29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
|
<body>
<header id="title-block-header">
<h1 class="title">MH-20210116</h1>
</header>
<nav id="TOC" role="doc-toc">
<ul>
<li><a href="#原解" id="toc-原解"><span class="toc-section-number">1</span> 原解</a></li>
<li><a href="#衍生" id="toc-衍生"><span class="toc-section-number">2</span> 衍生</a></li>
</ul>
</nav>
<h1 data-number="1" id="原解"><span class="header-section-number">1</span> 原解</h1>
<pre><code>1 * 5 = 5
2 * 4 = 8
3 * 3 = 9</code></pre>
<h1 data-number="2" id="衍生"><span class="header-section-number">2</span> 衍生</h1>
<p>给定一个由数个小正整数累加起来的大正整数,问这些小正整数的值为多少才能让这些小正整数的累乘值最大</p>
<p>非 3 即 2</p>
<p>解法:</p>
<p>可能的值有 1 ~ 正无穷</p>
<p>由指数爆炸性可知,只需要考虑 2 3 4</p>
<p>取 2 3 4 的最小公倍数 12</p>
<p>拆分 12 可得</p>
<pre><code>2 ^ 6 = 64
3 ^ 4 = 81
|
|
>
>
>
>
>
>
>
>
>
<
>
|
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
|
<body>
<header id="title-block-header">
<h1 class="title">MH-20210116</h1>
</header>
<nav id="TOC" role="doc-toc">
<ul>
<li><a href="#原解" id="toc-原解"><span class="toc-section-number">1</span> 原解</a></li>
<li><a href="#衍生" id="toc-衍生"><span class="toc-section-number">2</span> 衍生</a>
<ul>
<li><a href="#问" id="toc-问"><span class="toc-section-number">2.1</span> 问</a>
<ul>
<li><a href="#答" id="toc-答"><span class="toc-section-number">2.1.1</span> 答</a></li>
<li><a href="#解" id="toc-解"><span class="toc-section-number">2.1.2</span> 解</a></li>
</ul></li>
</ul></li>
</ul>
</nav>
<h1 data-number="1" id="原解"><span class="header-section-number">1</span> 原解</h1>
<pre><code>1 * 5 = 5
2 * 4 = 8
3 * 3 = 9</code></pre>
<h1 data-number="2" id="衍生"><span class="header-section-number">2</span> 衍生</h1>
<h2 data-number="2.1" id="问"><span class="header-section-number">2.1</span> 问</h2>
<p>给定一个由数个小正整数累加起来的大正整数,问这些小正整数的值为多少才能让这些小正整数的累乘值最大</p>
<h3 data-number="2.1.1" id="答"><span class="header-section-number">2.1.1</span> 答</h3>
<p>非 3 即 2</p>
<h3 data-number="2.1.2" id="解"><span class="header-section-number">2.1.2</span> 解</h3>
<p>可能的值有 1 ~ 正无穷</p>
<p>由指数爆炸性可知,只需要考虑 2 3 4</p>
<p>取 2 3 4 的最小公倍数 12</p>
<p>拆分 12 可得</p>
<pre><code>2 ^ 6 = 64
3 ^ 4 = 81
|