游戏王残局简化版

Check-in [979c60093b]
Login

Check-in [979c60093b]

Overview
Comment:0.0.2557
Downloads: Tarball | ZIP archive | SQL archive
Timelines: family | ancestors | descendants | both | trunk
Files: files | file ages | folders
SHA3-256: 979c60093b4cff7a6b05364aa2c47145a74271ccb240132ed58f1c6f7b3c444c
User & Date: 顽雨沉风 on 2023-09-25 02:01:06
Other Links: manifest | tags
Context
2023-09-25
15:40
0.0.2558 check-in: a377b39d16 user: 顽雨沉风 tags: trunk
02:01
0.0.2557 check-in: 979c60093b user: 顽雨沉风 tags: trunk
2023-09-24
06:15
0.0.2556 check-in: c023041629 user: 顽雨沉风 tags: trunk
Changes

Modified 解法参考/MH-20210116.html from [ab4e6c2e45] to [ed311cb628].

17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
font-size: inherit;
width: 0.8em;
margin: 0 0.8em 0.2em -1.6em;
vertical-align: middle;
}
.display.math{display: block; text-align: center; margin: 0.5rem auto;}
</style>
  <style type="text/css">@media screen and (min-aspect-ratio:1/1) {html {background-color: f8f8f8;background-image:linear-gradient(45deg, #eee 25%, transparent 25%, transparent 75%, #eee 75%), linear-gradient(45deg, #eee 25%, transparent 25%, transparent 75%, #eee 75%);background-size: 8px 8px;background-position: 0 0, 16px 8px;}body {border: solid #a0a0a0 1px ;border-radius: 20px ;padding: 26px ;margin: 16px ;color: #101010 ;background: linear-gradient(to right, #efefefff, #efefeffc);padding: 2em 18%;line-height: 2.1em;box-shadow: 0px 0px 1px rgba(160, 160, 160, 1), 0px 0px 1px rgba(160, 160, 160, 1);}}h1,h2,h3,h4,h5,h6 {font-size: 1.5em;color: #3F5770;border-bottom: 1px solid #dddddd;margin: 1.2em 0em;}h2::before {content: "  ";}h3::before {content: "    ";}a {list-style: none;border-right: 0.3em solid #5183C466;border-left: 0.3em solid #5183C466;padding: 0.2em 0.4em;margin-bottom: 0.2em;margin-top: 0.3em;background-color: white;text-decoration-color: blue;border-radius: 0.2em;}a:visited {color: blue;text-decoration-color: white;}a:active {color: red;}nav ul li {margin: 1.2em 0em;}p::before {content: "  ";}p {margin: 1.2em 0;}.title {background-color: white;font-size: 2em;text-align: center;}b {background-color: white;list-style: none;border-right: 0.3em solid #5183C466;border-left: 0.3em solid #5183C466;padding: 0.2em 0.4em;margin-bottom: 0.2em;margin-top: 0.3em;border-radius: 0.2em;}details {border-bottom: 1px solid #dddddd;}details > summary {list-style: none;border-right: 0.3em solid #5183C466;border-left: 0.3em solid #5183C466;padding: 0.2em 0.4em;margin-bottom: 0.2em;margin-top: 0.3em;outline: none;border-radius: 0.2em;}pre {background: #f6f6f6;border-left: 0.5em solid #ccc;padding: 0.4em;border-radius: 0.2em;overflow-wrap:break-word;}pre:active {color: red;}code {font-family: "Verdana";}button {background: #ffffff;color: #20894d;}button:active {color: red;}</style>
  <!--[if lt IE 9]>
    <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv-printshiv.min.js"></script>
  <![endif]-->
</head>
<body>
<header id="title-block-header">
<h1 class="title">MH-20210116</h1>
</header>
<nav id="TOC" role="doc-toc">
<ul>
<li><a href="#原解" id="toc-原解"><span class="toc-section-number">1</span> 原解</a></li>
<li><a href="#扩展" id="toc-扩展"><span class="toc-section-number">2</span> 扩展</a>
<ul>
<li><a href="#问" id="toc-问"><span class="toc-section-number">2.1</span> 问</a>
<ul>
<li><a href="#答" id="toc-答"><span class="toc-section-number">2.1.1</span> 答</a></li>
<li><a href="#解" id="toc-解"><span class="toc-section-number">2.1.2</span> 解</a></li>
</ul></li>
</ul></li>
</ul>
</nav>
<h1 data-number="1" id="原解"><span class="header-section-number">1</span> 原解</h1>
<pre><code>1 * 5 = 5

2 * 4 = 8

3 * 3 = 9</code></pre>
<h1 data-number="2" id="扩展"><span class="header-section-number">2</span> 扩展</h1>
<h2 data-number="2.1" id="问"><span class="header-section-number">2.1</span> 问</h2>
<p>给定一个由数个小正整数累加起来的大正整数,问这些小正整数的值为多少才能让这些小正整数的累乘值最大</p>
<h3 data-number="2.1.1" id="答"><span class="header-section-number">2.1.1</span> 答</h3>
<p>非 3 即 2</p>
<h3 data-number="2.1.2" id="解"><span class="header-section-number">2.1.2</span> 解</h3>
<p>可能的值有 1 ~ 正无穷</p>
<p>由指数爆炸性可知,只需要考虑 2 3 4</p>
<p>由 4 是 2 的倍数可知,只需要考虑 2 3</p>
<p>由某些正整数不能被 2 整除可知,需要 3</p>
<p>由某些正整数不能被 3 整除可知,需要 2</p>
<p>故,非 3 即 2</p>
<p>取 2 3 的最小公倍数 6</p>
<pre><code>2 ^ 3 = 8

3 ^ 3 = 9</code></pre>
<p>故,优先选 3</p>
<script>

document.onclick = function(event) {

  var target = event.target

  if (target.tagName == "PRE"







|











|
<
<
<
<
<
<
<









|
|
|
<
<
<
<
<
<
<
<
<
<

|
<







17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36







37
38
39
40
41
42
43
44
45
46
47
48










49
50

51
52
53
54
55
56
57
font-size: inherit;
width: 0.8em;
margin: 0 0.8em 0.2em -1.6em;
vertical-align: middle;
}
.display.math{display: block; text-align: center; margin: 0.5rem auto;}
</style>
  <style type="text/css">@media screen and (min-aspect-ratio:1/1) {html {background-color: f8f8f8;background-image:linear-gradient(45deg, #eee 25%, transparent 25%, transparent 75%, #eee 75%), linear-gradient(45deg, #eee 25%, transparent 25%, transparent 75%, #eee 75%);background-size: 8px 8px;background-position: 0 0, 16px 8px;}body {border: solid #a0a0a0 1px ;border-radius: 20px ;padding: 26px ;margin: 16px ;color: #101010 ;background: linear-gradient(to right, #efefefff, #efefeffc);padding: 2em 11%;line-height: 2.1em;box-shadow: 0px 0px 1px rgba(160, 160, 160, 1), 0px 0px 1px rgba(160, 160, 160, 1);}}h1,h2,h3,h4,h5,h6 {font-size: 1.5em;color: #3F5770;border-bottom: 1px solid #dddddd;margin: 1.2em 0em;}h2::before {content: "  ";}h3::before {content: "    ";}h4::before {content: "      ";}a {list-style: none;border-right: 0.3em solid #5183C466;border-left: 0.3em solid #5183C466;padding: 0.2em 0.4em;margin-bottom: 0.2em;margin-top: 0.3em;background-color: white;text-decoration-color: blue;border-radius: 0.2em;}a:visited {color: blue;text-decoration-color: white;}a:active {color: red;}nav ul li {margin: 1.2em 0em;}p::before {content: "  ";}p {margin: 1.2em 0;}.title {background-color: white;font-size: 2em;text-align: center;}b {background-color: white;list-style: none;border-right: 0.3em solid #5183C466;border-left: 0.3em solid #5183C466;padding: 0.2em 0.4em;margin-bottom: 0.2em;margin-top: 0.3em;border-radius: 0.2em;}details {border-bottom: 1px solid #dddddd;}details > summary {list-style: none;border-right: 0.3em solid #5183C466;border-left: 0.3em solid #5183C466;padding: 0.2em 0.4em;margin-bottom: 0.2em;margin-top: 0.3em;outline: none;border-radius: 0.2em;}pre {background: #f6f6f6;border-left: 0.5em solid #ccc;padding: 0.4em;border-radius: 0.2em;overflow-wrap:break-word;}pre:active {color: red;}code {font-family: "Verdana";}button {background: #ffffff;color: #20894d;}button:active {color: red;}</style>
  <!--[if lt IE 9]>
    <script src="//cdnjs.cloudflare.com/ajax/libs/html5shiv/3.7.3/html5shiv-printshiv.min.js"></script>
  <![endif]-->
</head>
<body>
<header id="title-block-header">
<h1 class="title">MH-20210116</h1>
</header>
<nav id="TOC" role="doc-toc">
<ul>
<li><a href="#原解" id="toc-原解"><span class="toc-section-number">1</span> 原解</a></li>
<li><a href="#扩展" id="toc-扩展"><span class="toc-section-number">2</span> 扩展</a></li>







</ul>
</nav>
<h1 data-number="1" id="原解"><span class="header-section-number">1</span> 原解</h1>
<pre><code>1 * 5 = 5

2 * 4 = 8

3 * 3 = 9</code></pre>
<h1 data-number="2" id="扩展"><span class="header-section-number">2</span> 扩展</h1>
<pre><code>6 = 3 + 3 = 3 + 3 + 1 - 1 = 3 + 1 + 3 - 1 = (3 + 1) + (3 - 1)

(3 + 1) * (3 - 1) = 3 * 3 + 3 * (-1) + 1 * 3 + 1 * (-1) = 3 * 3 + 1 * (-1) = 3 * 3 - 1 ^ 2 = 3 ^ 2 - 1 ^ 2











3 ^ 2 &gt; 3 ^ 2 - 1 ^ 2</code></pre>

<script>

document.onclick = function(event) {

  var target = event.target

  if (target.tagName == "PRE"

Modified 解法参考/MH-20210116.md from [afa3ff62be] to [df95e3fc0c].

8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
2 * 4 = 8

3 * 3 = 9
~~~

# 扩展

## 问

给定一个由数个小正整数累加起来的大正整数,问这些小正整数的值为多少才能让这些小正整数的累乘值最大

### 答

非 3 即 2

### 解

可能的值有 1 ~ 正无穷

由指数爆炸性可知,只需要考虑 2 3 4

由 4 是 2 的倍数可知,只需要考虑 2 3

由某些正整数不能被 2 整除可知,需要 3

由某些正整数不能被 3 整除可知,需要 2

故,非 3 即 2

取 2 3 的最小公倍数 6

~~~
2 ^ 3 = 8

3 ^ 3 = 9
~~~

故,优先选 3








<
|
<
|
<

<
|
<

<
|
<
<
<
<
<
<
<
<
<
<
<
<

<
<
<
<
<
<

8
9
10
11
12
13
14

15

16

17

18

19

20












21






22
2 * 4 = 8

3 * 3 = 9
~~~

# 扩展


~~~

6 = 3 + 3 = 3 + 3 + 1 - 1 = 3 + 1 + 3 - 1 = (3 + 1) + (3 - 1)



(3 + 1) * (3 - 1) = 3 * 3 + 3 * (-1) + 1 * 3 + 1 * (-1) = 3 * 3 + 1 * (-1) = 3 * 3 - 1 ^ 2 = 3 ^ 2 - 1 ^ 2



3 ^ 2 > 3 ^ 2 - 1 ^ 2












~~~