = CABCḊ (3.206)

c

Qabc←→ CABCȦεḂĊ +QȦḂĊAεBC , CȦḂĊA = CABCȦ

is irreducible (symmetric in ABC). And it can be computed From torsion by
the relation

CABCȦ = Q(A|Ȧ|BC) (3.207)

The torsion trace can be calculated From torsion using spinors

Qa ←→ QAȦ, QAḂ = ∓(QMḂMA +QA
Ṁ
ṀḂ) (3.208)

And similarly the torsion pseudo-trace can be found From torsion using

spinors

P a ←→ PAȦ, PAḂ = ∓i(QMḂMA −QA
Ṁ
ṀḂ) (3.209)

3.13. Nonmetricity Decomposition 99

Finally we introduce the Undotted trace 2-forms which are selfdual parts of
the irreducible torsion 2-forms

Undotted Traceless Torsion 2-form THQCU’a =
c

ϑ
a (3.210)

Undotted Torsion Trace 2-form THQTU’a =
t

ϑ
a (3.211)

Undotted Antisymmetric Torsion 2-form THQAU’a =
a

ϑ
a (3.212)

These quantities will be used in the gravitational equations. See page ??.

This complex 2-forms can be obtained by the equations (Standard way):

c

ϑ
a←→

c

ϑ
AȦ = CABC

ȦSBC (3.213)

t

ϑ
a←→

t

ϑ
AȦ = ∓1

3
Q Ȧ
M SAM (3.214)

a

ϑ
a←→

a

ϑ
AȦ = ± i

3
P Ȧ
M SAM (3.215)

3.13 Nonmetricity Decomposition

In general the nonmetricity tensor

Nabc = N(ab)c, Nab = Nabcθ
c (3.216)

consist of 4 irreducible pieces

Nabcd =
c

Nabc +
a

Nabc +
t

Nabc +
w

Nabc (3.217)

object exists if and has n components

Nabc
d2(d+1)

2

c

Nabc
d(d−1)(d+4)

6
a

Nabc d ≥ 3 d(d2−4)
3

t

Nabc d
w

Nabc d

The corresponding union of objects Nonmetricity 1-forms consist of

Symmetric Nonmetricity 1-form NC.a.b =
c

Nab=
c

Nabc θ
c (3.218)

100 CHAPTER 3. Formulas

Antisymmetric Nonmetricity 1-form NA.a.b =
a

Nab=
a

Nabc θ
c (3.219)

Nonmetricity Trace 1-form NT.a.b =
t

Nab=
t

Nabc θ
c (3.220)

Weyl Nonmetricity 1-form NW.a.b =
w

Nab=
w

Nabc θ
c (3.221)

We have also two auxiliary 1-forms

Weyl Vector NNW =
w

N (3.222)

Nonmetricity Trace NNT =
t

N (3.223)

They are computed according to the following formulas

w

N= Na
a (3.224)

t

N= θa ∂b Nab −
1

d

w

N (3.225)

w

Nab=
1

d
gab

w

N (3.226)

t

Nab=
d

(d− 1)(d+ 2)

[
θb∂a

t

N +θa∂b
t

N −
2

d
gab

t

N

]
(3.227)

a

Nab=
1

3

[
∂a (θm∧

0

N bm) + ∂b (θm∧
0

Nam)

]
(3.228)

where
0

Nab= Nabc−
t

Nabc −
w

Nabc

And finally
c

Nab= Nabc−
a

Nabc −
t

Nabc −
w

Nabc (3.229)

3.14 Newman-Penrose Formalism

The method of spinorial differential forms described in the previous sections
are essentially equivalent to the well known Newman-Penrose formalism but for
the sake of convenience GRG has complete set of macro objects which allows to
write the Newman-Penrose equations in traditional notation. All these objects
refer (up to some sign and 1/2 factors) to other GRG built-in objects.

In this section upper sign corresponds to the signature (−,+,+,+) and lower one
to the signature (+,−,−,−). The frame must be null as explained in section ??.See page ??.

3.14. Newman-Penrose Formalism 101

For the Newman-Penrose formalism we use notation and conventions of the
book Exact Solutions of the Einstein Field Equations by D. Kramer, H. Stephani,
M. MacCallum and E. Herlt, ed. E. Schmutzer (Berlin, 1980). We denote this
book as ESEFE.

We chose the relationships between NP null tetrad and GRG null frame as
follows

lµ = hµ0 , kµ = hµ1 , mµ = hµ2 , mµ = hµ3 (3.230)

The NP vector operators are just the components of the vector frame ∂a

DD=D = ∂1 (3.231)

DT= ∆ = ∂0 (3.232)

du= δ = ∂3 (3.233)

dd= δ = ∂2 (3.234)

The spin coefficient are the components of the connection 1-form

SPCOEF.AB.c = ωAB c = ∂c ωAB (3.235)

or in the NP notation

alphanp = α = ±ω(1)2 (3.236)

betanp = β = ±ω(1)3 (3.237)

gammanp = γ = ±ω(1)0 (3.238)

epsilonnp = ε = ±ω(1)1 (3.239)

kappanp = κ = ±ω(0)1 (3.240)

rhonp = ρ = ±ω(0)2 (3.241)

sigmanp = σ = ±ω(0)3 (3.242)

taunp = τ = ±ω(0)0 (3.243)

munp = µ = ±ω(2)3 (3.244)

nunp = ν = ±ω(2)0 (3.245)

lambdanp = λ = ±ω(2)2 (3.246)

pinp = π = ±ω(2)1 (3.247)

(3.248)

where the first index of the quantity ω(AB)c is included inn parentheses to
remind that it is summed spinorial index.

Finally for the curvature we have

PHINP.AB.CD~ = ΦABĊḊ = ±1

2
CABĊḊ (3.249)

102 CHAPTER 3. Formulas

PSINP.ABCD = ΨABCD = CABCD (3.250)

the conventions for the scalar curvature R in ESEFE and in GRG are the same.

For the signature (−,+,+,+) the Newman-Penrose equations for the quantities
introduced above can be found in section 7.1 of ESEFE. For other signature
(+,−,−,−) one must alter the sign of ΨABCD, ΦABĊḊ and R in Eqs. (7.28)–
(7.45).

3.15 Electromagnetic Field

Formulas in this section are valid only in spaces with the signature (−,+,...,+)

and (+,−,...,−). The sign factor σ in the expressions below is σ = −diag0 (+1
for the first signature and −1 for the second).

Let us introduce the

EM Potential A = A = Aµdx
µ (3.251)

and the
Current 1-form J = J = jµdx

µ (3.252)

The EM strength tensor Fαβ = ∂αAβ − ∂βAα

EM Tensor FT.a.b = Fab = ∂b ∂a F (3.253)

where F is the
EM 2-form FF = F (3.254)

which can be found From EM potential

F = dA (3.255)

or From EM tensor

F =
1

2
Fab S

ab (3.256)

The EM action d-form

EM Action EMACT = LEM = − 1

8π
F ∧ ∗F (3.257)

The Maxwell Equations

First Maxwell Equation MWFq = d ∗ F = −4πσ (−1)d ∗ J (3.258)

Second Maxwell Equation MWSq = dF = 0 (3.259)

3.15. Electromagnetic Field 103

The current must satisfy the

Continuity Equation COq = d ∗ J = 0 (3.260)

The
EM Energy-Momentum Tensor TEM.a.b = TEM

ab (3.261)

is given by the equation

TEM
ab =

σ

4π
FamFb

m + sσ gab ∗ LEM (3.262)

The rest of the section is valid in the dimension 4 only.

In 4 dimensions the tensor Fab and its dual
∗
F ab=

1
2Eab

mnFmn are expressed

via usual 3-dimensional vectors ~E and ~H

Fab =−σ

E1 E2 E3

−H3 H2

−H1

 (3.263)

∗
F ab = σ

H1 H2 H3

E3 −E2

E1

 (3.264)

Similarly for the current we have

J = σ(−ρdt+~j d~x) (3.265)

The EM scalars

First EM Scalar SCF = I1 =
1

2
FabF

ab = ~H2 − ~E2 (3.266)

Second EM Scalar SCS = I2 =
1

2

∗
F ab F

ab = 2 ~E · ~H (3.267)

can be obtained as follows by Standard way

I1 = − ∗ (F ∧ ∗F) (3.268)

I2 = ∗(F ∧ F) (3.269)

The
Complex EM 2-form FFU = Φ (3.270)

can be found From EM 2-form

Φ = F − i ∗ F (3.271)

104 CHAPTER 3. Formulas

or From EM Spinor

Φ = 2ΦAB S
AB (3.272)

The 2-form Φ must obey the

Selfduality Equation SDq.AB~ = Φ ∧ SȦḂ (3.273)

and gives rise to the

Complex Maxwell Equation MWUq = dΦ = −4iσπ ∗ J (3.274)

The EM 2-form F can be restored From Complex EM 2-form

F =
1

2
(Φ + Φ) (3.275)

The symmetric
Undotted EM Spinor FIU.AB = ΦAB (3.276)

is the spinorial analog of the tensor Fab

Fab ←→ εABΦȦḂ + εȦḂΦAB (3.277)

It can be obtained either From complex EM 2-form

ΦAB = − i
2
∗ (Φ ∧ SAB) (3.278)

of From EM 2-form

ΦAB = −i ∗ (F ∧ SAB) (3.279)

The
Complex EM Scalar SCU = ι = I1 − iI2 (3.280)

can be found From EM Spinor

ι = 2ΦABΦAB (3.281)

or From Complex EM 2-form

ι = − i
2
∗ (Φ ∧ Φ) (3.282)

Finally we have the

EM Energy-Momentum Spinor TEMS.AB.CD~ = TEM
ABȦḂ

=
1

2π
ΦABΦȦḂ

(3.283)

3.16. Dirac Field 105

3.16 Dirac Field

In this section upper sign corresponds to the signature (−,+,+,+) and lower one
to the signature (+,−,−,−).

The four component Dirac spinor consists of two 1-index spinors

ψ =

(
φA

χȦ

)
, ψ =

(
χA φȦ

)
(3.284)

Thus we have the Dirac spinor as the union of two objects

Phi Spinor PHI.A = φA (3.285)

Chi Spinor CHI.B = χB (3.286)

The gamma-matrices are expressed via sigma-matrices as follows

γm =
√

2

(
0 σmAḂ

σmBȦ 0

)
(3.287)

Dirac field action 4-form

Dirac Action 4-form DACT = LD =

=

[
i

2
(ψγa(∇a + ieAa)ψ − (∇a − ieAa)ψγaψ)−mDψψ

]
υ (3.288)

The Standard way to compute this quantity is

LD =− i√
2

[
φȦθ

AȦ∧ ∗(D + ieA)φA − c.c.− χȦθ
AȦ∧ ∗(D − ieA)χA − c.c.

]
−

−mD

(
φAχA + c.c.

)
υ (3.289)

The Dirac equation is

Phi Dirac Equation DPq.A~ = i
√

2∂BȦ (D + ieA− 1

2
Q)φB −mDχȦ = 0

(3.290)

Chi Dirac Equation DCq.A~ = i
√

2∂BȦ (D − ieA− 1

2
Q)χB −mDφȦ = 0

(3.291)
where Q is the torsion trace 1-form. Notice that terms with the electromagnetic
field eA are included in equations iff the value of A is defined. The unit charge
e is given by the constant ECONST.

106 CHAPTER 3. Formulas

The current 1-form can be computed From Dirac Spinor

J = ∓
√

2e(φAφȦ + χAχȦ)θAȦ (3.292)

The symmetrized

Dirac Energy-Momentum Tensor TDI.a.b = TD
ab (3.293)

can be obtained as follows

TD
ab = ∗(θ(a ∧ TD

b))

TD
a =∓ i√

2

[
∗ θAȦ∂a (D + ieA)φAφȦ − c.c.

− ∗ θAȦ∂a (D − ieA)χAχȦ − c.c.
]
± ∂a LD (3.294)

The
Undotted Dirac Spin 3-Form SPDIU.AB = sDAB (3.295)

sDAB =
i

2
√

2

(
∗θ(A|ȦφB)φ

Ȧ − ∗θ(A|ȦχB)χ
Ȧ
)

(3.296)

The Dirac field mass mD is given by the constant DMASS.

3.17 Scalar Field

Formulas in this section are valid in any dimension with the signature (−,+,...,+)

and (+,−,...,−). The sign factor σ is σ = −diag0 (+1 for the first signature and
−1 for the second).

The scalar field
Scalar Field FI = φ (3.297)

The minimal scalar field action d-form

Minimal Scalar Action SACTMIN = LSmin = −1

2

[
σ(∂αφ)2 +m2

sφ
2
]
υ

(3.298)

The nonminimal scalar field action

Scalar Action SACT = LS = −1

2

[
σ(∂αφ)2 + (m2

s + a0R)φ2
]
υ (3.299)

The scalar field equation

Scalar Equation SCq = sσ(−1)d ∗ d ∗ dφ− (m2
s + a0R)φ = 0 (3.300)

3.18. Yang-Mills Field 107

which gives

−σ
{}

∇π
{}

∇πφ− (m2
s + a0R)φ = 0

The minimal energy-momentum tensor is

Minimal Scalar Energy-Momentum Tensor TSCLMIN.a.b = T Smin
ab =

= ∂aφ∂bφ+ sσ gab ∗ LSmin (3.301)

The nonminimal part of the scalar field energy-momentum tensor can be taken See pages ?? and
??.into account in the left-hand side of gravitational equations.

The scalar field mass ms are given by the constant SMASS. The nonminimal
interaction terms are included iff the switch NONMIN is turned on and the value
of nonminimal interaction constant a0 is determined by the object

A-Constants ACONST.i2 = ai (3.302)

The default value of a0 is the constant AC0.

3.18 Yang-Mills Field

Formulas in this section are valid in any dimension with the signature (−,+,...,+)

and (+,−,...,−). The sign factor σ in the expressions below is σ = −diag0 (+1
for the first signature and −1 for the second). The indices i,j,k,l,m,n are the
internal space Yang-Mills indices and we a assume that the internal Yang-Mills
metric is δij .

The Yang-Mills potential 1-form

YM Potential AYM.i9 = Ai = Aiµdx
µ (3.303)

The structural constants

Structural Constants SCONST.i9.j9.k9 = cijk = ci[jk] (3.304)

The Yang-Mills strength 2-form

YM 2-form FFYM.i9 = F i (3.305)

and strength tensor

YM Tensor FTYM.i9.a.b = F iab (3.306)

108 CHAPTER 3. Formulas

The F i can be computed From YM potential

F i = dAi +
1

2
cijk A

j ∧Ak (3.307)

or From YM tensor

F i =
1

2
F iab S

ab (3.308)

The Standard way to find Yang-Mills strength tensor is

F iab = ∂b ∂a F i (3.309)

The Yang-Mills action d-form

YM Action YMACT = LYM = − 1

8π
F i ∧ ∗Fi (3.310)

The YM Equations

First YM Equation YMFq.i9 = d ∗ F i + cijk A
j ∧ ∗F k = 0 (3.311)

Second YM Equation YMSq.i9 = dF i + cijk A
j ∧ F k = 0 (3.312)

The energy-momentum tensor

YM Energy-Momentum Tensor TYM.a.b =
σ

4π
F iamF

i
b
m + sσ gab ∗ LYM

(3.313)

3.19 Geodesics

The geodesic equation

Geodesic Equation GEOq^m =
d2xµ

dt2
+ {µπτ}

dxπ

dt

dxτ

dt
= 0 (3.314)

Here the parameter t must be declared by the Affine parameter declaration.See page ??.

3.20 Null Congruence and Optical Scalars

Let us consider the congruence defined by the vector field kα

Congruence KV = k = kµ∂µ (3.315)

3.21. Timelike Congruences and Kinematics 109

This congruence is null iff

Null Congruence Condition NCo = k · k = 0 (3.316)

holds.

The congruence is geodesic iff the condition

Geodesics Congruence Condition GCo’a = kµ
{}

∇µk
a = 0 (3.317)

is fulfilled.

For the null geodesic congruence one can calculate the Optical scalars

Congruence Expansion thetaO = θ =
1

2

{}

∇πkπ (3.318)

Congruence Squared Rotation omegaSQO = ω2 =
1

2
(
{}

∇ [αkβ])
2 (3.319)

Congruence Squared Shear sigmaSQO = σσ =
1

2

[
(
{}

∇ (αkβ))
2 − 2θ2

]
(3.320)

3.21 Timelike Congruences and Kinematics

Let us consider the congruence determined by the velocity vector uα

Velocity UU’a = ua (3.321)

Velocity Vector UV = u = ua∂a (3.322)

The velocity vector must be normalized and the quantity

Velocity Square USQ = u2 = u · u (3.323)

must be constant but nonzero.

If the frame metric coincides with its default diagonal value gab = diag(−1, . . .) See page ??.

then By default we have for the velocity

ua = (1, 0, . . . , 0) (3.324)

which means that the congruence is comoving in the given frame.

In general case the velocity can be obtained From velocity vector

ua = u θa (3.325)

110 CHAPTER 3. Formulas

We introduce the auxiliary object

Projector PR’a.b = P ab = δab −
1

u2
uanb (3.326)

The following four quantities called Kinematics comprise the complete set of
the congruence characteristics

Acceleration accU’a = Aa =
{}

∇uu
a (3.327)

Vorticity omegaU.a.b = ωab = PmaP
n
b

{}

∇ [mun] (3.328)

Volume Expansion thetaU = Θ =
{}

∇au
a (3.329)

Shear sigmaU.a.b = PmaP
n
b

{}

∇ (mun) −
1

(d− 1)
PabΘ (3.330)

3.22 Ideal And Spin Fluid

The ideal fluid is characterized by the

Pressure PRES = p (3.331)

and
Energy Density ENER = ε (3.332)

The ideal fluid energy-momentum tensor is

Ideal Fluid Energy-Momentum Tensor TIFL.a.b = T IF
ab =

= (ε+ p)uaub − u2pgab (3.333)

The rest of the section requires the nonmetricity be zero (NONMETR is off).

In addition spin-fluid is characterized by

Spin Density SPFLT.a.b = SSF
ab = SSF

[ab] (3.334)

or equivalently by

Spin Density 2-form SPFL = SSF (3.335)

The spin 2-form can be obtained From spin density

SSF =
1

2
SSF
ab θ

a ∧ θa (3.336)

3.23. Total Energy-Momentum And Spin 111

and sab is determined From spin density 2-form

SSF
ab = ∂b ∂a SSF (3.337)

The spin density must satisfy the Frenkel condition

Frenkel Condition FCo = u SSF = 0 (3.338)

The spin fluid energy-momentum tensor is

Spin Fluid Energy-Momentum Tensor TSFL.a.b = T SF
ab =

= (ε+ p)uaub − u2pgab + ∆(ab) (3.339)

where
∆ab = −2(gcd + u−2 ucud)∇cSSF

(ab)d (3.340)

sSFabc = ua S
SF
bc (3.341)

if torsion is zero (TORSION off) and

∆ab = 2u−2 uau
d∇uSSF

bd (3.342)

if torsion is nonzero (TORSION on).

Notice that the energy-momentum tensor T SF
ab is symmetrized. See page ??.

Finally yet another representation for the spin is the undotted spin 3-form

Undotted Fluid Spin 3-form SPFLU.AB = sSFAB (3.343)

which is given by the standard spinor ←→ tensor correspondence rules

sSFmab ∗ θm ←→ εABs
SF
ȦḂ

+ εȦḂs
SF
AB (3.344)

according to Eq. (??). This quantity is used in the right-hand side of gravita- See page ??.

tional equations.

3.23 Total Energy-Momentum And Spin

The total energy-momentum tensor

Total Energy-Momentum Tensor TENMOM.a.b = Tab (3.345)

and the total undotted spin 3-form See pages ?? and
??.

Total Undotted Spin 3-form SPINU.AB = sAB (3.346)

112 CHAPTER 3. Formulas

play the role of sources in the right-hand side of the gravitational equations.

The expression for these quantities read

Tab = TD
ab + TEM

ab + TYM
ab + T Smin

ab + T IF
ab + T SF

ab (3.347)

sAB = sDAB + sSFAB (3.348)

When Tab and sAB are calculated GRG does not tries to find value of all objects
in the right-hand side of Eqs. (??), (??) instead it adds only the quantities
whose value are currently defined. In particular if none of above tensors and
spinors are defined then Tab = sAB = 0.

Notice that Tab and all tensors in the right-hand side of Eq. (??) are symmetric.
They are the symmetric parts of the canonical energy-momentum tensors.See page ??.

In addition we introduce the

Total Energy-Momentum Trace TENMOMT = T = T aa (3.349)

and the spinor

Total Energy-Momentum Spinor TENMOMS.AB.CD~ = TABĊḊ (3.350)

is a spinorial equivalent of the traceless part of Tab

Tab −
1

4
gabT ←→ TABȦḂ (3.351)

3.24 Einstein Equations

The Einstein equation

Einstein Equation EEq.a.b = Rab −
1

2
gabR+ ΛR = 8πGTab (3.352)

And the Spinor Einstein equations

Traceless Einstein Equation CEEq.AB.CD~ = CABĊḊ = 8πGTABĊḊ
(3.353)

Trace of Einstein Equation TEEq = R− 4Λ = −8πGT (3.354)

The cosmological constant is included in these equations iff the switch CCONST

is turned on and its value is given by the constant CCONST. The gravitational
constant G is given by the constant GCONST.

3.25. Gravitational Equations in Space With Torsion 113

3.25 Gravitational Equations in Space With Tor-
sion

Equations in this section are valid in dimension d = 4 with the signature
(−,+,+,+) and (+,−,−,−) only. The σ = 1 for the first signature and σ = −1 for
the second. The nonmetricity must be zero and the switch NONMETR turned off.

Let us consider the action

S =

∫ [σ

16πG
Lg + Lm

]
(3.355)

where
Action LACT = Lg = υLg (3.356)

is the gravitational action 4-form and

Lm = υLm (3.357)

is the matter action 4-form.

Let us define the following variational derivatives

Zµa =
1√
−g

δ
√
−gLg

δhaµ
, tµa =

σ√
−g

δ
√
−gLm

δhaµ
(3.358)

V µab =
1√
−g

δ
√
−gLg

δωabµ
, sµab =

σ√
−g

δ
√
−gLm

δωabµ
(3.359)

Then the gravitational equations reads

Zµa =−16πG tµa (3.360)

V µab =−16πGsµab (3.361)

Here the first equation is an analog of Einstein equation and has the canonical
nonsymmetric energy-momentum tensor tµa as a source. The source in the
second equation is the spin tensor sµab.

Now we rewrite these equation in other equivalent form. First let us define the
following 3-forms

Za = Zma ∗ θm, ta = tma ∗ θm (3.362)

Vab = V mab ∗ θm, sab = smab ∗ θm (3.363)

Notice that Eq. (??) is not symmetric but the antisymmetric part of this
equation is expressed via second Eq. (??) due to Bianchi identity. Therefore

114 CHAPTER 3. Formulas

only the symmetric part of Eq. (??) is essential. Eq. (??) is antisymmetric
and we can consider its spinorial analog using the standard relations

Vab←→ VAȦBḂ = εABVȦḂ + εȦḂVAB (3.364)

sab←→ sAȦBḂ = εABsȦḂ + εȦḂsAB (3.365)

See page ??.

Finally we define the Gravitational equations in the form

Metric Equation METRq.a.b = −1

2
Z(ab) = 8πGTab (3.366)

Torsion Equation TORSq.AB = VAB = −16πGsAB (3.367)

where the currents in the right-hand side of equations areSee page ??.

Total Energy-Momentum Tensor TENMOM.a.b = Tab = t(ab) (3.368)

Total Undotted Spin 3-form SPINU.AB = sAB (3.369)

Now let us consider the equations which are used in GRG to compute the left-
hand side of the gravitational equations Z(ab) and VAB . We have to emphasize
that we use spinors and all restrictions imposed by the spinorial formalism mustSee page ??.

be fulfilled.

We consider the Lagrangian which is an arbitrary algebraic function of the
curvature and torsion tensors

Lg = Lg(Rabcd, Qabc) (3.370)

No derivatives of the torsion or curvature are permitted. For such a Lagrangian
we define so called curvature and torsion momentums

R̃abcd = 2
∂Lg(R,Q)

∂Rabcd
, Q̃abc = 2

∂Lg(R,Q)

∂Qabc
, (3.371)

The corresponding objects are

Undotted Curvature Momentum POMEGAU.AB = Ω̃AB (3.372)

Torsion Momentum PTHETA’a = Θ̃a (3.373)

where

Ω̃ab =
1

2
R̃abcd S

cd (3.374)

Θ̃a =
1

2
Q̃acd S

cd (3.375)

3.25. Gravitational Equations in Space With Torsion 115

and
Ω̃ab ←→ Ω̃AȦBḂ = εABΩ̃ȦḂ + εȦḂΩ̃AB (3.376)

If value of three objects Lg (Action), Ω̃AB (Undotted curvature momentum)

and Θ̃a are specified then the Gravitational equations can be calculated
using equations (Standard way)

Z(ab) = ∗(θ(a ∧ Zb)),

Za =DΘ̃a + (∂a Θb) ∧ Θ̃b + 2(∂a ΩMN) ∧ Ω̃MN

+c.c.− ∂aLg (3.377)

VAB = −DΩ̃AB − Θ̃AB ,

θ[a ∧ Θ̃b] ←→ εABΘ̃ȦḂ + εȦḂΘ̃AB (3.378)

Since gravitational equations are computed in the spinorial formalism with the
standard null frame the metric equation is complex and components 02, 12, 22 See pages ?? and

??.are conjugated to 03. 13, 33. Since these components are not independent For
the sake of efficiency by default GRG computes only the 00, 01, 02, 11, 12, 22

and 23 components of Z(ab) only. If you want to have all components the switch
FULL must be turned on.

These equations allows one to compute field equations for gravity theory with
an arbitrary Lagrangian. But the value of three quantities Lg, Ω̃AB and Θ̃a

must be specified by the user. In addition GRG has built-in formulas for the
most general quadratic in torsion and curvature Lagrangian. The Standard

way for Lg, Ω̃AB and Θ̃a is

Θ̃a = iµ1(
c

ϑ
a − c.c.) + iµ2(

t

ϑ
a − c.c.) + iµ3(

a

ϑ
a − c.c.), (3.379)

Ω̃AB = i(λ0 − σ 8πGa0φ
2)SAB

+iλ1
w

ΩAB − iλ2
c

ΩAB + iλ3
r

ΩAB

+iλ4
a

ΩAB − iλ5
b

ΩAB + iλ6
d

ΩAB , (3.380)

Lg = (−2Λ +
1

2
λ0R− σ 4πGa0φ

2R)υ + ΩAB ∧ Ω̃AB + c.c.

+
1

2
Θa ∧ Θ̃a (3.381)

The cosmological term Λ is included into equations iff the switch CCONST is
turned on and the value of Λ is given by the constant CCONST. The term with

116 CHAPTER 3. Formulas

the scalar field φ is included into equations iff the switch NONMIN is on. The
gravitational constant G is given by the constant GCONST. The parameters of
the quadratic Lagrangian are given by the objects

L-Constants LCONST.i6 = λi (3.382)

M-Constants MCONST.i3 = µi (3.383)

A-Constants ACONST.i2 = ai (3.384)

The default value of these objects (Standard way) is

λi = (LC0, LC1, LC2, LC3, LC4, LC5, LC6), (3.385)

µi = (0, MC1, MC2, MC32), (3.386)

ai = (AC0, 0, 0) (3.387)

3.26 Gravitational Equations in Riemann Space

Equations in this section are valid in dimension d = 4 with the signature
(−,+,+,+) and (+,−,−,−) only. The σ = 1 for the first signature and σ = −1
for the second. The nonmetricity and torsion must be zero and the switches
NONMETR and TORSION must be turned off.

Let us consider the action

S =

∫ [σ

16πG
Lg + Lm

]
(3.388)

where
Action LACT = Lg = υLg (3.389)

is the gravitational action 4-form and

Lm = υLm (3.390)

is the matter action 4-form.

Let us define the following variational derivatives

Zµa =
1√
−g

δ
√
−gLg

δhaµ
, Tµa =

σ√
−g

δ
√
−gLm

δhaµ
(3.391)

Then the Metric equation is

Metric Equation METRq.a.b = −1

2
Zab = 8πGTab (3.392)

3.26. Gravitational Equations in Riemann Space 117

Notice that Zab and Tab are automatically symmetric.

Let us define 3-form

Za = Zma ∗ θm, ta = tma ∗ θm (3.393)

Now we consider the equations which are used in GRG to compute the left-
hand side of the metric equation Zab. We have to emphasize that we use spinors
and all restrictions imposed by the spinorial formalism must be fulfilled. See pages ?? or ??.

We consider the Lagrangian which is an arbitrary algebraic function of the
curvature tensor

Lg = Lg(Rabcd) (3.394)

No derivatives of the curvature are permitted. For such a Lagrangian we define
so called curvature momentum

R̃abcd = 2
∂Lg(R)

∂Rabcd
(3.395)

The corresponding GRG built-in object is

Undotted Curvature Momentum POMEGAU.AB = Ω̃AB (3.396)

where

Ω̃ab =
1

2
R̃abcd S

cd (3.397)

(3.398)

and
Ω̃ab ←→ Ω̃AȦBḂ = εABΩ̃ȦḂ + εȦḂΩ̃AB (3.399)

If value of the objects Lg (Action) and Ω̃AB (Undotted curvature momentum)
is specified then the Metric equation can be calculated using equations (Standard
way)

Zab = ∗(θ(a ∧ Zb)),

Za =D[2∂m DΩ̃a
m − 1

2
θa∧ (∂m ∂n DΩ̃mn)]

+2(∂a ΩMN) ∧ Ω̃MN + c.c.− ∂aLg (3.400)

Since gravitational equations are computed in the spinorial formalism with the
standard null frame the metric equation is complex and components 02, 12, 22 See page ?? or page

??.are conjugated to 03, 13, 33. For the sake of efficiency by default GRG computes

118 CHAPTER 3. Formulas

only the components 00, 01, 02, 11, 12, 22 and 23 only. If you want to have all
components the switch FULL must be turned on.

These equations allows one to compute field equations for gravity theory with
an arbitrary Lagrangian. But the value of three quantities Lg and Ω̃AB must be
specified by user. In addition GRG has built-in formulas for the most general
quadratic in the curvature Lagrangian. The Standard way for Lg and Ω̃AB is

Ω̃AB = i(λ0 − σ8πGa0φ
2)SAB

+iλ1
w

ΩAB − iλ2
c

ΩAB + iλ3
r

ΩAB , (3.401)

Lg = (−2Λ +
1

2
λ0R− σ4πGa0φ

2R)υ + ΩAB ∧ Ω̃AB + c.c. (3.402)

The cosmological term is included into equations iff the switch CCONST is on
and the value of Λ is given by the constant CCONST. The term with the scalar
field φ is included into equations iff the switch NONMIN is on. The gravitational
constant G is given by the constant GCONST. The parameters of the quadratic
lagrangian are given by the object

L-Constants LCONST.i6 = λi (3.403)

A-Constants ACONST.i2 = ai (3.404)

The default value of these objects (Standard way) is

λi = (LC0, LC1, LC2, LC3, LC4, LC5, LC6), (3.405)

ai = (AC0, 0, 0) (3.406)

APPENDIX A

GRG Switches

Switch Default Description See
State page

AEVAL Off Use AEVAL instead of REVAL. ??
WRS On Re-simplify object before printing. ??
WMATR Off Write 2-index objects in matrix form. ??

TORSION Off Torsion. ??
NONMETR Off Nonmetricity. ??
UNLCORD On Save coordinates in Unload. ??
AUTO On Automatic object calculation in expressions. ??
TRACE On Trace the calculation process. ??

SHOWCOMMANDS Off Show compound command expansion. ??
EXPANDSYM Off Enable Sy Asy Cy in expressions ??
DFPCOMMUTE On Commutativity of DFP derivatives. ??
NONMIN Off Nonminimal interaction for scalar field. ??

NOFREEVARS Off Prohibit free variables in Print. ??
CCONST Off Include cosmological constant in equations. ??
FULL Off Number of components in Metric Equation. ??
LATEX Off LATEX output mode. ??
GRG Off GRG output mode. ??

REDUCE Off Reduce output mode. ??
MAPLE Off Maple output mode. ??
MATH Off Mathematica output mode. ??

MACSYMA Off Macsyma output mode. ??
DFINDEXED Off Print DF in index notation. ??

BATCH Off Batch mode. ??
HOLONOMIC On Keep frame holonomic. ??
SHOWEXPR Off Print expressions during algebraic ??

classification.

120 APPENDIX A. GRG Switches

APPENDIX B

Macro Objects

Macro objects can be used in expression, in Write and Show commands but
not in the Find command. The notation for indices is the same as in the New

Object declaration (see page ??).

B.1 Dimension and Signature

dim Dimension d
sdiag.idim sdiag(n) is the n’th element of the

signature diag(−1,+1. . .)
sign Product of the signature specification

sgnt elements
∏d−1
n=0 sdiag(n)

mpsgn sdiag(0)

pmsgn -sdiag(0)

B.2 Metric and Frame

x^m m’th coordinate
X^m

h’a_m Frame coefficients
hi.a^m

g_m_n Holonomic metric
gi^m^n

122 APPENDIX B. Macro Objects

B.3 Delta and Epsilon Symbols

del’a.b Delta symbols
delh^m_n

eps.a.b.c.d Totally antisymmetric symbols
epsi’a’b’c’d (number of indices depend on d)
epsh_m_n_p_q

epsih^m^n^p^q

B.4 Spinors

DEL’A.B Delta symbol
EPS.A.B Spinorial metric
EPSI’A’B

sigma’a.A.B~ Sigma matrices
sigmai.a’A’B~

cci.i3 Frame index conjugation in standard null frame
cci(0)=0 cci(1)=1 cci(2)=3 cci(3)=2

B.5 Connection Coefficients

CHR^m_n_p Christoffel symbols {µνπ}
CHRF_m_n_p and [µ,νπ]
CHRT_m Christoffel symbol trace {ππµ}
SPCOEF.AB.c Spin coefficients ωAB c

B.6. NP Formalism 123

B.6 NP Formalism

PHINP.AB.CD ΦABċḊ
PSINP.ABCD ΨABCD

alphanp α
betanp β
gammanp γ
epsilonnp ε
kappanp κ
rhonp ρ
sigmanp σ
taunp τ
munp µ
nunp ν
lambdanp λ
pinp π
DD D
DT ∆
du δ

dd δ

124 APPENDIX B. Macro Objects

APPENDIX C

Objects

Here we present the complete list of built-in objects with names and identifiers.
The notation for indices is the same as in the New Object declaration (see page
??). Some names (group names) refer to a set of objects. For example the group
name Spinorial S - forms below denotes SU.AB and SD.AB~

C.1 Metric, Frame, Basis, Volume . . .

Frame T’a

Vector Frame D.a

Metric G.a.b

Inverse Metric GI’a’b

Det of Metric detG

Det of Holonomic Metric detg

Sqrt Det of Metric sdetG

Volume VOL

Basis b’idim

Vector Basis e.idim

S-forms S’a’b

Spinorial S-forms

Undotted S-forms SU.AB

Dotted S-forms SD.AB~

C.2 Rotation Matrices

Frame Transformation L’a.b

Spinorial Transformation LS.A’B

126 APPENDIX C. Objects

C.3 Connection and related objects

Frame Connection omega’a.b

Holonomic Connection GAMMA^m_n

Spinorial Connection

Undotted Connection omegau.AB

Dotted Connection omegad.AB~

Riemann Frame Connection romega’a.b

Riemann Holonomic Connection RGAMMA^m_n

Riemann Spinorial Connection

Riemann Undotted Connection romegau.AB

Riemann Dotted Connection romegad.AB~

Connection Defect K’a.b

C.4 Torsion

Torsion THETA’a

Contorsion KQ’a.b

Torsion Trace 1-form QQ

Antisymmetric Torsion 3-form QQA

Spinorial Contorsion

Undotted Contorsion KU.AB

Dotted Contorsion KD.AB~

Torsion Spinors

Torsion Components

Torsion Trace QT’a

Torsion Pseudo Trace QP’a

Traceless Torsion Spinor QC.ABC.D~

Torsion 2-forms

Traceless Torsion 2-form THQC’a

Torsion Trace 2-form THQT’a

Antisymmetric Torsion 2-form THQA’a

Undotted Torsion 2-forms

Undotted Torsion Trace 2-form THQTU’a

Undotted Antisymmetric Torsion 2-form THQAU’a

Undotted Traceless Torsion 2-form THQCU’a

C.5. Curvature 127

C.5 Curvature

Curvature OMEGA’a.b

Spinorial Curvature

Undotted Curvature OMEGAU.AB

Dotted Curvature OMEGAD.AB~

Riemann Tensor RIM’a.b.c.d

Ricci Tensor RIC.a.b

A-Ricci Tensor RICA.a.b

S-Ricci Tensor RICS.a.b

Homothetic Curvature OMEGAH

Einstein Tensor GT.a.b

Curvature Spinors

Curvature Components

Weyl Spinor RW.ABCD

Traceless Ricci Spinor RC.AB.CD~

Scalar Curvature RR

Ricanti Spinor RA.AB

Traceless Deviation Spinor RB.AB.CD~

Scalar Deviation RD

Undotted Curvature 2-forms

Undotted Weyl 2-form OMWU.AB

Undotted Traceless Ricci 2-form OMCU.AB

Undotted Scalar Curvature 2-form OMRU.AB

Undotted Ricanti 2-form OMAU.AB

Undotted Traceless Deviation 2-form OMBU.AB

Undotted Scalar Deviation 2-form OMDU.AB

Curvature 2-forms

Weyl 2-form OMW.a.b

Traceless Ricci 2-form OMC.a.b

Scalar Curvature 2-form OMR.a.b

Ricanti 2-form OMA.a.b

Traceless Deviation 2-form OMB.a.b

Antisymmetric Curvature 2-form OMD.a.b

Homothetic Curvature 2-form OSH.a.b

Antisymmetric S-Ricci 2-form OSA.a.b

Traceless S-Ricci 2-form OSC.a.b

Antisymmetric S-Curvature 2-form OSV.a.b

Symmetric S-Curvature 2-form OSU.a.b

128 APPENDIX C. Objects

C.6 Nonmetricity

Nonmetricity N.a.b

Nonmetricity Defect KN’a.b

Weyl Vector NNW

Nonmetricity Trace NNT

Nonmetricity 1-forms

Symmetric Nonmetricity 1-form NC.a.b

Antisymmetric Nonmetricity 1-form NA.a.b

Nonmetricity Trace 1-form NT.a.b

Weyl Nonmetricity 1-form NW.a.b

C.7 EM field

EM Potential A

Current 1-form J

EM Action EMACT

EM 2-form FF

EM Tensor FT.a.b

Maxwell Equations

First Maxwell Equation MWFq

Second Maxwell Equation MWSq

Continuity Equation COq

EM Energy-Momentum Tensor TEM.a.b

EM Scalars

First EM Scalar SCF

Second EM Scalar SCS

Selfduality Equation SDq.AB~

Complex EM 2-form FFU

Complex Maxwell Equation MWUq

Undotted EM Spinor FIU.AB

Complex EM Scalar SCU

EM Energy-Momentum Spinor TEMS.AB.CD~

C.8 Scalar field

Scalar Equation SCq

Scalar Field FI

Scalar Action SACT

Minimal Scalar Action SACTMIN

Minimal Scalar Energy-Momentum Tensor TSCLMIN.a.b

C.9. YM field 129

C.9 YM field

YM Potential AYM.i9

Structural Constants SCONST.i9.j9.k9

YM Action YMACT

YM 2-form FFYM.i9

YM Tensor FTYM.i9.a.b

YM Equations

First YM Equation YMFq.i9

Second YM Equation YMSq.i9

YM Energy-Momentum Tensor TYM.a.b

C.10 Dirac field

Dirac Spinor

Phi Spinor PHI.A

Chi Spinor CHI.B

Dirac Action 4-form DACT

Undotted Dirac Spin 3-Form SPDIU.AB

Dirac Energy-Momentum Tensor TDI.a.b

Dirac Equation

Phi Dirac Equation DPq.A~

Chi Dirac Equation DCq.A~

C.11 Geodesics

Geodesic Equation GEOq^m

C.12 Null Congruence

Congruence KV

Null Congruence Condition NCo

Geodesics Congruence Condition GCo’a

Optical Scalars

Congruence Expansion thetaO

Congruence Squared Rotation omegaSQO

Congruence Squared Shear sigmaSQO

130 APPENDIX C. Objects

C.13 Kinematics

Velocity Vector UV

Velocity UU’a

Velocity Square USQ

Projector PR’a.b

Kinematics

Acceleration accU’a

Vorticity omegaU.a.b

Volume Expansion thetaU

Shear sigmaU.a.b

C.14 Ideal and Spin Fluid

Pressure PRES

Energy Density ENER

Ideal Fluid Energy-Momentum Tensor TIFL.a.b

Spin Fluid Energy-Momentum Tensor TSFL.a.b

Spin Density SPFLT.a.b

Spin Density 2-form SPFL

Undotted Fluid Spin 3-form SPFLU.AB

Frenkel Condition FCo

C.15 Total Energy-Momentum and Spin

Total Energy-Momentum Tensor TENMOM.a.b

Total Energy-Momentum Spinor TENMOMS.AB.CD~

Total Energy-Momentum Trace TENMOMT

Total Undotted Spin 3-form SPINU.AB

C.16 Einstein Equations

Einstein Equation EEq.a.b

Spinor Einstein Equations

Traceless Einstein Equation CEEq.AB.CD~

Trace of Einstein Equation TEEq

C.17. Constants 131

C.17 Constants

A-Constants ACONST.i2

L-Constants LCONST.i6

M-Constants MCONST.i3

C.18 Gravitational Equations

Action LACT

Undotted Curvature Momentum POMEGAU.AB

Torsion Momentum PTHETA’a

Gravitational Equations

Metric Equation METRq.a.b

Torsion Equation TORSq.AB

132 APPENDIX C. Objects

APPENDIX D

Standard Synonymy

Below we present the default synonymy as it is defined in the global configu-
ration file. See section ?? to find out how to change the default synonymy or
define a new one.

Affine Aff

Anholonomic Nonholonomic AMode ABasis

Antisymmetric Asy

Change Transform

Classify Class

Components Comp

Connection Con

Constants Const Constant

Coordinates Cord

Curvature Cur

Dimension Dim

Dotted Do

Equation Equations Eq

Erase Delete Del

Evaluate Eval Simplify

Find F Calculate Calc

Form Forms

Functions Fun Function

Generic Gen

Gravitational Gravity Gravitation Grav

Holonomic HMode HBasis

Inverse Inv

Load Restore

Next N

Normalize Normal

Object Obj

Output Out

134 APPENDIX D. Standard Synonymy

Parameter Par

Rotation Rot

Scalar Scal

Show ?

Signature Sig

Solutions Solution Sol

Spinor Spin Spinorial Sp

standardlisp lisp

Switch Sw

Symmetries Sym Symmetric

Tensor Tensors Tens

Torsion Tors

Transformation Trans

Undotted Un

Unload Save

Vector Vec

Write W

Zero Nullify

