
miccautil Package

Analysis Procedures for micca

Andrew Mangogna

miccautil Package ii

Copyright © 2020 - 2023 G. Andrew Mangogna

Legal Notices and Information

This document is copyrighted 2020 - 2023 by G. Andrew Mangogna. The following terms apply to all files associated with the
software unless explicitly disclaimed in individual files.

The authors hereby grant permission to use, copy, modify, distribute, and license this software and its documentation for any
purpose, provided that existing copyright notices are retained in all copies and that this notice is included verbatim in any
distributions. No written agreement, license, or royalty fee is required for any of the authorized uses. Modifications to this
software may be copyrighted by their authors and need not follow the licensing terms described here, provided that the new terms
are clearly indicated on the first page of each file where they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF THIS SOFTWARE, ITS
DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN IF THE AUTHORS HAVE BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
NON-INFRINGEMENT. THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, AND THE AUTHORS AND DISTRIB-
UTORS HAVE NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODI-
FICATIONS.

GOVERNMENT USE: If you are acquiring this software on behalf of the U.S. government, the Government shall have only
"Restricted Rights" in the software and related documentation as defined in the Federal Acquisition Regulations (FARs) in Clause
52.227.19 (c) (2). If you are acquiring the software on behalf of the Department of Defense, the software shall be classified as
"Commercial Computer Software" and the Government shall have only "Restricted Rights" as defined in Clause 252.227-7013 (c)
(1) of DFARs. Notwithstanding the foregoing, the authors grant the U.S. Government and others acting in its behalf permission
to use and distribute the software in accordance with the terms specified in this license.

miccautil Package iii

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME

0.1 August 1, 2020 Start of coding. GAM

1.0 August 9, 2020 Initial release. GAM

1.1 June 13, 2021 Corrected missing final state transition for
constructed graphs. Added "creationevents"
method to return a list of creation events.

GAM

1.2 March 10, 2023 Corrected a problem where state machine trace
log events were being swallowed by miccautil.
Now, the log messages are forwarded to the
previous message handler.

GAM

1.3 April 2, 2023 Changes needed to operate with micca version
1.4.0.

GAM

miccautil Package iv

Contents

1 Introduction 1

Background . 1

Overview . 1

How to Read This Document . 2

2 Preliminaries 3

3 The Model Class 4

Constructor . 4

Destructor . 5

Domain name method . 6

Class names . 6

Class attributes . 7

State names . 7

Event names . 8

Creation event names . 9

State model transitions . 10

Computing the transition matrix . 12

Recording event dispatch . 13

Starting a transition recording session . 13

Stopping a transition recording session . 14

Recording an event transition . 14

Reporting transitions . 15

Counting transitions with mecate . 18

Default attribute values . 20

Initial instance population . 22

State model as a graph . 23

State model with Tcldot . 26

4 Functions on state model graphs 34

Depth first search of a state model graph . 35

Spanning tree of a state model . 38

Graphviz view of a graph . 41

miccautil Package v

5 Code Layout 44

miccautil Source . 44

Testing Source . 44

Edit Warning . 45

Copyright Information . 46

A Literate Programming 47

Index 48

miccautil Package vi

List of Figures

3.1 Sample Set state model rendered by dot . 29

3.2 Report Record state model rendered by dot . 31

3.3 Original Report Record state model from Umlet . 32

3.4 Remote Sensor state model rendered by dot . 33

4.1 DFS annotations for Reporting Session state model . 36

4.2 DFS annotations for Sample Set state model . 38

4.3 Spanning tree of Conduit state model . 40

miccautil Package vii

List of Examples

3.1 Recording transitions . 16
3.2 Transitions not ignored or impossible . 17
3.3 Transitions not taken . 17
3.4 Executed state activities . 18
3.5 Example initial instance population tuple . 23

miccautil Package 1 / 49

Chapter 1

Introduction

This document describes the miccautil package. Miccautil is a pure Tcl package that is intended to accompany the
micca XUML translation tool.

Background

Micca is a program to aid in the translation of Executable UML domain models into “C” code. During the translation process,
information about a platform specific model is input to micca via a domain specific language. Executing the domain specific
language then populates the platform specific model. The platform specific model itself consists of a relationally normalized
schema. The populated platform model is then used to generate the translation code.

Upon request, micca will serialize the populated platform model of a domain. The miccautil package is used to access the
platform specific model population and query common aspects of it. Note that miccautil is not required to access the domain
model. It simply provides a set of more common, and sometimes more complex, queries on the model population. It is quite
feasable to deserialize the domain model population (either using the TclRAL native format or SQLite format) and write custom
queries against it. The relational schema of the platform model is given in the micca literate program document.

Overview

The miccautil package consists of one TclOO command and several ordinary procedures which together form the namespace
ensemble command, ::miccautil

The TclOO command is named, model, and represents the platform specific population for a single domain.

Object instances of model have methods which support the following types of processing.

• Obtaining basic domain information such as class names.

• Obtaining the state transition matrix of a class state model.

• Recording state transitions for a class to track the state and transition coverage of test cases.

• Reporting information on the inital instance population.

• Exporting the state model of a class as a directed graph.

• Exporting the state model of a class as a graphviz drawing.

The other procedures in miccautil perform calculations on the directed graph of a state model such as a depth first search
(DFS) or finding a spanning tree.

https://repos.modelrealization.com/cgi-bin/fossil/mrtools/wiki?name=MiccaPage
https://en.wikipedia.org/wiki/Executable_UML
https://repos.modelrealization.com/cgi-bin/fossil/mrtools/doc/trunk/micca/doc/micca.pdf
https://graphviz.org/
https://en.wikipedia.org/wiki/Depth-first_search

miccautil Package 2 / 49

How to Read This Document

This document is a literate program document. As such it includes a complete description of both the design and implementation
of the miccautil. Further information on the particular literal programming syntax used here is given in Appendix A.

Readers are not expected to read the document in sequence from beginning to end. Skipping around is encouraged. The document
file is hyperlinked with both a Table of Contents and Index to help direct you to a specific topic.

http://literateprogramming.com

miccautil Package 3 / 49

Chapter 2

Preliminaries

We will have need of a number of supporting packages.

<<required packages>>=
package require logger
package require logger::utils
package require logger::appender
package require ral
package require ralutil

The ral and ralutil packages are essential and hold the relational schema that is the platform specific model. Several
procedures in the package return relation values which can be further manipulated using ral procedures.

We also need to configure the logger output.

<<logger setup>>=
set logger [::logger::init miccautil]
set appenderType [expr {[dict exist [fconfigure stdout] -mode] ?\

"colorConsole" : "console"}]
::logger::utils::applyAppender -appender $appenderType -serviceCmd $logger\

-appenderArgs {-conversionPattern {\[%c\] \[%p\] '%m'}}
::logger::import -all -force -namespace log miccautil

http://repos.modelrealization.com/cgi-bin/fossil/tclral/wiki?name=Downloads

miccautil Package 4 / 49

Chapter 3

The Model Class

The model class represents the population of the micca platform specific model for a single domain.

<<miccautil commands>>=
::oo::class create ::miccautil::model {

<<model class definition>>
}

The class command name is exported and the exported commands of the miccautil namespace are used to create an ensemble
command of the same name.

<<package exports>>=
namespace export model

Constructor

::miccautil model create objname savefile

::miccautil model new savefile

objname The name of the command to be created which represents the model. The new version of the
constructor creates a name automatically.

savefile The name of a file saved from a micca run. This file should be saved in TclRAL native
serialization format.

The create and new methods create an instance of a model object. The savefile argument is required and is the name of
a file produced by a run of micca with the -save option. The return value of the function is a fully qualified command
that may be used with the methods given below.

Implementation

<<model class definition>>=
constructor {savefile} {

::logger::import -all -namespace log miccautil

namespace import ::ral::*
namespace import ::ralutil::*

miccautil Package 5 / 49

ral deserializeFromFile $savefile [self namespace]

set domains [pipe {
relvar set Domain |
relation project ~ Name |
relation list ~

}]

if {[llength $domains] > 1} {
error "micca save file must contain only one domain:\

found, \"[join $domains ,]\""
}

my variable domain_name
set domain_name [lindex $domains 0]

my variable recording_state
set recording_state off

my variable previous_callback
set previous_callback [list]

}

Tests

<<constructor tests>>=
test constructor-1.0 {

Create a model object for the sio domain
} -body {

miccautil model create sio sio.ral

relation cardinality [relvar set [info object namespace sio]::Domain]
} -result 1

<<constructor tests>>=
test constructor-2.0 {

Create a model object for the aggrmgmt domain
} -body {

miccautil model create aggrmgmt aggrmgmt.ral

relation cardinality [relvar set [info object namespace aggrmgmt]::Domain]
} -result 1

Destructor

modelobj destroy

The destroy method is used to delete modelobj when it is no longer needed.

Implementation

<<model class definition>>=
destructor {

relvar constraint delete {*}[relvar constraint names [self namespace]::*]
relvar unset {*}[relvar names [self namespace]::*]

}

Tests

miccautil Package 6 / 49

<<constructor tests>>=
test destructor-1.0 {

Create a model object for the sio domain
} -setup {

miccautil model create sio2 sio.ral
} -body {

set ns [info object namespace sio2]
sio2 destroy
return [namespace exists $ns]

} -result 0

Domain name method

modelobj domainName

The domainName method returns the name of the domain represented by modelobj.

Implementation

<<model class definition>>=
method domainName {} {

my variable domain_name

return $domain_name
}

Tests

<<method tests>>=
test domainName-1.0 {

Get the domain name
} -body {

sio domainName
} -result sio

Class names

modelobj classes

The classes method returns a list of the names of the classes defined in the domain represented by modelobj.

Implementation

<<model class definition>>=
method classes {} {

return [pipe {
relvar set Class |
relation project ~ Name |
relation list

}]
}

Tests

miccautil Package 7 / 49

<<method tests>>=
test classes-1.0 {

Get the list of classes
} -body {

llength [sio classes]
} -result 24

Class attributes

modelobj attributes class

class The name of a class in the domain represented by modelobj.

The attributes method returns a dictionary of the attributes of class. The keys to the dictionary are the names of the
attributes. The values associated to the keys are the data type of the attribute. If class does not exist in the domain, an
empty dictionary is returned.

Implementation

<<model class definition>>=
method attributes {class} {

return [pipe {
relvar set Attribute |
relation restrictwith ~ {$Class eq $class} |
relation dict ~ Name DataType

}]
}

Tests

<<method tests>>=
test attributes-1.0 {

Get the Point Threshold attributes
} -body {

set attrs [sio attributes Point_Threshold]
return [dict size $attrs]

} -result 4

<<method tests>>=
test attributes-1.1 {

Get the attributes for non-existent class
} -body {

set attrs [sio attributes foobar]
return [dict size $attrs]

} -result 0

State names

miccautil Package 8 / 49

modelobj states class

class The name of a class or assigner in the domain represented by modelobj.

The states method returns a list of state names for class. If class does not exist in the domain or if class does not have
a state model, an empty list is returned.

A state name of, @, indicates the pseudo-initial state out from which creation events transition.

Implementation

<<model class definition>>=
method states {class} {

return [pipe {
relvar set StatePlace |
relation restrictwith ~ {$Model eq $class} |
relation project ~ Name |
relation list

}]
}

Tests

<<method tests>>=
test states-1.0 {

Get the states for the Sample_Set class
} -body {

llength [sio states Sample_Set]
} -result 4

<<method tests>>=
test states-1.1 {

Get non-existent states
} -body {

llength [sio states foobar]
} -result 0

Event names

modelobj events class

class The name of a class or assigner in the domain represented by modelobj.

The events method returns a list of event names for class. If class does not exist in the domain or if class does not have
a state model or any polymorphic events, an empty list is returned. The returned list includes the event names for any type
of event that the class may have. For example, a superclass may not have a state model, but could have polymorphic events
and these names would be returned.

Implementation

<<model class definition>>=
method events {class} {

return [pipe {
relvar set Event |

miccautil Package 9 / 49

relation restrictwith ~ {$Model eq $class} |
relation project ~ Event |
relation list

}]
}

Tests

<<method tests>>=
test events-1.0 {

Get the events for the Sample_Set class
} -body {

llength [sio events Sample_Set]
} -result 4

<<method tests>>=
test events-1.1 {

Get events for the Remote_Sensor class
} -body {

llength [aggrmgmt events Remote_Sensor]
} -result 4

Creation event names

modelobj creationevents class

class The name of a class or assigner in the domain represented by modelobj.

The creationevents method returns a list of event names for class which cause a transition out of the pseudo-initial
creation state (represented here as the state named, “@”). If class does not exist in the domain or if class does not have a
state model or any creation events, an empty list is returned.

Implementation

<<model class definition>>=
method creationevents {class} {

log::debug "\n[relformat [relvar set TransitionPlace] TransitionPlace]"
return [pipe {

relvar set TransitionPlace |
relation restrictwith ~ {$Model eq $class && $State eq "@"} |
relation project ~ Event |
relation list

}]
}

Tests

<<method tests>>=
test creationevents-1.0 {

Get the events for the Report Record Sensor class
} -body {

llength [aggrmgmt creationevents Report_Record]
} -result 1

miccautil Package 10 / 49

State model transitions

modelobj transitions class

class The name of a class or assigner in the domain represented by modelobj.

The transitions method returns a relation value that contains the state transitions for class. The heading of the
returned relation value is:

Domain Model State Event NewState Params
string string string string string Relation

where:

Domain is the name of the domain.

Model is the name of the class or assigner.

State is the name of a state. A State name of, @, indicates the pseudo-initial state out of which
creation events transition.

Event is the name of an event which causes a transition out of State.

NewState is the name of the state entered by the transition caused when Event is received in State. A
NewState name of IG indicates the Event is ignored when it is received in State. A NewState
name of CH indicates it is logically impossible to receive Event in State (i.e. can’t happen) and
at run time will cause a panic condition.

Params is a relation valued attribute giving the parameters of Event (and hence the arguments to
NewState). The cardinality of the Params attribute is zero if the event carries no supplemental
event data. The Params attribute has the heading:

Name Position DataType
string int string

where:

Name is the name of the parameter.

Position is the order of the parameter carried in Event. Position values start at zero and sequentially
increase for each tuple in Params.

DataType is the “C” type name for the parameter.

The cardinality of the returned relation is states times events where states (including the pseudo-initial state for a creation
event, if present in the model) is the number of states in the model and events is the number of events. The cardinality of
the returned relation is zero if the class has no state model.

Each tuple in the returned relation represents a cell in a conceptual states by events transition matrix with NewState as the
cell value.

miccautil Package 11 / 49

Implementation

<<model class definition>>=
method transitions {class_name} {

set transitions [pipe {
my GetTransitionCells |
relation restrictwith ~ {$Model eq $class_name} |
relation join ~ [relvar set Event] |
relation eliminate ~ Number |
rvajoin ~ [relvar set EventSignature] EventSig |
relation extend ~ p_tup Params {Relation {Name string Position int DataType string ←↩

}} {
[relation isempty [tuple extract $p_tup EventSig]] ?\

[relation create {Name string Position int DataType string}] :\
[relation project\

[relation join\
[relation semijoin\

[relvar restrictone ParameterSignature\
Domain [tuple extract $p_tup Domain]\
PSigID [relation extract [tuple extract $p_tup EventSig] ←↩

PSigID]]\
[relvar set Parameter] -using {Domain Domain PSigID PSigID}]\

[relvar set Argument]]\
Name Position DataType]} |

relation eliminate ~ EventSig
}] ; # v1
#log::debug \n[relformat $transitions transitions]

return $transitions
}

v1 Ok, this is complicated when it comes to adding the Params attribute. We first rvajoin to EventSignature to get the
PSigID into a relation that is empty if there is no EventSignature and otherwise has a cardinality of one. To get the
value of the Params attribute we extend the relation value. If there is no event signature, then the Params attribute is an
empty relation. If there is, then we obtain the values for the Params attribute by selecting the correct ParameterSignature
instance and joining over the relationships to Arguments and projected out the required data. Unfortunately, this has to
be done as an expression that is fed to expr, hence the nested required for the several steps involved in obtaining the
Params value.

Tests

<<method tests>>=
test transitions-1.0 {

Get the transitions for the Sample_Set class
} -body {

set tm [sio transitions Sample_Set]
csvToFile [relation eliminate $tm Params] Sample_Set_trans.csv
return [relation cardinality $tm]

} -result {16}

The following table shows the transitions for the Sample_Set class (minus the event parameters, of which there are none for this
class).

Domain Model State Event NewState
string string string string string
sio Sample_Set IDLE Start RUNNING
sio Sample_Set RUNNING Point_ready READYING
sio Sample_Set READYING Point_ready READYING
sio Sample_Set READYING Point_sampled SAMPLING

miccautil Package 12 / 49

Domain Model State Event NewState
sio Sample_Set SAMPLING Done IDLE
sio Sample_Set SAMPLING Point_sampled SAMPLING
sio Sample_Set RUNNING Start IG
sio Sample_Set READYING Start IG
sio Sample_Set SAMPLING Start IG
sio Sample_Set IDLE Point_ready CH
sio Sample_Set IDLE Point_sampled CH
sio Sample_Set IDLE Done CH
sio Sample_Set RUNNING Point_sampled CH
sio Sample_Set RUNNING Done CH
sio Sample_Set READYING Done CH
sio Sample_Set SAMPLING Point_ready CH

<<method tests>>=
test transitions-1.1 {

Get the transitions for a class with no state model
} -body {

set tm [sio transitions Point_Threshold]
relation cardinality $tm

} -result {0}

<<method tests>>=
test transitions-2.0 {

Get the transitions for the Report Record class
} -body {

set tm [aggrmgmt transitions Report_Record]
relation cardinality $tm

} -result {72}

<<method tests>>=
test transitions-2.1 {

Get the transition matrix for the Reporting Session class
} -body {

set tm [aggrmgmt transitions Reporting_Session]
relation cardinality $tm

} -result {66}

Computing the transition matrix

Computing the transition matrix is the heart of the transitions method and several other methods in this package. The
following method queries the micca platform model to determine the state transitions. The result produced is the transition
matrix for the entire domain. Each method that uses this computation then adjusts the relation to suit its needs.

In micca, there is a concept of default transitions. This can be either IG or CH and the default transition is used as the target for
a transition which is not otherwise specified explicitly. The strategy for the queries below is to compute all possible transitions.
Then the transitions which were specified are subtracted from the possible set. The difference is then the unspecified transitions
which are given the default transition target.

<<model class definition>>=
method GetTransitionCells {} {

set state_places [pipe {
relvar set StatePlace |
relation eliminate ~ Number |
relation rename ~ Name State

}]
set possible_trans [pipe {

miccautil Package 13 / 49

relvar set TransitioningEvent |
relation join $state_places ~

}]
#log::debug \n[relformat $possible_trans possible_trans]

set trans [relvar set StateTransition]
#log::debug \n[relformat $trans trans]
set non_trans [pipe {

relvar set NonStateTransition |
relation rename ~ TransRule NewState

}]
#log::debug \n[relformat $non_trans non_trans]

set spec_trans [relation union $trans $non_trans]
#log::debug \n[relformat $spec_trans spec_trans]

set defrule [pipe {
relvar set StateModel |
relation project ~ Domain Model DefaultTrans |
relation rename ~ DefaultTrans NewState

}]
log::debug \n[relformat $defrule defrule]

set non_spec_trans [pipe {
relation project $spec_trans Domain Model State Event |
relation minus $possible_trans ~ |
relation join ~ $defrule |
relation update ~ ftup {[tuple extract $ftup State] eq "@"}\

{tuple update $ftup NewState CH}
}]
log::debug \n[relformat $non_spec_trans non_spec_trans]

set trans_records [relation union $spec_trans $non_spec_trans]
#log::debug \n[relformat $trans_records trans_records]

return $trans_records
}

Recording event dispatch

Micca generated domains can be wrapped in an automatically generated test harness by using the bosal program. When the
resulting test harness is operated using the mecate package, event transitions can be captured. The methods in this section
facilitate counting transitions and creating summaries of the state and transition coverage.

The following methods create a transition recording session. The semantics are similar to files, i.e. you first start the recording,
then call a method to record each state transition, and finally you can stop the recording. At any time after starting a recording,
you may request the event dispatch information.

Starting a transition recording session

modelobj startTransitionRecording

The startTransitionRecording method initializes internal data structures in preparation for recording event tran-
sitions in the domain represented by modelobj. In particular, any previous event transition counts are reset back to zero.
Attempting to start an already running session is silently ignored. The method returns the empty string.

<<model class definition>>=

https://repos.modelrealization.com/cgi-bin/fossil/mrtools/wiki?name=BosalPage
https://repos.modelrealization.com/cgi-bin/fossil/mrtools/wiki?name=MecatePage

miccautil Package 14 / 49

method startTransitionRecording {} {
my variable recording_state
if {$recording_state eq "on"} {

return
}

if {![relvar exists __Event_Record__]} { # v1
set trans [pipe {

my GetTransitionCells |
relation extend ~ sptup TransCount int 0

}]
relvar create __Event_Record__ [relation heading $trans]\

{Domain Model State Event}
relvar set __Event_Record__ $trans

} else {
relvar update __Event_Record__ ertup true {

tuple update $ertup TransCount 0
}

}

set recording_state on
return

}

v1 We record the event transition information in a relvar which consists of the transition matrix cell values and a new column
to hold the counts. First time through, we must create the relvar to hold the counts. Next time through, we can just zero
out the counts.

Stopping a transition recording session

modelobj stopTransitionRecording

The stopTransitionRecording method closes an ongoing event transition recording session. The information
gathered during the session is not modified. Attempting to stop an already stopped session is silently ignored. The method
returns the empty string.

<<model class definition>>=
method stopTransitionRecording {} {

my variable recording_state
set recording_state off

return
}

Recording an event transition

miccautil Package 15 / 49

modelobj recordTransition class currstate event

class The name of a class or assigner in the domain represented by modelobj.

currstate The name of the state in class which is the source state in a transition.

event The name of an event in class which caused a transition from currstate.

The recordTransition method counts the transition which occurred when class was in currstate and received event.
It is necessary to start the event transition recording session by invoking the startTransitionRecording method
before invoking this method. The method returns a boolean value indicating if the counting occurred, i.e. if currstate and
event form a valid transition in class.

<<model class definition>>=
method recordTransition {class currstate event} {

my variable recording_state
if {$recording_state eq "off"} {

error "event transition recording is stopped"
}

my variable domain_name
set updated [relvar updateone __Event_Record__ ertup\

[list Domain $domain_name Model $class State $currstate\
Event $event] {

tuple update $ertup TransCount\
[expr {[tuple extract $ertup TransCount] + 1}]

}]

return [relation isnotempty $updated]
}

Reporting transitions

miccautil Package 16 / 49

modelobj reportTransitions pattern

pattern A pattern of the format used by the string match command for the names of classes or
assigners in the domain represented by modelobj.

The reportTransitions method returns a relation value containing the transition counts for all classes whose names
match pattern. The heading of the returned relation value is:

Domain Model State Event NewState TransCount
string string string string string int

where:

Domain is the name of the domain.

Model is the name of the class or assigner.

State is the name of a state. A State name of, @, indicates the pseudo-initial state out of which
creation events transition.

Event is the name of an event which causes a transition out of State.

NewState The name of the state entered by the transition caused when Event is received in State. A
NewState name of IG indicates the Event is ignored when it is received in State. A NewState
name of CH indicates it is logically impossible to receive Event in State (i.e. can’t happen) and
at run time will cause a panic condition.

TransCount The number of times recorded when Model was in a given State and Event was received.

<<model class definition>>=
method reportTransitions {pattern} {

return [pipe {
relvar set __Event_Record__ |
relation restrictwith ~ {[string match $pattern $Model]}

}]
}

Example 3.1 Recording transitions
Here we show a simple transition session and record three transitions

<<method tests>>=
test reportTransitions-1.0 {

report event transitions
} -body {

sio startTransitionRecording
sio recordTransition Sample_Set IDLE Start
sio recordTransition Sample_Set RUNNING Point_ready
sio recordTransition Sample_Set RUNNING Point_ready
sio stopTransitionRecording

set trans [sio reportTransitions Sample_Set]
ral::csvToFile $trans Sample_Set.csv
return [relation cardinality $trans]

} -result {16}

The following table shows the output of the test case.

miccautil Package 17 / 49

Domain Model State Event NewState TransCount
string string string string string int
sio Sample_Set IDLE Start RUNNING 1
sio Sample_Set RUNNING Point_ready READYING 2
sio Sample_Set READYING Point_ready READYING 0
sio Sample_Set READYING Point_sampled SAMPLING 0
sio Sample_Set SAMPLING Done IDLE 0
sio Sample_Set SAMPLING Point_sampled SAMPLING 0
sio Sample_Set RUNNING Start IG 0
sio Sample_Set READYING Start IG 0
sio Sample_Set SAMPLING Start IG 0
sio Sample_Set IDLE Point_ready CH 0
sio Sample_Set IDLE Point_sampled CH 0
sio Sample_Set IDLE Done CH 0
sio Sample_Set RUNNING Point_sampled CH 0
sio Sample_Set RUNNING Done CH 0
sio Sample_Set READYING Done CH 0
sio Sample_Set SAMPLING Point_ready CH 0

Examining the TransCount column show the three recorded transitions.

Example 3.2 Transitions not ignored or impossible
The relation value returned from reportTransitions can be further processed to yield more refined results. For example,
if we are only interested in transitions which result in a state change, i.e. are not IG or CH, we can restrict the output to exclude
tuples where NewState is IG or CH.

<<method tests>>=
test reportTransitions-1.1 {

report event dispatch which are not IG or CH
} -body {

set trans [pipe {
sio reportTransitions Sample_Set |
relation restrictwith ~ {$NewState ne "IG" && $NewState ne "CH"}

}]
ral::csvToFile $trans Sample_Set_noigch.csv
return [relation cardinality $trans]

} -result {6}

The following table shows the reduced output.

Domain Model State Event NewState TransCount
string string string string string int
sio Sample_Set IDLE Start RUNNING 1
sio Sample_Set RUNNING Point_ready READYING 2
sio Sample_Set READYING Point_ready READYING 0
sio Sample_Set READYING Point_sampled SAMPLING 0
sio Sample_Set SAMPLING Done IDLE 0
sio Sample_Set SAMPLING Point_sampled SAMPLING 0

Example 3.3 Transitions not taken
We can further refine the transition information to yield those transitions which were not taken. This information can be used to
evaluate the effect of test scenarios in covering the execution of state activities.

<<method tests>>=
test reportTransitions-1.2 {

report event dispatch which are not IG or CH
} -body {

miccautil Package 18 / 49

set trans [pipe {
sio reportTransitions Sample_Set |
relation restrictwith ~\

{$NewState ne "IG" && $NewState ne "CH" && $TransCount == 0}
}]
ral::csvToFile $trans Sample_Set_missed.csv
return [relation cardinality $trans]

} -result {4}

The following table shows only those transitions in the state model which were never taken.

Domain Model State Event NewState TransCount
string string string string string int
sio Sample_Set READYING Point_ready READYING 0
sio Sample_Set READYING Point_sampled SAMPLING 0
sio Sample_Set SAMPLING Done IDLE 0
sio Sample_Set SAMPLING Point_sampled SAMPLING 0

Example 3.4 Executed state activities
Since the state machines produced by micca are Moore type machines, each time the TransCount of a transition is non-zero,
we know the activity for the NewState was executed. Additional processing shows how to compute the number of times a given
state activity is executed.

<<method tests>>=
test reportTransitions-2.0 {

report state activity execution
} -body {

set trans [pipe {
sio reportTransitions Sample_Set |
relation restrictwith ~ {$NewState ne "IG" && $NewState ne "CH"} |
relation summarizeby ~ {Domain Model NewState} sa_rel\

Executed int {rsum($sa_rel, "TransCount")} |
relation rename ~ NewState State

}]
ral::csvToFile $trans Sample_Set_act.csv
return [relation cardinality $trans]

} -result {4}

The following table shows the number times each state activity was executed.

Domain Model State Executed
string string string int
sio Sample_Set RUNNING 1
sio Sample_Set READYING 2
sio Sample_Set SAMPLING 0
sio Sample_Set IDLE 0

Usually in a testing scenario, we are most interested in those state activities that are not executed by the test suite, indicating a
potential lack of coverage. Restricting the above relation to those tuples where Executed is zero, gives that result.

Counting transitions with mecate

When bosal generated test harnesses are operated using the mecate package, mecate has the capability of invoking a
command each time an event trace arrives from the test harness. The following methods serve as glue code between the mecate
interface and the miccautil transition recording.

https://en.wikipedia.org/wiki/Moore_machine

miccautil Package 19 / 49

modelobj startMecateTransitionCount reinobj

reinobj
An object command as returned from the rein command of the mecate package. A reinobj represents a bosal
generated test harness and methods of the object allow for operations on the test harness.

The startMecateTransitionCount method starts capturing event transitions as they arrive from a bosal gener-
ated test harness. This method uses the traceNotify method of the reinobj to install a callback handler for when event
traces arrive.

Note this method does not turn on event tracing in the test harness. That is done with the reinobj trace on command
which must be executed before any events will be received and counted.

Implementation

<<model class definition>>=
method startMecateTransitionCount {reinobj} {

my startTransitionRecording

my variable previous_callback
set previous_callback [$reinobj traceNotify]
$reinobj traceNotify [mymethod RecordMecateTransition]

}

modelobj stopMecateTransitionCount reinobj

reinobj
An object command as returned from the rein command of the mecate package. A reinobj represents a bosal
generated test harness and methods of the object allow for operations on the test harness.

The stopMecateTransitionCount method stops capturing event transitions as they arrive from a bosal generated
test harness. The previous reinobj callback handler is re-instated.

Implementation

<<model class definition>>=

method stopMecateTransitionCount {reinobj} {
my variable previous_callback
$reinobj traceNotify $previous_callback

my stopTransitionRecording
}

modelobj RecordMecateTransition trace

trace
A dictionary of the form generated by a bosal test harness containing an event dispatch trace. See the mecate
man pages for a detailed description of a trace dictionary contents.

The RecordMecateTransition method examines the information in trace and uses it to count transition of the state
machines in modelobj.

Implementation

miccautil Package 20 / 49

<<model class definition>>=
method RecordMecateTransition {trace} {

my variable previous_callback
if {[llength $previous_callback] != 0} {

eval [linsert $previous_callback end $trace]
}

if {[dict get $trace type] eq "transition"} {
set target_class [lindex [split [dict get $trace target] .] 0] ; # v1
my recordTransition $target_class\

[dict get $trace currstate] [dict get $trace event]
}

return
}
export RecordMecateTransition

v1 In the trace data, the target of the event is given in the form: <class>.<instance>. Here we only want the class name part.

Tests

<<method tests>>=
test RecordMecateTransition-1.0 {

record event dispatch using mecate trace data
} -cleanup {

sio stopTransitionRecording
} -body {

sio startTransitionRecording

set trace_info [dict create\
type transition\
target Sample_Set.0\
currstate RUNNING\
event Point_ready\

]
sio RecordMecateTransition $trace_info

dict set trace_info currstate RUNNING
dict set trace_info event Point_ready
sio RecordMecateTransition $trace_info
sio RecordMecateTransition $trace_info

set report [sio reportTransitions Sample_Set]
return [pipe {

sio reportTransitions Sample_Set |
relation summarize ~ $::ralutil::DEE rpt_rel\

TotalCount int {rsum($rpt_rel, "TransCount")} |
relation extract ~ TotalCount

}]
} -result {3}

Default attribute values

miccautil Package 21 / 49

modelobj defaultAttributeValues

The defaultAttributeValues returns a relation value giving the default values that attributes in the domain repre-
sented by modelobj are given if not otherwise specified.

The heading of the returned relation is:

Domain Class Defaults
string string Relation

where:

Domain is the name of the domain.

Class is the name of a class in Domain.

Defaults is a relation valued attribute containing the attribute names and values for Class.

The heading of the Defaults attribute is:

Attribute Value DataType
string string string

where:

Attribute is the name of the attribute of the instance.

Value is the value of the attribute in the instance.

DataType is the “C” type name for the attribute.

Implementation

<<model class definition>>=
method defaultAttributeValues {} {

return [pipe {
relvar set DefaultValue |
relation join ~ [relvar set Attribute]\

-using {Domain Domain Class Class Attribute Name} |
relation group ~ Defaults Attribute Value DataType

}]
}

Tests

<<method tests>>=
test defaultAttributeValues-1.0 {

list default attributes
} -body {

set def_attr [sio defaultAttributeValues]
log::debug \n[relformat $def_attr]

return [relation cardinality $def_attr]
} -result {11}

miccautil Package 22 / 49

Initial instance population

modelobj initialInstancePopulation

The initialInstancePopulation method returns a relation value containing the initial instance population of the
domain represented by modelobj. The heading of the returned relation is:

Domain Class Instances
string string Relation

where:

Domain is the name of the domain.

Class is the name of a class in Domain.

Instances is a relation valued attribute containing the initial instances of Class.

The heading of the Instances attribute is:

Instance ID Attributes
string int Relation

where:

Instance is the name given to the inital instance in the micca population.

ID is the numeric identifier of the instance. This number is the same as the array index of the
instance in the storage pool for the class.

Attributes is a relation valued attribute giving the attribute names and values of the initial instance.

The heading of the Attributes attribute is:

Attribute Value
string string

where:

Attribute is the name of the attribute of the instance.

Value is the value of the attribute in the instance.

miccautil Package 23 / 49

Example 3.5 Example initial instance population tuple
An example tuple (i.e. one row) of the initial instance population relation might appear in tabular form as:

Domain Class Instances
string string Relation

sio Signaled_Point

Instance ID Attributes
string int Relation

Attribute Value
string string

sigpt1 6

Trigger ed_Active
Active_high true

Settle_interval 100
R3 sigpt1

sigpt2 7

Trigger ed_BothActive
Active_high false

Settle_interval 100
R3 sigpt2

Implementation

<<model class definition>>=
method initialInstancePopulation {} {

return [pipe {
relvar set PopulatedComponent |
relation semijoin ~\

[relvar set ClassComponent]\
[relvar set ClassComponentValue]\

-using {Domain Domain Class Class Name Component}\
[relvar set SpecifiedComponentValue] |

relation join ~ [relvar set ClassInstance] |
relation rename ~ Component Attribute Number ID |
relation group ~ Attributes Attribute Value |
relation group ~ Instances Instance ID Attributes

}]
}

Tests

<<method tests>>=
test initialInstancePopulation-1.0 {

list initial instance values
} -body {

set init_inst [sio initialInstancePopulation]

log::debug \n[relformat $init_inst]

return [relation cardinality $init_inst]
} -result {22}

State model as a graph

miccautil Package 24 / 49

modelobj stateModelGraph class

class The name of a class or assigner in the domain represented by modelobj.

The stateModelGraph method returns a graph command from the struct::graph package in Tcllib that repre-
sents the state model for class as a graph. It is the responsibility of the caller to insure that the returned graph command
is disposed of properly by invoking graph destroy when no longer needed. If class does not not have a state model, the
returned graph has no nodes or arcs.

The returned graph is annotated by the following key / value attributes:

domain the name of the domain.

class the name of the class or assigner.

initialstate the name of the default initial state.

defaulttrans the name of the default transition, i.e. IG or CH.

Nodes in the graph represent states in the state model and are named the same as the state name. Nodes are annotated by
the following key / value attributes:

activity the state activity code.

final a boolean value indicating if the state is a final state.

Arcs in the graph represent the directed transitions from a source state to a target state. Note that IG and CH transitions are
not represented by arcs since as target states they do not cause an actual transition. Arcs are annotated by the following
key / value attributes:

event the name of the event causing the transition.

params a list of event parameter names giving the additional values carried by the event.

We need the struct::graph package from Tcllib and we want to make sure that it is at least version 2 or higher.

<<required packages>>=
package require struct::graph 2

Implementation

<<model class definition>>=
method stateModelGraph {class_name} {

my variable domain_name
set gr [::struct::graph]

try {
$gr set domain $domain_name
$gr set class $class_name

set smodel [relvar restrictone StateModel\
Domain $domain_name Model $class_name]

if {[relation isempty $smodel]} {
$gr set initialstate {}

miccautil Package 25 / 49

$gr set defaulttrans {}
return $gr

}

$gr set defaulttrans [relation extract $smodel DefaultTrans]

set cr_state [pipe {
relvar set CreationState |
relation semijoin $smodel ~ |
relation extend ~ cstup\

Activity string {{}}\
IsFinal boolean {false} |

relation project ~ Name Activity IsFinal
}]

$gr set initialstate [expr {[relation isnotempty $cr_state] ?\
"@" : [relation extract $smodel InitialState]}]

set states [pipe {
relvar set State |
relation semijoin $smodel ~ |
relation project ~ Name Activity IsFinal |
relation union ~ $cr_state

}]
log::debug \n[relformat $states states]

relation foreach state $states {
relation assign $state Name Activity IsFinal
$gr node insert $Name
$gr node set $Name activity $Activity
$gr node set $Name final $IsFinal

}

set finals [relation restrictwith $states {$IsFinal}]
if {[relation isnotempty $finals]} {

$gr node insert __x__
$gr node set __x__ activity {}
$gr node set __x__ final false

}
relation foreach final_state $finals {

relation assign $final_state Name
$gr arc insert $Name __x__

}

set trans [pipe {
my transitions $class_name |
relation restrictwith ~ {$NewState ne "IG" && $NewState ne "CH"} |
relation eliminate ~ Domain Model

}]

relation foreach tran $trans {
relation assign $tran State Event NewState Params
set arc [$gr arc insert $State $NewState]
$gr arc set $arc event $Event
$gr arc set $arc params\

[relation list $Params Name -ascending Position]
}

return $gr
} on error {result opts} {

$gr destroy
return -options $opts $result

miccautil Package 26 / 49

}
}

Tests

<<method tests>>=
test stateModelGraph-1.0 {

Get the state model graph for the Sample_Set class
} -body {

set sample_set_graph [sio stateModelGraph Sample_Set]
set nnodes [llength [$sample_set_graph nodes]]
$sample_set_graph destroy
return $nnodes

} -result {4}

<<method tests>>=
test stateModelGraph-1.1 {

State model graph for class with not state model
} -body {

set pt_graph [sio stateModelGraph Point_Threshold]
set nnodes [llength [$pt_graph nodes]]
$pt_graph destroy
return $nnodes

} -result {0}

<<method tests>>=
test stateModelGraph-2.0 {

Get the state model graph for the Report Record class
} -body {

set rrec_graph [aggrmgmt stateModelGraph Report_Record]
set nnodes [llength [$rrec_graph nodes]]
$rrec_graph destroy
return $nnodes

} -result {9}

<<method tests>>=
test stateModelGraph-2.1 {

Check the state model graph for the Report Record class
} -body {

set rrec_graph [aggrmgmt stateModelGraph Report_Record]
set create_trans [$rrec_graph arcs -out @]
set cr_event [$rrec_graph arc get $create_trans event]
$rrec_graph destroy
return $cr_event

} -result {Report}

State model with Tcldot

modelobj stateModelDot class

class The name of a class or assigner in the domain represented by modelobj.

The stateModelDot method returns a Tcldot command handle to the state model of class. The command handle can
be used to render an image of the state model graph (along with many other uses).

http://graphviz.org/pdf/tcldot.3tcl.pdf

miccautil Package 27 / 49

Implementation

<<model class definition>>=
method stateModelDot {class_name} {

package require Tcldot ; # v1
my variable domain_name

set dot [dotnew digraph]
try {

set smodel [relvar restrictone StateModel\
Domain $domain_name Model $class_name]

if {[relation isempty $smodel]} {
return $dot

}

$dot setnodeattributes shape box
$dot setnodeattributes style filled
$dot setnodeattributes fillcolor yellow

set cr_state [pipe {
relvar set CreationState |
relation semijoin $smodel ~ |
relation extend ~ cstup IsFinal boolean {false} |
relation project ~ Name IsFinal

}]
set states [pipe {

relvar set State |
relation semijoin $smodel ~ |
relation project ~ Name IsFinal |
relation union ~ $cr_state

}]
#log::debug \n[relformat $states states]

set node(@) [$dot addnode @ {*}{
shape point
fillcolor black
label {}
width 0.15
fixedsize true

}]

set finals [relation restrictwith $states {$IsFinal}]
if {[relation isnotempty $finals]} {

set node(__x__) [$dot addnode __x__ {*}{
shape doublecircle
fillcolor black
label {}
width 0.15
fixedsize true

}]
}

relation foreach state $states {
relation assign $state
if {$Name eq "@"} {

continue
}
set node($Name) [$dot addnode $Name\

label [string map {_ { }} $Name]\
]
if {$IsFinal} {

miccautil Package 28 / 49

set edge($Name,__x__) [$dot addedge $node($Name) $node(__x__)]
}

}

if {[relation isempty $cr_state]} {
set initialstate [relation extract $smodel InitialState]
set edge(@,$initialstate)\

[$dot addedge $node(@) $node($initialstate)]
} ; # v2
set statetrans [pipe {

relvar set StateTransition |
relation semijoin $smodel ~ |
relation rename ~ State SrcState NewState State |
rvajoin ~ [relvar set StateSignature] Signature |
relation project ~ SrcState Event State Signature

}]
#puts [relformat $statetrans statetrans]

relation foreach statetran $statetrans {
relation assign $statetran
set evt_label [string map {_ { }} $Event]
if {[relation isnotempty $Signature]} {

set params [pipe {
relvar restrictone ParameterSignature Domain $domain_name\

PSigID [relation extract $Signature PSigID] |
relation semijoin ~ [relvar set Parameter] |
relation list ~ Name -ascending Position |
join ~ ,

}]
append evt_label "(" $params ")"

}
set edge($SrcState,$State) [$dot addedge\

$node($SrcState) $node($State)\
label $evt_label

]
}

return $dot
} on error {result opts} {

rename $dot {}
return -options $opts $result

}
}

v1 Since Tcldot is not a common package, we do the package require here to minimize the dependency upon
Tcldot. Other commands and methods can be used without having to have Tcldot installed.v2 If there is no creation state, we connect the pseudo-initial state to the default initial state with no event label. This is a
convenient indication of the default initial state.

Tests

<<method tests>>=
test stateModelDot-1.0 {

Get the dot graph for the Sample_Set class
} -cleanup {

chan close $ss_file
chan close $gv_file
rename $sample_set_dot {}

} -body {

miccautil Package 29 / 49

set sample_set_dot [sio stateModelDot Sample_Set]

set ss_file [open Sample_Set.pdf w]
$sample_set_dot write $ss_file pdf

set gv_file [open Sample_Set.gv w]
$sample_set_dot write $gv_file dot

$sample_set_dot countnodes
} -result {5}

The following figure is the rendered state model for the Sample_Set class.

IDLE

RUNNING

Start

READYING

Point ready

Point ready

SAMPLING

Point sampled

Done

Point sampled

Figure 3.1: Sample Set state model rendered by dot

<<method tests>>=
test stateModelDot-2.0 {

Get the dot graph for the Report Record class
} -cleanup {

chan close $rrec_file

miccautil Package 30 / 49

chan close $gv_file
rename $rrec_dot {}

} -body {
set rrec_dot [aggrmgmt stateModelDot Report_Record]

set rrec_file [open Report_Record.pdf w]
$rrec_dot write $rrec_file pdf

set gv_file [open Report_Record.gv w]
$rrec_dot write $gv_file dot

$rrec_dot countnodes
} -result {9}

The following figure is the rendered state model for the Report Record class.

miccautil Package 31 / 49

STARTING RECORD

Report

ACCUMULATING RECORD

Parameter read(value)

UPLOADING RECORD

Upload

READING REPEAT COUNT

Reading count

Parameter read(value)

Upload

FAILED

Read failed

NEXT RECORD

Record uploadedUpload failed

Report

REPEATING RECORD

Repeat

Parameter read(value)

Upload

UPDATING REPEAT COUNT

Parameter read(value)

Report

Parameter read(value)

Upload

Read failed

Figure 3.2: Report Record state model rendered by dot

As a comparison, the following figure shows the original layout of the Report Record state model drawn manually during the
analysis effort. The Umlet program was used to draw the state model.

https://www.umlet.com/

miccautil Package 32 / 49

Find next record

 // Find the next record in the report
 // if there are more records
 // reference me to the next record
 // signal Report to me
 // else
 // signal Finshed(success) to Aggregator
 // end if
next .= /R5/Template Record/R25/follows
 next ? {
 me &R5(next)
 Report -> me
 } : {
 aggr .= /R5/Reporting Session/R10
 Finished(success) -> aggr
 }

Read first parameter

 // Find the first Template Parameter of the record
first .= me.Find first parameter()
 // If there is a first parameter in the record
 // create a Report Parameter referencing
 // the first Template Parameter
 // find the Sensor Parameter associated with the
 // first Template Parameter
 // signal Read parameter for the sensor parameter
 // else
 // signal Upload to me
 // end if
first .= me.Find first parameter()
first ? {
 *Report Parameter & R4(me, first)
 sparam .= first/R31
 Read parameter => SENSOR(sensor: Sensor,
 param: sparam.Parameter)
} : {
 Upload -> me
}

FAILED

 // Any failure ends the report.
 // Inform the aggregation of the failure
aggr .= /R5/Reporting Session/R10
Finished(failed) -> aggr

UPLOADING RECORD

 // signal the Endpoint to upload the record
Upload => REPORT(sensor: my.Sensor,
 endpoint: my.Endpoint, template: my.Template,
 record: my.Record payload)

Find first parameter

 // Find the first Template Parameter of the record
tparams ..= /R5/Template Record/R31/Template Parameter
first .= tparams semiminus Parameter Ordering across
 Endpoint -> Endpoint, Template -> Template,
 Record -> Record, Template parameter -> Next param
=» first

Initialize payload

 // Insert the record type and record count into
 // the record value
Record payload = /R5/Template Record.Record type
Record payload += /R5/Reporting Session.Record count
/R5/Reporting Session.Record count += 1

READING REPEAT COUNT

 // empty

REPEATING RECORD

 // Insert the record type and record count into
 // the record value
me.Initialize payload()

 // reference the Report Parameter to the
 // first Sensor Parameter
 // read first parameter
 // end if
first .= me.Find first parameter()
first ? {
 *Report Parameter & R4(me, first)
 Read parameter => SENSOR(sensor: Sensor,
 param: first.Sensor parameter)
} : {
 Upload -> me
}

UPDATING REPEAT COUNT

 // An empty value indicates failure.
!in.value ? {
 Read failed -> me
 =>>
}

 // Set the Repeat count to the parameter value
Repeat count = in.value
 // Check the repeat count for zero.
 // If it is zero, then proceed to the next record.
 // else, issue the read for the first parameter
Repeat count = 0 ?
 me.Find next record() :
 me.Read first parameter()

NEXT RECORD

 // Increment the record count in the history
history .= /R5/Reporting Session/R10/
 R8/R9/Aggregation History
history.Records sent += 1

 // Determine if we are repeating the recordj
Repeat count -= 1

 // If the Repeat Count is zero
 //	Find next record
 // else
 // signal Repeat to me
 // end if
Repeat count = 0 ? {
 me.Find next record()
} : {
 Repeat -> me
}

Aggregation Management domain
Report Record class
State Model Diagram
Version 1.19

ACCUMULATING RECORD

 // An empty value indicates failure.
!in.value ? {
 Read failed -> me
 =>>
}

 // Insert the parameter value into the record
Record payload += in.value

 // Find the next parameter in the record
nextp .= /R4/Template Parameter/R30/follows

 // If there is a next parameter
 // reference the Report Parameter to the
 // next parameter
 // signal Read parameter for the next parameter
 // else
 // delete the related Report Parameter
 // signal Upload to me
 // end if
nextp ? {
 rparam .= /R4/Report Parameter
 rparam &R4(nextp)
 current .= /R4/Template Parameter/R31
 Read parameter => SENSOR(sensor: my.Sensor,
 param: current.Parameter)
} : {
 param .= /R4/Report Parameter
 !*param
 Upload -> me
}

STARTING RECORD

 // Insert the record type and record count into
 // the record value
me.Initialize payload()
Repeat count = 1

 // if the Template Record has a Repeat Parameter
 // 	find the Sensor Parameter associated
 // with the Template Record
 // signal Read parameter for the Repeat Count parameter
 // signal Reading count to me
 // else
 //	 Read first parameter
 // end if

repeat .= /R5/Template Record/R27/Sensor Parameter
repeat ? {
 Read parameter => SENSOR(sensor: Sensor,
 param: repeat.Parameter)
 Reading count -> me
} : {
 me.Read first parameter()
}

Report

Upload

Upload

Report

Upload failed

Read failed

Read failed

Record uploaded

Parameter read(value)

Parameter read(value)

Upload

Parameter read(value)

Reading count

Upload

Repeat

Parameter read(value)

Parameter read(value)

Report

Figure 3.3: Original Report Record state model from Umlet

<<method tests>>=
test stateModelDot-2.1 {

Get the dot graph for the Remote Sensor class
} -cleanup {

chan close $rs_file
chan close $gv_file
rename $rs_dot {}

} -body {
set rs_dot [aggrmgmt stateModelDot Remote_Sensor]

set rs_file [open Remote_Sensor.pdf w]
$rs_dot write $rs_file pdf

set gv_file [open Remote_Sensor.gv w]
$rs_dot write $gv_file dot

$rs_dot countnodes
} -result {8}

miccautil Package 33 / 49

The following figure is the rendered state model for the Discovered_Sensor class.

DISCONNECTED

Connecting

Sensor connect

WAITING FOR CONNECTION

Sensor connect

Sensor disconnected

Sensor connect

DISCONNECTING BEFORE CONNECTED

Sensor disconnect

CONNECTED

Sensor connected

Sensor disconnected

Sensor connect

Sensor disconnect

Sensor connected

Sensor disconnected

CONNECTING AFTER CONNECTED

Sensor connect DISCONNECTING AFTER CONNECTED

Sensor disconnect

Sensor disconnected

Sensor connect

Sensor disconnect

Sensor disconnected

Sensor connect

Sensor disconnect

Figure 3.4: Remote Sensor state model rendered by dot

miccautil Package 34 / 49

Chapter 4

Functions on state model graphs

In this section, we show miccautil ensemble subcommands which operate on graphs. These are convenience commands
and are provided as procedures which take a struct::graph command handle. Invoking the stateModelGraph method
yields a suitable graph command.

miccautil Package 35 / 49

Depth first search of a state model graph

::miccautil dfs graph ?start?

graph a graph command as returned from struct::graph, usually obtained by invoking, modelobj
stateModelGraph class.

start the name of node where the search is to start. If start is not given, then the search starts at node
given by the initialstate attribute of the graph.

The dfs subcommand performs a depth first search (DFS) of graph. graph is a command as returned from
struct::graph, usually obtained by invoking the stateModelGraph method with the desired class name. The
return value of the command is the empty string.

During the DFS, each node in the graph is annotated with the following additional attributes:

pre the pre-order number of the node, starting at 1. This is the order in which the node was visited
during the DFS.

rpost the reverse post-order number of the node, starting at 1. This is the order the node would be
visited in a reverse post-order traversal. For graphs that do not contain cycles, the rpost
numbers form a topological sort of the graph. Graphs which have no back edges (see
following) have no cycles.

Each edge in the graph is annotated with one additional attribute:

type the classification of the graph edge. The type attribute has one of the following values:

tree
the edge is part of a spanning tree for the graph, i.e. the target node is visited for the first

time when the edge is traversed.

forw
the edge is a forward directed, i.e. the target node is a decendent of the source node.

back
the edge is a back edge, i.e. the target node is an ancestor of the source node.

cross
the edge is a cross edge. All edges which are not classified as tree, forw, or back are

classified as cross edges.

<<package exports>>=
namespace export dfs

Implementation

<<miccautil commands>>=
proc ::miccautil::dfs {graph {start {}}} {

if {$start eq {}} {
set start [$graph get initialstate]

}

set nodes [$graph nodes]
foreach node $nodes {

miccautil Package 36 / 49

$graph node set $node pre 0
$graph node set $node rpost 0

}
variable preorder 1
variable postorder [llength $nodes]
ClassifyNode $graph $start
return

}

The classification algorithm is the convention recursive algorithm. The classification of the graph arcs is accomplished by
examining the pre and post order numbering to determine when the node under consideration has been seen.

<<miccautil commands>>=
proc ::miccautil::ClassifyNode {graph node} {

variable preorder
set thisPre $preorder
$graph node set $node pre $thisPre
incr preorder
set arcList [$graph arcs -out $node]

foreach arc $arcList {
set succ [$graph arc target $arc]
set succPre [$graph node get $succ pre]
if {$succPre == 0} {

$graph arc set $arc type tree
ClassifyNode $graph $succ

} elseif {[$graph node get $succ rpost] == 0} {
$graph arc set $arc type back

} elseif {$thisPre < $succPre} {
$graph arc set $arc type frwd

} else {
$graph arc set $arc type cross

}
}
variable postorder
$graph node set $node rpost $postorder
incr postorder -1

return
}

The following figure shows the dfs annotations applied to the Reporting Session state model.

Reporting_Session_dfs.pdf

Figure 4.1: DFS annotations for Reporting Session state model

Tests

<<method tests>>=
test dfs-1.0 {

DFS on the state model graph for the Reporting Session class
} -cleanup {

$session_graph destroy
} -body {

set session_graph [aggrmgmt stateModelGraph Reporting_Session]
miccautil dfs $session_graph

set walkproc [lambda {action graph node} {
foreach outarc [$graph arcs -out $node] {

miccautil Package 37 / 49

set target [$graph arc target $outarc]
log::debug "$node - [$graph arc get $outarc event] -> $target\

==> [$graph arc get $outarc type]"
}

}]
$session_graph walk [$session_graph get initialstate]\

-order pre -type bfs -dir forward -command $walkproc
} -result {}

<<method tests>>=
test dfs-2.0 {

DFS on the state model graph for the Sample_Set class
} -cleanup {

chan close $ss_file
rename $ss_dot {}

} -body {
set ss_graph [sio stateModelGraph Sample_Set]
miccautil dfs $ss_graph

set ss_dot [miccautil graphToDot $ss_graph type {pre rpost}]
set ss_file [open Sample_Set_dfs.pdf w]
$ss_dot write $ss_file pdf

} -result {}

miccautil Package 38 / 49

SAMPLING
pre=4
rpost=4

type=back

IDLE
pre=1
rpost=1

type=back

READYING
pre=3
rpost=3

type=tree

type=back

RUNNING
pre=2
rpost=2

type=tree

type=tree

Figure 4.2: DFS annotations for Sample Set state model

Spanning tree of a state model

miccautil Package 39 / 49

::miccautil spanningTree graph start

graph a graph command as returned from struct::graph, usually obtained by invoking, modelobj
stateModelGraph class.

start the name of node where the DFS for the tree is to start. If start is not given, then the tree starts
at node given by the initialstate attribute of the graph.

The spanningTree subcommand returns a graph command handle as obtained from the struct::graph package
in Tcllib. The returned graph contains a spanning tree of the graph argument. The spanning tree returned is the sub-graph
of graph where only tree type edges are retained. The caller is responsible for invoking the destroy method on the
returned graph command when it is no longer needed. It is not necessary to have run the dfs command previously on
graph as that will be done by spanningTree.

<<package exports>>=
namespace export spanningTree

<<required packages>>=
package require lambda

Implementation

<<miccautil commands>>=
proc ::miccautil::spanningTree {graph {start {}}} {

set span [::struct::graph]
$span = $graph
dfs $span $start

set ffunc [lambda {graph arc} {
expr {[$graph arc get $arc type] ne "tree"}

}]
set non_tree [$span arcs -key type -filter $ffunc]
$span arc delete {*}$non_tree

return $span
}

The following figure shows the spanning tree of the Conduit state model.

miccautil Package 40 / 49

CONNECTING

WAITING FOR REPORT

event=Sensor_connected

WAITING FOR SENSOR

event=Reporting_ready

CONNECTED

event=Reporting_ready

DISCONNECTING REPORT

event=Sensor_disconnected

DISCONNECTING SENSOR

event=Reporting_finished

DISCONNECTING

event=Disconnect

SESSION COMPLETE

event=Reporting_finished

SENSOR DISCONNECTED

event=Sensor_disconnected

REPORT DISCONNECTED

event=Reporting_finished

event=Connect

Figure 4.3: Spanning tree of Conduit state model

Tests

<<method tests>>=
test spanning-1.0 {

Spanning tree for the state model graph of the Reporting Session class
} -cleanup {

$session_graph destroy
$span_tree destroy

} -body {
set session_graph [aggrmgmt stateModelGraph Reporting_Session]
miccautil dfs $session_graph
set span_tree [miccautil spanningTree $session_graph]

variable tree_nodes 0

set walkproc [lambda@ [namespace current] {action graph node} {
variable tree_nodes
foreach outarc [$graph arcs -out $node] {

set node_type [$graph arc get $outarc type]
if {$node_type eq "tree"} {

incr tree_nodes
}

miccautil Package 41 / 49

set target [$graph arc target $outarc]
log::debug "$node - [$graph arc get $outarc event] -> $target\

==> $node_type"
}

}]
$session_graph walk [$session_graph get initialstate]\

-order pre -type bfs -dir forward -command $walkproc

return $tree_nodes
} -result {11}

Graphviz view of a graph

::miccautil graphToDot graph ?edgekeys? ?nodekeys?

graph a graph command as returned from struct::graph, usually obtained by invoking, modelobj
stateModelGraph class.

edgekeys a list of key names which will be included as the label of an edge.

nodekeys a list of key names which will be included in the label of a node.

The graphToDot subcommand returns a Tcldot command handle which is the dot representation of graph. The
edges of the dot drawing are annotated with the values given by the edge attribute keys contained in the edgekeys list.
Similarly, the nodes of the dot drawing are annotated with the values given by the node attribute keys contained in the
nodekeys list. The command handle can be used in the same way as those returned by the stateModelDot method.

Note that invoking graphToDot with the return value of stateModelGraph does not yield the same rendering as
the stateModelDot method. The later method insures the rendered state model appears more in line with usual UML
notation.

<<package exports>>=
namespace export graphToDot

Implementation

<<miccautil commands>>=
proc ::miccautil::graphToDot {graph {edgekeys {}} {nodekeys {}}} {

package require Tcldot

set dot_graph [dotnew digraph]
$dot_graph setnodeattributes shape box
$dot_graph setnodeattributes style filled
$dot_graph setnodeattributes fillcolor yellow

foreach node [$graph nodes] {
set dot_node [$dot_graph addnode $node]
if {$node eq "@"} {

$dot_node setattributes\
shape circle fontcolor white fillcolor black

set label_value {}
} elseif {$node eq "__x__"} {

$dot_node setattributes\
shape doublecircle fontcolor white fillcolor black

set label_value {}
} else {

miccautil Package 42 / 49

set label_value [string map {_ { }} $node]
}
set node_attrs [$graph node keys $node]
set node_keys [lmap nodekey $nodekeys {

expr {$nodekey in $node_attrs ?
"$nodekey=[$graph node get $node $nodekey]" : [continue]}

}]
if {$label_value ne {}} {

set label_value [concat [list $label_value] $node_keys]
} else {

set label_value $node_keys
}
set label_value [join $label_value "\\n"]
$dot_node setattributes label $label_value

}

foreach arc [$graph arcs] {
set source [$graph arc source $arc]
set target [$graph arc target $arc]
set dot_edge [$dot_graph addedge $source $target]
set label_value {}
set nl {}
set edge_attrs [$graph arc keys $arc]
foreach edgekey $edgekeys {

if {$edgekey in $edge_attrs} {
append label_value $nl\

${edgekey}=[$graph arc get $arc $edgekey]
set nl "\\n"

}
}
$dot_edge setattributes label $label_value

}

return $dot_graph
}

Tests

<<method tests>>=
test graphToDot-1.0 {

Draw spanning tree for the state model graph of the Reporting Session class
} -cleanup {

$session_graph destroy
$span_tree destroy
chan close $span_file
chan close $dfs_file
rename $span_dot {}
rename $dfs_dot {}

} -body {
set session_graph [aggrmgmt stateModelGraph Reporting_Session]
miccautil dfs $session_graph
set span_tree [miccautil spanningTree $session_graph]

set span_dot [miccautil graphToDot $span_tree event]

set span_file [open Conduit_span.pdf w]
$span_dot write $span_file pdf

miccautil dfs $session_graph
set dfs_dot [miccautil graphToDot $session_graph type {pre rpost}]
set dfs_file [open Conduit_dfs.pdf w]
$dfs_dot write $dfs_file pdf

miccautil Package 43 / 49

} -result {}

miccautil Package 44 / 49

Chapter 5

Code Layout

In literate programming terminology, a chunk is a named part of the final program. The program chunks form a tree and the root
of that tree is named, *, by default. We follow the convention of naming the root the same as the output file name. The process of
extracting the program tree formed by the chunks is called tangle. By the default the program, atangle, extracts the root chunk
to produce the Tcl source file.

miccautil Source

<<miccautil.tcl>>=
<<edit warning>>
<<copyright info>>
++
Project:
mrtools
#
Module:
miccautil source code
--

<<required packages>>

namespace eval ::miccautil {
<<package exports>>
namespace ensemble create

<<logger setup>>

variable version 1.3
}

<<miccautil commands>>

package provide miccautil $::miccautil::version

Testing Source

<<miccautil.test>>=
#!/usr/bin/env tclsh
#
<<edit warning>>

miccautil Package 45 / 49

#
<<copyright info>>
#
++
Project:
mrtools
#
Module:
miccautil test code
--

package require Tcl 8.6
package require cmdline
package require logger
package require logger::utils
package require logger::appender
package require fileutil
package require ral
package require ralutil
package require tcltest
package require lambda

Add custom arguments here.
set optlist {

{level.arg warn {Log debug level}}
}
array set options [::cmdline::getKnownOptions argv $optlist]

::logger::setlevel $options(level)

tcltest::configure {*}$argv

source ../code/miccautil.tcl

namespace eval ::miccautil::test {
set logger [::logger::init miccautil::test]
set appenderType [expr {[dict exist [fconfigure stdout] -mode] ?\

"colorConsole" : "console"}]
::logger::utils::applyAppender -appender $appenderType -serviceCmd $logger\

-appenderArgs {-conversionPattern {\[%c\] \[%p\] '%m'}}
::logger::import -all -force -namespace log miccautil::test

log::info "testing miccautil version: [package require miccautil]"

namespace import ::tcltest::*
namespace import ::ral::*
namespace import ::ralutil::*

<<test utilities>>
<<constructor tests>>
<<method tests>>

cleanupTests
}

Edit Warning

We want to make sure to warn readers that the source code is generated and not manually written.

miccautil Package 46 / 49

<<edit warning>>=
DO NOT EDIT THIS FILE!
THIS FILE IS AUTOMATICALLY GENERATED FROM A LITERATE PROGRAM SOURCE FILE.

Copyright Information

The following is copyright and licensing information.

<<copyright info>>=
This software is copyrighted 2020 - 2023 by G. Andrew Mangogna.
The following terms apply to all files associated with the software unless
explicitly disclaimed in individual files.
#
The authors hereby grant permission to use, copy, modify, distribute,
and license this software and its documentation for any purpose, provided
that existing copyright notices are retained in all copies and that this
notice is included verbatim in any distributions. No written agreement,
license, or royalty fee is required for any of the authorized uses.
Modifications to this software may be copyrighted by their authors and
need not follow the licensing terms described here, provided that the
new terms are clearly indicated on the first page of each file where
they apply.
#
IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES
THEREOF, EVEN IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.
#
THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT. THIS SOFTWARE
IS PROVIDED ON AN "AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE
NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS,
OR MODIFICATIONS.
#
GOVERNMENT USE: If you are acquiring this software on behalf of the
U.S. government, the Government shall have only "Restricted Rights"
in the software and related documentation as defined in the Federal
Acquisition Regulations (FARs) in Clause 52.227.19 (c) (2). If you
are acquiring the software on behalf of the Department of Defense,
the software shall be classified as "Commercial Computer Software"
and the Government shall have only "Restricted Rights" as defined in
Clause 252.227-7013 (c) (1) of DFARs. Notwithstanding the foregoing,
the authors grant the U.S. Government and others acting in its behalf
permission to use and distribute the software in accordance with the
terms specified in this license.

miccautil Package 47 / 49

Appendix A

Literate Programming

The source for this document conforms to asciidoc syntax. This document is also a literate program. The source code for the
implementation is included directly in the document source and the build process extracts the source code which is then given to
the micca program. This process is known as tangleing. The program, atangle, is available to extract source code from the
document source and the asciidoc tool chain can be used to produce a variety of different output formats, although PDF is
the intended choice.

The goal of a literate program is to explain the logic of the program in an order and fashion that facilitates human understanding
of the program and then tangle the document source to obtain the code in an order suitable for a language processor. Briefly,
code is extracted from the literate source by defining a series of chunks that contain the source. A chunk is defined by including
its name as:

<<chunk name>>=

The trailing = sign denotes a definition. A chunk definition ends at the end of the source block or at the beginning of another
chunk definition. A chunk may be referenced from within a chunk definition by using its name without the trailing = sign, as in:

<<chunk definition>>=
<<chunk reference>>

Chunk names are arbitrary strings. Multiple definitions with the same name are simply concatenated in the order they are
encountered. There are one or more root chunks which form the conceptual tree for the source files that are contained in the
literate source. By convention, root chunks are named the same as the file name to which they will be tangled. Tangling is then
the operation of starting at a root chunk and recursively substituting the definition for the chunk references that are encountered.

For readers that are not familiar with the literate style and who are adept at reading source code directly, the chunk definitions
and reordering provided by the tangle operation can be a bit disconcerting at first. You can, of course, examine the tangled source
output, but if you read the program as a document, you will have to trust that the author managed to arrange the chunk definitions
and references in a manner so that the tangled output is in an acceptable order.

http://www.methods.co.nz/asciidoc/
http://www.literateprogramming.com/
http://repos.modelrealization.com/cgi-bin/fossil/mrtools/

miccautil Package 48 / 49

Index

A
attributes, 7

C
chunk

edit warning, 45
miccautil.tcl, 44
miccautil.test, 44

classes, 6
command

dfs, 35
graphToDot, 41
model, 4
spanningTree, 38

constructor, 4
creation_events, 9

D
defaultAttributeValues, 20
destructor, 5
dfs, 35
domainName, 6

E
edit warning, 45
events, 8

G
graphToDot, 41

I
initialInstancePopulation, 22

M
method

attributes, 7
classes, 6
constructor, 4
creation_events, 9
defaultAttributeValues, 20
destructor, 5
domainName, 6
events, 8
initialInstancePopulation, 22
RecordMecateTransition, 19
recordTransition, 14
reportTransitions, 15
startMecateTransitionCount, 18

startTransitionRecording, 13
stateModelDot, 26
stateModelGraph, 23
states, 7
stopMecateTransitionCount, 19
stopTransitionRecording, 14
transitions, 10

miccautil.tcl, 44
miccautil.test, 44
model, 4

method
attributes, 7
classes, 6
constructor, 4
creation_events, 9
defaultAttributeValues, 20
destructor, 5
domainName, 6
events, 8
initialInstancePopulation, 22
RecordMecateTransition, 19
recordTransition, 14
reportTransitions, 15
startMecateTransitionCount, 18
startTransitionRecording, 13
stateModelDot, 26
stateModelGraph, 23
states, 7
stopMecateTransitionCount, 19
stopTransitionRecording, 14
transitions, 10

R
RecordMecateTransition, 19
recordTransition, 14
reportTransitions, 15

S
spanningTree, 38
startMecateTransitionCount, 18
startTransitionRecording, 13
stateModelDot, 26
stateModelGraph, 23
states, 7
stopMecateTransitionCount, 19
stopTransitionRecording, 14

T

miccautil Package 49 / 49

transitions, 10

	Introduction
	Background
	Overview
	How to Read This Document

	Preliminaries
	The Model Class
	Constructor
	Destructor
	Domain name method
	Class names
	Class attributes
	State names
	Event names
	Creation event names
	State model transitions
	Computing the transition matrix

	Recording event dispatch
	Starting a transition recording session
	Stopping a transition recording session
	Recording an event transition
	Reporting transitions
	Counting transitions with mecate

	Default attribute values
	Initial instance population
	State model as a graph
	State model with Tcldot

	Functions on state model graphs
	Depth first search of a state model graph
	Spanning tree of a state model
	Graphviz view of a graph

	Code Layout
	miccautil Source
	Testing Source
	Edit Warning
	Copyright Information

	Literate Programming
	Index

