
Pandora Products Manual
Network Firing Box

Jim Schimpf

Document Number: PAN-200908001
Revision Number: 3.3

23 January 2014

Pandora Products.
215 Uschak Road

Derry, PA 15627

Pandora Products.

Network Firing Box
Program Manual

c�2009-2014 Pandora Products. All rights reserved. Pandora product and company names, as well
as their respective logos are trademarks or registered trademarks of Pandora Products. All other
product names mentioned herein are trademarks or registered trademarks of their respective owners.

Pandora Products.

215 Uschak Road

Derry, PA 15627

Phone: 724.539.1276

Web: http://chiselapp.com/user/jschimpf/repository/Firenet/index

Email: jim.schimpf@gmail.com

Pandora Products. has carefully checked the information in this document and believes it to be accu-
rate. However, Pandora Products assumes no responsibility for any inaccuracies that this document
may contain. In no event will Pandora Products. be liable for direct, indirect, special, exemplary,
incidental, or consequential damages resulting from any defect or omission in this document, even
if advised of the possibility of such damages.

In the interest of product development, Pandora Products reserves the right to make improvements
to the information in this document and the products that it describes at any time, without notice or
obligation.

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
ii

Pandora Products.

Network Firing Box
Program Manual

Document Revision History

Use the following table to track a history of this document’s revisions. An entry should be made into

this table for each version of the document.

Version Author Description Date
0.1 js Initial Version 6-Aug-2009
0.2 js Add application layer commands 8-Aug-2009
0.3 js Add sync clocks in nodes and sync firing 12-Aug-2009
0.4 js Add in information about scripting support 4-Sep-2009
0.5 js Add in information about firenet sup.lua 13-Sep-2009
0.6 js Scripting operations and play file stop() routine0 21-Sep-2009
0.7 js Rewrite packet protocol [d26a3ab0e9] 11-May-2010
0.8 js Add set address command [4faba11f43] 15-May-2010
0.9 js Update document for NEWNET [de1bb57002] 19-May-2010
1.0 js Update document with RESTful interface in Lua 31-Oct-2010
1.1 js Show RESTful command structure 14-Nov-2010
1.2 js Add Login commands 18-Dec-2020
1.3 js Add set fire time command 9-Jan-2011
1.4 js [e4208b8f56] Add ACK message 16-Jan-2011
1.5 js [dcb5f4c816] Add VERSION message 20-Jan-2011
1.5 js [4fd91ac4c2] Add Channel message 24-Jan-2011
1.6 js Web interface 16-Apr-2011
1.7 js Update REST interface information 22-Apr-2011
1.8 js Add Backoff & Reset commands 1-May-2011
1.9 js Add docs on commands returning values 1-May-2011
2.0 js Allow status command to clear map 8-May-2011
2.1 js Apply Chip Maguire corrections 31-May-2011
2.2 js Add Get Data command 16-Jul-2011
2.3 js [9e81c1a523] Adaptive firing operation 16-Oct-2011
2.4 js [156fc0f116d] Node design information 6-Nov-2011
2.5 js [fd8800dae4] Add firing queue mode 12-Nov-2011
2.6 js [9eae8bcde5] Add PROGRAM to rest commands 20-Nov-2011
2.7 js [349529d41d] Add AUTO run to web interface 10-Dec-2011
2.8 js Updated information about SYNC 26-Dec-2011
2.9 js Add AUTO show images 26-Dec-2011
3.0 js [7e720cf520] Fix head end of network 31-Dec-2011
3.1 js Minor editing 6-Apr-2012
3.2 js Text corrections 17-Feb-2013
3.3 js Capacitor in firing ckt 23-Jan-2014

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
iii

Pandora Products.

Network Firing Box
Program Manual

Contents

Contents

1 System Design 2
1.1 Introduction . 2

1.2 Software Design . 2

1.3 User Interface . 3

1.3.1 Interface Operation . 3

1.4 RESTful Interface . 9

1.4.1 REST use . 10

1.4.2 Startup . 11

1.4.2.1 Example . 11

1.4.3 REST API . 11

1.4.4 ADMIN . 11

1.4.4.1 ADMIN/TIME . 12

1.4.4.2 ADMIN/POWER . 12

1.4.4.3 ADMIN/LOGIN . 12

1.4.5 FIRENET . 13

1.4.5.1 FIRENET/STATUS . 13

1.4.5.2 FIRENET/ARM . 15

1.4.5.3 FIRENET/FIRE . 15

1.4.5.4 FIRENET/SYNC . 15

1.4.5.5 FIRENET/PGM . 15

1.4.5.6 FIRENET/DELAY . 16

1.4.5.7 FIRENET/VERSION . 16

1.4.5.8 FIRENET/CHANNEL . 16

1.4.5.9 FIRENET/LITERAL . 16

1.4.6 PROGRAM Automated Show Commands 17

1.4.6.1 Introduction . 17

1.4.6.2 Show Directory . 17

1.4.6.3 FIRENET/PROGRAM/LIST 18

1.4.6.4 FIRENET/PROGRAM/SET . 18

1.4.6.5 FIRENET/PROGRAM/PGM 19

1.4.6.6 FIRENET/PROGRAM/START 19

1.4.6.7 FIRENET/PROGRAM/STATUS 19

1.4.6.8 FIRENET/PROGRAM/ABORT 20

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
iv

Pandora Products.

Network Firing Box
Program Manual

Contents

2 Lua Extension Classes 20

2.1 Introduction . 20

2.2 RESTful Interface CLASS . 20

2.2.1 Introduction . 20

2.2.2 Class Operation . 20

2.2.3 Class Methods - Server Control . 21

2.2.3.1 http.start() . 21

2.2.3.2 http.stop() . 21

2.2.3.3 http.lock() . 22

2.2.3.4 http.open() . 22

2.2.3.5 http.close() . 22

2.2.3.6 http.url(h) . 23

2.2.3.7 http.data() . 23

2.2.3.8 parsers.json() . 24

2.3 Timer CLASS . 24

2.3.1 Timer Class Methods . 24

2.3.1.1 timer.sleep() . 24

2.3.2 Timer Constructors/Destructors . 25

2.3.2.1 timer.new() . 25

2.3.2.2 timer.delete() . 25

2.3.3 Timer Methods . 25

2.3.3.1 timer.start() . 25

2.3.3.2 timer.done() . 25

2.3.3.3 timer.read() . 26

2.4 Firenet Class . 26

2.4.1 Data Format . 26

2.4.2 Creators/Destructors . 26

2.4.2.1 firenet.new() . 26

2.4.2.2 firenet.delete() . 26

2.4.3 Methods . 27

2.4.3.1 firenet.read() . 27

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
v

Pandora Products.

Network Firing Box
Program Manual

Contents

2.4.3.2 firenet.write() . 27

2.5 Keyboard Class . 27

2.5.1 Class Methods . 27

2.5.1.1 kbd.prep() . 27

2.5.1.2 kbd.close() . 28

2.5.1.3 kbd.getc() . 28

2.5.2 Use . 28

3 Lua Support Code (firenet sup.lua) 29

3.1 Introduction . 29

3.2 Lua Globals . 29

3.2.1 BCAST ADDR . 29

3.2.2 FNET MAP . 29

3.2.3 OS MUSIC PLAYER . 29

3.3 Network Support Routines . 30

3.3.1 build fnet status() . 30

3.4 Misc Support Routines . 30

3.4.1 play file() . 30

3.4.2 play file stop() . 30

4 FIRENET Node Design 31

5 Firenet Network Design 31

5.1 Physical Layer . 31

5.2 Data Link Layer . 32

5.2.1 Packet Format . 32

5.2.2 Addressing . 32

5.3 Application Layer . 32

5.3.1 Commands . 33

5.3.1.1 ARM Command . 33

5.3.1.2 FIRE Command . 33

5.3.1.3 DELAY FIRE Command . 34

5.3.1.4 PGM EVENT Command . 34

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
vi

Pandora Products.

Network Firing Box
Program Manual

Contents

5.3.1.5 STATUS Command . 34

5.3.1.6 WHO (are you) Command . 34

5.3.1.7 TIME Command . 35

5.3.1.8 SYNCHRONIZE Node Clocks 35

5.3.1.9 VERSION of Node code . 36

5.3.1.10 CHANNEL information . 37

5.3.1.11 TEST MODE Command . 37

5.3.1.12 BACKOFF Command . 37

5.3.1.13 RESTART Command . 38

5.3.1.14 REQUEST Data Command . 38

6 Firenet Hardware 38

6.1 Introduction . 38

6.2 Node Electronics . 39

6.2.1 Power Supply . 40

6.2.2 Network . 41

6.2.3 Network Interface . 41

6.2.4 Firing Circuit . 42

6.2.4.1 Adaptive firing . 42

6.2.5 Processor . 43

6.3 Node Hardware . 44

6.3.1 Enclosure . 44

6.3.2 Printed Circuit board . 46

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
vii

Pandora Products.

Network Firing Box
Program Manual

List of Figures

List of Figures

1 FIRENET System . 2

2 Index page . 3

3 Login page . 4

4 Main Screen . 4

5 Debug Screen . 5

6 Manual Screen . 5

7 Arm Screen . 6

8 Ready Screen . 6

9 Fire Screen . 7

10 Inventory display . 7

11 Automated Show . 8

12 Automated Show Node Unarmed . 8

13 Armed Show ready to run . 9

14 Running Show . 9

15 REST command structure . 10

16 RS-485 Network . 31

17 Packet Format . 32

18 Node Command Table . 33

19 Synchronized Firing . 36

20 Firenet System . 39

21 Node Schematic . 40

22 Control computer transmission . 42

23 Firing Action . 43

24 Node Layout . 44

25 Node Exterior . 45

26 Node Interior . 46

27 Firenet PC board . 47

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 1 of 49

Pandora Products.

Network Firing Box
Program Manual

System Design

1 System Design

1.1 Introduction

FIRENET is a hardware/firmware/software system for firing fireworks pieces under computer con-
trol. It uses Arduino based hardware to fire the pieces and web based software to control them.

The FIRENET system is shown in Figure 1. There are two computers in addition to the FIRENET
firing boards. The Control Computer is directly connected to the RS-485 FIRENET network and
interacts with the FIRENET boards. The second computer is running a web browser where it has
the FIRENET user interface.

The control computer is running the FIRENET Web Server/REST software. Representational State
Transfer or REST is a simple protocol on top of HTTP that uses GET/PUT/POST and DELETE
HTTP messages to allow control of a system. [6]. For FIRENET a User Interface for the system is
running in a browser on the Interface computer. It uses REST style interaction to send commands
which the Control Computer sends out on the FIRENET network to the nodes which then run the
fireworks show. Each FIRENET node controls up to 6 pieces and can read out their status and and
fire these pieces on command.

The connection between the two computers is over TCP/IP and in practice would use a WPA en-
crypted WiFi connection allowing the Interface Computer to be at a safe distance from the pieces
and mortars firing the show.

Interface
Computer

Control
Computer

FIRENET
NODE

FIRENET
NODE

FIRENET
NODE

FIRENET
NODE

.

.

.

HTTP/REST FIRENET

Figure 1: FIRENET System

1.2 Software Design

At the lowest level Arduino[1] code is written for each FIRENET node. This allows it to commu-
nicate over the FIRENET RS-485 network and has commands to read status and fire pieces. Above
that we have the program running on the control computer which is a modified Lua interpreter[5]with
extensions to support FIRENET and HTTP web-serving [3]. This latter acts as a Web Server and

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 2 of 49

Pandora Products.

Network Firing Box
Program Manual

User Interface

transports the REST protocol commands. Above that we have Lua scripts on the server that interpert
the REST commands and create messages to send on the RS-485 network. Finally an HTML and
Javascript application that runs on the browser in the Interface Computer, this is used supply an OS
agnostic user interface to the system.

1.3 User Interface

The user interface is an AJAX web application consisting of HTML pages and Javascript application
code. In this case only a single HTML page is used and the Javascript is used to replace parts of
the page with different parts of the user interface. In this case the HTML/Javascript combination
is acting like an application but is running in the browser. the advantage of this method is that the
interface is independent of the operating system and to a large extent the browser used. As long as
the browser is current (i.e. Firefox, Safari, Chrome or IE 7) then it will support this interface on
Windows, OS X or Linux.

1.3.1 Interface Operation

When the user opens the index.html page on the server he gets:

Figure 2: Index page

This instructs the user to log into the system, picking the Login control item you get:

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 3 of 49

Pandora Products.

Network Firing Box
Program Manual

User Interface

Figure 3: Login page

The user then has to enter a response to the challenge value. These challenge/response pairs are
random 16 bit Hex values and the user must have this list to log in. The challenge value is found in
the table and corresponding response 16 bit value is typed into the response field. If the choice is
correct you then get:

Figure 4: Main Screen

From here the user can pick any of the Control values on the left. Picking Debug gets this:

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 4 of 49

Pandora Products.

Network Firing Box
Program Manual

User Interface

Figure 5: Debug Screen

The user can type any RESTful command (see 1.4 on page 9), press Submit and the results are
returned. This is useful in debugging system problems. Picking Show Manual allows manual
operation of the firing boxes as:

Figure 6: Manual Screen

Here the user is shown all the available firing nodes and their state. In this case all are not ARMed so
the status of the channels are unknown. Picking the ARM button will turn all the boxes to ARMed
and then show the channel status (i.e. is there firework pieces connected).

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 5 of 49

Pandora Products.

Network Firing Box
Program Manual

User Interface

Figure 7: Arm Screen

This now shows pieces connected on all channels and all are ready to fire. You then can pick the
pieces to fire (note only 1/node) and they then show ready to fire.

Figure 8: Ready Screen

If you press the FIRE button these pieces will be fired and their status will change:

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 6 of 49

Pandora Products.

Network Firing Box
Program Manual

User Interface

Figure 9: Fire Screen

An inventory screen is available to show the firing boxes in the network, their software version and
status of EEPROM values. This is useful to see make sure all boxes have the same settings for a
show.

Figure 10: Inventory display

When the Automated show choice is entered the user can pick from the store show.

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 7 of 49

Pandora Products.

Network Firing Box
Program Manual

User Interface

Figure 11: Automated Show

Once the show is picked then the nodes are shown like the Manual show view.

Figure 12: Automated Show Node Unarmed

After arming the show is ready to start

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 8 of 49

Pandora Products.

Network Firing Box
Program Manual

RESTful Interface

Figure 13: Armed Show ready to run

once the show is running then an indicator shows how much has been run

Figure 14: Running Show

Note the large ABORT button that will stop the show instantly.

1.4 RESTful Interface

The web server running on the Control Computer actually has two functions, it can just serve up
web pages and second under control of Lua scripting it can interact in a RESTful manner. Serving
up web pages allows the system when contacted by the interface computer to serve up Login pages
or the Javascript application. Once the application is running in the interface computer browser it
then interacts with the Control Computer in a RESTful manner.

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 9 of 49

Pandora Products.

Network Firing Box
Program Manual

RESTful Interface

1.4.1 REST use

In Firenet we restrict ourselves to just two commands GET and POST. The HTTP GET command
is used to query the system for information and the POST command is used to cause the system to
do some action. There is a wide latitude in how RESTful commands are done, you can either put
command parameters (in a POST) in a JSON[2] encoded data block sent with the POST or encode
it into the URL of the command.

<REST>

ADMIN
FIRENET

TIME

STATUS ARM FIRE SYNC

POWER

DELAY

NODE NODE

[A]/[D]

NODE NODE

Channel

GET POST POST POST POST
GET GET/POST

ON/OFF

Channel

DELAY

LOGIN

REQUEST RESPONSE LOGOUT STATUS

Resp Val

GET/POST

VERSION

NODE

CHANNEL

NODE

Channel

LITERAL

NODE

CMD

POSTGETGET

Figure 15: REST command structure

In the FIRENET system we have encoded most of the command syntax into the URI. As you can
see from the base node (which is programmable see: 2.2.3.1 on page 21) we then have commands to
do the administrative or FIRENET functions. Doing GETs will return data from a node and doing a
POST will cause some action.

For the following examples we will assume the web server (Control Computer) is at http://192.168.1.100:8080
and that the base of the RESTful tree is at REST.

So a full FIRENET system status is done with an HTTP GET to:

http://192.168.1.100:8080/rest/firenet/status

The response from this query is a JSON data block.

Status of a single node is found via

http://192.168.1.100:8080/rest/firenet/status/5

where 5 is the selected node number.

Firing a node is done by a POST to:

http://192.168.1.100:8080/rest/firenet/fire/5/3

would fire channel 3 on node 5

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 10 of 49

Pandora Products.

Network Firing Box
Program Manual

RESTful Interface

1.4.2 Startup

The REST operation is controlled by both HTTP pages (html & javascript) and a set of Lua scripts.
When started the Firenet Control Computer main program reads both of these sets of files to produce
the desired actions. The command line options are:

Command Line Options

-p # Port # of serial port connected to Firenet

-c <REST Lua main code script>

-rest <Directory of Lua REST code>

-http <Directory of HTML & Javascript code, location of index.html>

-show <Directory of Automated show files>

-log <File> [Optional] Log file of Firenet operations during the run

1.4.2.1 Example

./Firenet -p 1 -c Site/Rest/main.lua -http Site/Site J -show Shows -log log.txt

Here the Firenet is started using device 1 (a USB serial port) as the Firenet network connection. The
Lua file main.lua is run as the initial script, the HTML is stored in Site/Site J and the show files are
stored in the directory Shows. The initial connection to the server would be:

http://<server IP>:8081/Site J/index.html

1.4.3 REST API

The REST API consists of a number of URI’s and specifications for the data sent or received with
the requests. We will specify the URI as http://<server>/<rest>/... Where <server> stands for
the TCP/IP address and port of the server and <rest> stands for the path link set up for REST
interactions (see 2.2.3.1 on page 21).

1.4.4 ADMIN

These are overall control functions for the server and are not concerned with the FIRENET nodes
or network.

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 11 of 49

Pandora Products.

Network Firing Box
Program Manual

RESTful Interface

1.4.4.1 ADMIN/TIME This is used to read out the server system clock.

Request URI TYPE DATA
http://<server>/<rest>/admin/time GET NONE

The returned data is the current server system time.

{ "TIME" : "Sun Nov 14 16:46:21 2010" }

1.4.4.2 ADMIN/POWER This URI is used to check for system running and to shutdown the
system

Request URI TYPE DATA ACTION
http://<server>/<rest>/admin/power GET NONE Return status

http://<server>/<rest>/admin/power/on POST NONE Return status
http://<server>/<rest>/admin/power/off POST NONE Return status and shutdown

The returns status for the GET and first POST is:

{ "SYSTEM" : "ON" }

For the second POST shutdown the response is:

{ "SYSTEM" : "OFF" }

1.4.4.3 ADMIN/LOGIN Multiple sub commands used for logging in. A client is logged in no
other IP address can access the web server (see the http.lock() command 2.2.3.3 on page 22). It is a
simple challenge/response system. When a request is made to log in the system supplies a challenge
value, a 16 bit value. The user responds with 16 bit (i.e. 4 digit) value. If this matches that client is
logged in and no other IP address is allowed by the server.

The challenge is one of these 4 byte values:

"50A0","F748","95B1","8D8B","4F34","52C7","85B6","EA03",
"E6B8","D37F","4FE1","5215","A868","9336","2885","6F15"

The correct response is the value following the challenge value (with the last value 6F15, looping
back to the first 50A0).

ADMIN/LOGIN/REQUEST

Used to request a challenge value.

Request URI TYPE DATA
http://<server>/<rest>/admin/login/request GET { “CHAL” : “<Chal value>” }

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 12 of 49

Pandora Products.

Network Firing Box
Program Manual

RESTful Interface

ADMIN/LOGIN/RESPONSE

This is used to return the response to the challenge.

Request URI TYPE DATA
http://<server>/<rest>/admin/login/response/<resp hex> POST { “LOGIN” : “OK” }

ADMIN/LOGIN/STATUS

This is used to query the server on the login status

Request URI TYPE DATA
http://<server>/<rest>/admin/login/status GET { “LOGIN” : “OK” } or { “LOGIN” : “NO” }

ADMIN/LOGIN/LOGOUT
Request URI TYPE DATA

http://<server>/<rest>/admin/login/logout POST { “LOGOUT” : “OK” }

1.4.5 FIRENET

This URI us connected to the FIRENET network and will control and return status of the operating
FIRENET boards.

1.4.5.1 FIRENET/STATUS This URI is used to read the status of the entire network or a single
node status. The entire network status is useful when starting the system or to recover from a restart.

Request URI TYPE DATA
http://<server>/<rest>/firenet/status GET Entire network status

http://<server>/<rest>/firenet/status/C GET Entire network status & clear network map
http://<server>/<rest>/firenet/status/<node#> GET Single node status

The entire network status is:

{ "STATUS" : "SUCCESS"

{
"1" : {

"ARMED" : "0"
"UNFIRED" : {
"1" : "1"
"2" : "1"
"3" : "1"
"4" : "1"
"5" : "1"
"6" : "1"

}
"FIRED" : {

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 13 of 49

Pandora Products.

Network Firing Box
Program Manual

RESTful Interface

"1" : "0"
"2" : "0"
"3" : "0"
"4" : "0"
"5" : "0"
"6" : "0"

}
}
{

‘‘2’’ : {
:
:

}

Each node is grouped separately and “1” node is shown fully here. As you can see each node has its
ARMED status (see below) and the status of each firing channel listed. The UNFIRED values with
a 1 means there is ignitor connected to that channel and it has not been fired. A 0 means there is
nothing connected to that channel. The FIRED value, 0 means it has not been fired yet and 1 means
it has.

The “C” command will do the same network status for all the nodes but in addition will clear the
map of any previous entries and build a new map. If a node had changed address it will still be in
the old map. This “C” will ensure that none of the phantom entries will be present.

When a single node status is read you get the following JSON. This is almost the same as the full
status but the node number is not given in this case since you requested a particular node in the URI
that value is not returned with the data.

{ "STATUS" : "SUCCESS"

{
"ARMED" : "0"
"UNFIRED" : {

"1" : "1"
"2" : "1"
"3" : "1"
"4" : "1"
"5" : "1"
"6" : "1"

}
"FIRED" : {

"1" : "0"
"2" : "0"
"3" : "0"

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 14 of 49

Pandora Products.

Network Firing Box
Program Manual

RESTful Interface

"4" : "0"
"5" : "0"
"6" : "0"

}
}

}

1.4.5.2 FIRENET/ARM This command is used to ARM, i.e. turn on firing power in a FIRENET
node. The unit will not fire an ignitor unless it is armed.

Request URI TYPE DATA
http://<server>/<rest>/firenet/arm/<node #>/A POST Node # is the particular node to be armed
http://<server>/<rest>/firenet/arm/<node #>/D POST Node # is the particular node to be disarmed

The ARMED or DISARMED state will be reflected in the node status. NOTE: You can send an
ARM command to address Node 0 which is the broadcast address (see 5.3.1.1 on page 33) and arm
all the nodes simultaneously.

1.4.5.3 FIRENET/FIRE This command is used to fire a ignitor on a node. The data includes
the node # and channel (1-6) on the node.

Request URI TYPE DATA
http://<server>/<rest>/firenet/fire/<node #>/<Channel #> POST Node # and Channel # must be supplied

After a ignitor is fired the status will be changed for that channel. The FIRED value will go to 1
and the UNFIRED will go to 0 if the firing was successful. This command cannot be sent to the
broadcast address, it must be to an individual node.

1.4.5.4 FIRENET/SYNC This message is sent to all FIRENET nodes and synchronizes their
millisecond clocks. This will be needed to support delayed firing commands. The optional P node
on the end will start the program the stored program (see 5.3.1.4 on page 34)

Request URI TYPE DATA
http://<server>/<rest>/firenet/sync/[P] POST All node millisecond clocks are set to 0, iP added program is started

1.4.5.5 FIRENET/PGM This is similar to the DELAY command but in this case the delay
command will be stored. All FIRENET nodes have a 32 bit millisecond timer. The SYNC command
zeros the timers on all nodes. Sending a PROGRAM command will store a FIRE command to occur
at a specific 32 bit millisecond time. Thus a number of nodes can fire pieces as precisely the same
time. When the Sync is set with a P node then the sequence of stored commands will be started.

Request URI TYPE DATA
http://<server>/<rest>/firenet/pgm/<node #>/<Channel #>/<MS time> POST Fire channel on specified node at 32 bit ms time

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 15 of 49

Pandora Products.

Network Firing Box
Program Manual

RESTful Interface

1.4.5.6 FIRENET/DELAY This is similar to the FIRE command but in this case the firing
command will be executed at a set time. All FIRENET nodes have a 32 bit millisecond timer.
The SYNC command zeros the timers on all nodes. Sending a DELAY command will queue up
a FIRE command to occur at a specific 32 bit millisecond time. Thus a number of nodes can fire
pieces as precisely the same time.

Request URI TYPE DATA
http://<server>/<rest>/firenet/delay/<node #>/<Channel #>/<MS time> POST Fire channel on specified node at 32 bit ms time

1.4.5.7 FIRENET/VERSION This message is used to get the version information on a Firenet
node. When set to a specific node it returns the date time of the software version in the node.

Request URI TYPE DATA
http://<server>/<rest>/firenet/version/<node #> GET Node # must be supplied

This then returns the JSON:

{ "STATUS" : "XMIT", "VERSION" : "RVMar 6 2011 16-23-19" }

The software was loaded on the node 6 March 2011 at 16:23:19 local time.

1.4.5.8 FIRENET/CHANNEL This command is used to read out the A/D value on a particular
channel of a node.

Request URI TYPE DATA
http://<server>/<rest>/firenet/channel/<node #>/<Channel #> GET Node # and Channel # must be supplied

This returns the JSON:

{ "STATUS" : "XMIT", "AD" : "0039", "DATA" : "RC00039", "FIRED" : "0" }

This says the AD value is 0039 (with 1023 MAX) and the data shows the message received back
(see message section) and FIRED shows the status of the fired bit (this channel is not fired).

1.4.5.9 FIRENET/LITERAL This command allows any FIRENET network message to be sent
and the response received. The message is sent only to the node (0 address not allowed). The Firenet
response is returned.

Request URI TYPE DATA
http://<server>/<rest>/firenet/literal/<node #>/<MSG> POST Node # must be supplied

For example sending the command V (version) you send:

...firenet/literal/1/v Sends the command V to node 1 you get the JSON:

{ "STATUS" : "XMIT", "FROM" : "1", "DATA" : "RVMar 6 2011 16-23-19" }

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 16 of 49

Pandora Products.

Network Firing Box
Program Manual

RESTful Interface

1.4.6 PROGRAM Automated Show Commands

1.4.6.1 Introduction These are a set of commands used to start and run an automated show. In
this case the nodes are programmed with the firing sequences see (5.3.1.4 on page 34) and then run.
These commands allow selection of a show (music and firing sequence files), loading of the nodes
and running the show.

ProgramCommands

list Return a list of available shows
set Select an available show
pgm Program nodes with selected show
start Start selected show with both firing actions and music
status Readout of fired pieces during show
abort Stop show as an emergency action

1.4.6.2 Show Directory The FIRENET program has been given the directory of the available
shows with the -shows <directory> command line flag. In this directory are music files and corre-
sponding firing sequence files. Also there is a file called shows.json which lists the available shows
in the following form:

{

"shows" : [

{ "show" : "La Marseillaise",
"file" : "mariseillaise.json",
"nodes" : "6",
"time" : "1:26"
},

{
"show" : "Stars & Stripes Forever",
"file" : "ss forever.json",
"nodes" : "10",
"time" : "3:38"

}
]
}

Where each set of KVP’s corresponds to a particular show detailing the name, show description file,
nodes required and the time of the show.

The show (e.g ss forever.json) file show looks as follows:

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 17 of 49

Pandora Products.

Network Firing Box
Program Manual

RESTful Interface

{

"show" : "Stars & Stripes Forever",
"music" : "stars stripes forever.mp3",
"time" : "3:38",
"nodes" : "10",
‘‘program’’ : [

{ "node" : " 1", "ch" : "1", "delay" : "1000"},
{ "node" : " 1", "ch" : "2", "delay" : "2000"},
{ "node" : " 1", "ch" : "3", "delay" : "3000"},

:
:

]

}

It shows where the music file is found and lists the firing commands for the nodes.

1.4.6.3 FIRENET/PROGRAM/LIST This command is used to return a list of available shows
to the user. The FIRENET program has been given the directory containing the show files and
it reads a file “shows.json” and returns that data to the requestor. It returns the JSON from the
shows.json file (see above)

Request URI TYPE DATA
http://<server>/<rest>/firenet/program/list POST No data, only one referent

The returned JSON data will exactly match the shows.json file from the designated shows directory.

1.4.6.4 FIRENET/PROGRAM/SET This command is used to select the show to be run. After
receiving the list the user sends back a name from the list of available shows and that show’s data is
read.

Request URI TYPE DATA
http://<server>/<rest>/firenet/program/set/# POST Show position in the list

The response is a JSON status response:

{

‘‘STATUS’’ : ‘‘OK’’ <-- If successful, other responses if the number is not correct

}

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 18 of 49

Pandora Products.

Network Firing Box
Program Manual

RESTful Interface

1.4.6.5 FIRENET/PROGRAM/PGM This command will program all the connected firenet
nodes with the show times as given in the particular show file. This will also check that all nodes
have been programmed correctly.

Request URI TYPE DATA
http://<server>/<rest>/firenet/program/set/# POST Show position in the list

The response is a JSON status response:

{

‘‘STATUS’’ : ‘‘OK’’ <-- If successful, other responses nodes were not programmed

}

1.4.6.6 FIRENET/PROGRAM/START This is the command to start the show. If the show
has been SET then this will start by syncing the nodes, then starting the music file and start the
programmed firing sequence in the nodes. The user has to have armed the nodes before sending this
command.

Request URI TYPE DATA
http://<server>/<rest>/firenet/program/PGM POST Will return status message

{

‘‘STATUS’’ : ‘‘OK’’ <-- If successful, other responses if the number is not correct

}

1.4.6.7 FIRENET/PROGRAM/STATUS This command is used to return status during the
show. It will tell if the show is still running and what nodes have fired since the last status mes-
sage.

Request URI TYPE DATA
http://<server>/<rest>/firenet/program/status POST Will return status message

{
‘‘STATUS’’ : ‘‘OK’’, <-- Other values ‘‘eos’’ or ‘‘abort’’

‘‘FIRED’’ : [

{ ‘‘FROM’’ : ‘‘<Node #>’’, ‘‘CH’’ : ‘‘<Fired Channel>’’ },<-- There will be 1 or more

:
:

]

}

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 19 of 49

Pandora Products.

Network Firing Box
Program Manual

Lua Extension Classes

1.4.6.8 FIRENET/PROGRAM/ABORT This command is used to immediately stop a show.
All nodes are reset and the music stopped. It returns a status message.

Request URI TYPE DATA
http://<server>/<rest>/firenet/program/status POST Will return status message

{

‘‘STATUS’’ : ‘‘OK’’ <-- If successful, other responses if problem

}

2 Lua Extension Classes

2.1 Introduction

The Control Computer program is actually a modified Lua interperter. Run without any parameters
and it give a prompt and allows you to type in Lua language commands. The firing system starts
the program with a Lua script written to use the extensions added to this version of Lua. There are
extensions allowing FIRENET communication with the nodes. There is a class layered over the
libmicrohttpd Web server library to allow Lua access to web data for the RESTful operation. In
addition there are support extension classes added for timers, JSON parsing and keyboard control.

Following this will be a discussion of the scripts written with these extensions to support both the
RESTful interface and interfacing with the FIRENET network.

2.2 RESTful Interface CLASS

2.2.1 Introduction

The FIRENET Lua system has a built in Web server so it can be used in conjunction with a browser
based client application. This allows a rather full GUI application on any OS using the same
JavaScript/Browser application. In order for this to work an HTTP support library has been added.
The library GNU libmicrohttpd (http://www.gnu.org/software/libmicrohttpd/)[4]
is very well suited for this task. It is small, self contained and is designed to be added into applica-
tions.

In addition a JSON parser has been added to support data sent in this form. JSON messages out are
easily generated using formatted write statements in Lua.

2.2.2 Class Operation

The Web server/RESTful class has three major parts. The first is used to stop and start the server.
The start command requires parameters to tell it the TCP/IP port to use for the HTTP transfer, data

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 20 of 49

http://www.gnu.org/software/libmicrohttpd/

Pandora Products.

Network Firing Box
Program Manual

RESTful Interface CLASS

where standard web pages are located and a location base for the RESTful request URIs. This
extension can be used as a normal web server serving up pages.

The second part is a simple open/close set of calls to accept a request and return a response. Each
request is an opaque Lua user object that is generated on receipt of a request and is automatically
destroyed when the response is returned.

The third section of the class is used to extract information from the request, this includes the request
URL and any data included in the request.

2.2.3 Class Methods - Server Control

2.2.3.1 http.start() This will start the HTTP server running.

status = http.start(port,http base,rest base)

INPUT NAME USE
port TCP/IP port used for HTTP messages

http base Path to standard html files served
rest base Base path for RESTful actions of server

OUTPUT status 1 if server started OK, nil if failure

If the port was set to 8080 and the server’s address was say 192.168.1.100 then the following URI
would access index.html stored at the http base path.

http://192.168.1.100:8080/index.html

If rest base was set to REST then following URI would access some RESTful action on the path
action/node-1/fire/1

http://192.168.1.100:8080/REST/action/node-1/fire/1

More details on the data and path information will be found in the http.url() method.

2.2.3.2 http.stop() This will stop the HTTP server.

http.stop()

INPUT NAME USE
OUTPUT NONE

This code can be used at any time after the http.start() command is given and you can then restart
the server (say with new parameters) without shutting down the program.

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 21 of 49

Pandora Products.

Network Firing Box
Program Manual

RESTful Interface CLASS

2.2.3.3 http.lock() This command is used to lock or unlock the server to only speak to one IP
address. It is run in the context of handling a request and if locked, the request client’s IP address
will be saved and only requests from that IP address will be accepted till the server is unlocked. All
other requesters will get a 404.

INPUT NAME USE
h HTTP RESTful request handle

flag If <> nil then lock is done, if nil then unlock
OUTPUT NONE

In the context of a request from IP=192.168.1.103 then:

h:lock(1)

Would lock the server to 192.168.1.103 any other client would get a 404 on any request.

2.2.3.4 http.open() This code is a non-blocking call to receive a request. If a request is present
you will be returned a handle to the request, if none you will get nil.

h = http.open()

INPUT NAME USE
OUTPUT h HTTP RESTful request handle. nil if no request pending

You can use this call to poll for requests, note the requests are queued so any pending requests are
held till you retrieve them. You can have multiple outstanding requests.

2.2.3.5 http.close()

http.close(h,data) or h:close(data)

INPUT NAME USE
h HTTP RESTful request handle

data Data to be returned to client
OUTPUT NONE

As you can see this is an instance class and you may use the request handle as the selector to pick the
method (close()). Either form is acceptable. This is used to return the result of a RESTful request
to the client. The data is usually encoded as JSON and will available to the client. Also the request
data (from http.open() is reclaimed.

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 22 of 49

Pandora Products.

Network Firing Box
Program Manual

RESTful Interface CLASS

2.2.3.6 http.url(h) This method is used to get the URI of the request.

url,htty type = http.url(h) or h:url()

INPUT NAME USE
h HTTP RESTful request handle

OUTPUT url URL returned as a numeric index list of the path parts [1] = rest base
OUTPUT htty type Numeric value of HTTP request type, see below for list

This class like close may be used either as a class method or an instance method. In addition it
returns two parameters the url of the request and the HTTP request type.

The List returned for the example REST request http://192.168.1.100:8080/REST/action/node #/fire/1
would be:

INDEX VALUE
1 REST
2 action
3 node #
4 fire
5 1

The http type value returned is a number with the following meanings.

Value Meaning
0 HTTP NONE
1 HTTP CONNECT
2 HTTP DELETE
3 HTTP GET
4 HTTP HEAD
5 HTTP OPTIONS
6 HTTP POST
7 HTTP PUT
8 HTTP TRACE

The highlighted items are the only ones normally used in the RESTful protocol.

2.2.3.7 http.data() This is used to get the data on a POST request.

post data = http.data(h) or h:data()

INPUT NAME USE
h HTTP RESTful request handle

OUTPUT data POST data from request, all other types return nil

This method is used to get the POST data on a request. This is returned as a string. In most cases in
FIRENET it will be a JSON string which can be processed using the JSON parser.

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 23 of 49

Pandora Products.

Network Firing Box
Program Manual

Timer CLASS

2.2.3.8 parsers.json() This is used to turn a JSON string into a Lua list structure.

json list = parsers.json(json string)

INPUT NAME USE
json string Valid JSON string

OUTPUT json list List version of JSON structure or nil if invalid JSON

This will turn a JSON string structure for example:

json string = ‘‘{ \‘‘key\’’ : \‘‘value\’’ \‘‘key1\’’ : \‘‘value1\’’ }’’
list = parsers.json(json string)
print(list)
table: 0x100108bd0
table.foreach(list,print)
JOBJ table: 0x100108c10
table.foreach(list.JOBJ,print)
key value
key1 value1

See the JSON references for an idea of what sort of structures you can expect.

2.3 Timer CLASS

This class is used for millisecond timing of events. It can be used to delay actions or time actions
to millisecond accuracy. The general sequence is one creates a timer object with new() (which also
starts the timer) and then can query to determine if a fixed time has passed with the done() method.
The time period can be re-started with the start() method.

There is one class method (sleep()) that can be used without creating a timer object. The other
methods work from a specific timer object.

2.3.1 Timer Class Methods

2.3.1.1 timer.sleep() Will cause Lua to idle for a set number of milliseconds.

handle:sleep(ms)

INPUT NAME USE
ms Time to sleep in milliseconds

OUTPUT NONE

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 24 of 49

Pandora Products.

Network Firing Box
Program Manual

Timer CLASS

2.3.2 Timer Constructors/Destructors

2.3.2.1 timer.new() This creates a timer object that Lua can use for periodic operations and to
check for elapsed time. Each timer has an individual handle and there is no limit to the number a
script can have. Note all timers should be closed when they are no longer needed.

handle = timer.new()

INPUT NAME USE
NONE No input needed

OUTPUT handle Handle to open timer, nil if failure

The handle is opened and timer is started at 0.

2.3.2.2 timer.delete() This will dispose of a timer when it is no longer needed.

handle:delete()

INPUT NAME USE
handle Open timer handle

OUTPUT result 1 if deleted, nil if failure

2.3.3 Timer Methods

2.3.3.1 timer.start() This is used to reset an active timer to 0. Useful to reset elapsed time to 0.

result = timer.start(handle) or handle:start()

INPUT NAME USE
handle Open timer handle

OUTPUT result 1 if reset, nil if failure

2.3.3.2 timer.done() This is used to check for timer done, returns true when interval passed or
nil if not

handle:done(delay)

INPUT NAME USE
handle Open timer handle
delay Delay time in ms

OUTPUT result 1 if => delay time, nil if not

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 25 of 49

Pandora Products.

Network Firing Box
Program Manual

Firenet Class

2.3.3.3 timer.read() This is used to return the current elapsed time for a particular timer

handle:read()

INPUT NAME USE
handle Open timer handle

OUTPUT result Current elapsed time in ms or nil if error

2.4 Firenet Class

This is the interface to the Firenet network. This class will be able to sent and receive messages
with the firing boxes on the net. This will send raw packets and receive raw packets.

2.4.1 Data Format

Packets transmitted or received on the Firenet interface are in the form of Lua lists. There are three
elements, the TO field where the destination address is specified, the FROM field where the source
is specified and the DATA field for the packet data. All of these fields are present for a received
packet, while the transmit packet does not need a FROM field, it automatically uses the master node
address.

2.4.2 Creators/Destructors

2.4.2.1 firenet.new() This creates a new network interface object. You must call this before
starting a run.

handle = firenet.new()

INPUT NAME USE
NONE No input needed

OUTPUT handle Handle to open firenet interface, nil if failure

The object is created and the map is initialized for nodes present at this time.

2.4.2.2 firenet.delete() This will dispose of a network interface and map when no longer needed.

handle:delete()

INPUT NAME USE
handle Open firenet handle

OUTPUT result 1 if deleted, nil if failure

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 26 of 49

Pandora Products.

Network Firing Box
Program Manual

Keyboard Class

2.4.3 Methods

2.4.3.1 firenet.read() This returns the next message from the network. It is a non-blocking call.

msg = handle:read()

INPUT NAME USE
handle Open firenet handle

OUTPUT result nil if no message or message list if found

When read the retuned message is a list with the following fields:

Field Use Example
TO Destination node Usually your node but can be broadcast address

FROM Source Node msg.from = Returns physical address
DATA Message Dependent Data fields Message dependent data (see Section 5.3.1 on page 33)

2.4.3.2 firenet.write() This writes a message to the network

handle:write(msg)

INPUT NAME USE
handle Open firenet handle

OUTPUT result 1 if sent, nil if problem

The send message is a Lua list with the following format

Field Use Example
TO Message destination msg.TO = 2 Send to node 3

DATA Message Dependent Data fields Message dependent data (see Section 5.3.1 on page 33)

2.5 Keyboard Class

This class is used to query the keyboard while a script is running. This can be used to allow the user
to hit keys to modify the script actions without halting script loops.

2.5.1 Class Methods

2.5.1.1 kbd.prep() Prepares the keyboard for async input

kbd.prep()

INPUT NAME USE

OUTPUT result 1 if prep OK, nil if not

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 27 of 49

Pandora Products.

Network Firing Box
Program Manual

Keyboard Class

2.5.1.2 kbd.close() Called to shut down the async processing of input. (See 2.5.2)

kbd.close()

INPUT NAME USE

OUTPUT result 1 if close OK, nil if not

2.5.1.3 kbd.getc() Reads the keyboard without stopping

ch = kbd.getc()

INPUT NAME USE

OUTPUT result Keyboard character as a string or nil if none

2.5.2 Use

This code is used so the script can stay in a loop and query the keyboard in passing. This query does
not halt the loop and allows characters to be input while the loop proceeds. Code example

kbd.prep() -- Get read for user input
while(flag)
do

-- Do real work here....
work routine()
-- User input ?
ch = kbd.getc()
if(ch ˜= nil and ch == ‘‘Q’’)
then

-- User asked to quit
print(‘‘** QUIT ENTERED **’’)
break

end

end
-- Remember to close on exit
kdb.close()

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 28 of 49

Pandora Products.

Network Firing Box
Program Manual

Lua Support Code (firenet sup.lua)

3 Lua Support Code (firenet sup.lua)

3.1 Introduction

It was a design decision to put the minimum number and most basic functions in the system as C
extensions to Lua. Then build on those using Lua to make a useful API for system operation. Thus
functions like timers and Firenet I/O were added as Lua extensions. But other functions like playing
a music file or managing the network status were built on these extensions and written in Lua. In
consequence a set of support functions were written and would be included into user written scripts.

3.2 Lua Globals

3.2.1 BCAST ADDR

This variable contains the Firenet broadcast address. This can be used to set the destination address
of a packet as follows:

packet = {}
packet.DATA = ‘‘S’’ -- Send a STATUS command
packet.TO = BCAST ADDR -- Send to everyone
h:write(packet) -- Send to the network

3.2.2 FNET MAP

This variable holds the current table of nodes on the network and their status. See 3.3.1 on the
following page) on how these variables are filled but when they are set the have the following fields:

FNET MAP[<node number>] -- Information on <node number>

FNET MAP[<node number>].ARMED -- 1 if armed 0 if not
FNET MAP[<node number>].FIRED -- 1-6 Array with 1 == Fired channels
FIRE MAP[<node number>].UNFIRED -- 1-6 Array with 1 == Unfired ch

3.2.3 OS MUSIC PLAYER

This is the string name of the OS dependent command line music player program. In the case of OS
X it is “afplay”.

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 29 of 49

Pandora Products.

Network Firing Box
Program Manual

Network Support Routines

3.3 Network Support Routines

3.3.1 build fnet status()

This will fill the FNET MAP variable with the current network node status. This will update the
Arm/Disarm values plus the fired and unfired channels.

h = firenet.new()
build fnet status(h)

INPUT NAME USE
addr If present query only one node, if nil do broadcast

h Open firenet handle
OUTPUT result 1 if status OK, nil if not

3.4 Misc Support Routines

3.4.1 play file()

This will use an operating system dependent program that can play a sound file. It will be used to
play the music file associated with a fireworks display

result = play file(file)

INPUT NAME USE
file File name string (OS dependent)

OUTPUT result pid of music player

3.4.2 play file stop()

This will use an operating system dependent pid value from the play file() routine to stop the music
player.

play file stop(pid)

INPUT NAME USE
pid Pid return from play file()

OUTPUT NONE Music player stops

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 30 of 49

Pandora Products.

Network Firing Box
Program Manual

FIRENET Node Design

4 FIRENET Node Design

The Firenet system uses a RS-485 two wire network to connect the control computer to the nodes.
Each firing box or node in the network has 6 firing circuits and up to 30 of these boxes can be
networked together. Each box has fixed network address. The node address is programmed into
the EEPROM of the processor and each node box has the address marked on the outside in large
numbers.

The nodes are controlled by a laptop on the network running software that allows either manual or
scripting firing sequences. The controlling software can also monitor the health and connectivity of
the nodes and the network.

5 Firenet Network Design

5.1 Physical Layer

The physical layer of the network uses the RS-485 standard interface with a two wire circuit. RS-
485 uses a balanced circuit where the signal is one wire and the inverse is on the other wire. This
gives greater noise immunity and a range of about 300 meters for the wiring. Since only two wires
are used we both transmit and receive on the same pair (i.e. half-duplex) This means that a sender
must enable the transmitter outputs, send the data, and when done disable the transmitter outputs.
This is very similar (but much slower) that the original ethernet where all the signals were on a
single coaxial cable.

Figure 16: RS-485 Network

In this design we will be using the Linear Technology chip LTC485[?] chip that is RS-485 compliant
and is low power.

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 31 of 49

Pandora Products.

Network Firing Box
Program Manual

Data Link Layer

5.2 Data Link Layer

5.2.1 Packet Format

This layer handles the transmit/receive switching and addressing of the data packets exchanged.
The data packet on the network looks like this:

: FROM DATA ; CKSUMTO

Figure 17: Packet Format

The data in a packet is as follows:

Name Data Example
HDR : The ’:’ character
TO ASCII two digit number 01 - 32 with 00 -> Broadcast

FROM ASCII two digit number 01 - 32 with 00 -> Broadcast
DATA Up to 32 bytes of command data F1
EOP ; The ’;’ character

CKSUM ASCII two digit number cksum Mod 100 sum of all fields except : and ;

The data is sent as ASCII strings.

5.2.2 Addressing

There are up to 32 devices in the network which have addresses ranging from 1 to 30. The addresses
are fixed in the devices and there should be no duplicate addresses in the network. The address 30
is the command node. The address 0 is the broadcast address and all devices will receive messages
sent to this address.

5.3 Application Layer

In this very simple network we will skip the Transport and Network layers of the OSI model. [?]The
messages will be restricted to one packet and will be stand alone. Also the model here is with a
controller (i.e. a laptop) controlling a number of firing boxes. This simplifies things as the nodes
will not be talking to each other and will be driven by messages from the controller.

The unit of data to/from the network is a packet of the form:

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 32 of 49

Pandora Products.

Network Firing Box
Program Manual

Application Layer

#define PHY DATA SIZE 32
typedef struct {

unsigned char type;
unsigned char from;
int len;
unsigned char data[PHY DATA SIZE]; // Packet data

} PACKET;

5.3.1 Commands

Command NAME Data Information
A ARM [D/A] Disarm (D), Arm (A) firing circuits
F FIRE <Ckt #> Fire this circuit
D DELAY FIRE <Ckt #><Ms to fire> Delay fire, fire at or at Time ms
S STATUS NONE Status (see below for resp msg)
W WHO # new address Changes address of node
T TIME # New firing time (ms) Change the firing time
Z SYNC [P] Sync all node clocks, if P start firing queue
R REPLY R + Last cmd letter Used to ACK no-reply messages
V VERSION RV DATE TIME Creation time of Node code
C CHANNEL <Ckt #> Return firing status & A/D of channel
M TEST 0/1 Turn test mode ON (1)/OFF (0)
B BACKOFF # Backoff time (0-255) Modify backoff time
X RESTART NONE Restart node software
R GET DATA [<Data request>] Return requested data
P PGM <Ckt #><Ms to fire> Put event into firing queue

Figure 18: Node Command Table

5.3.1.1 ARM Command This command is issued to enable/disable the firing circuits. If node
is not armed then all firing commands are ignored. The node light will blink when box is armed. It
can be sent to the broadcast address to arm all nodes at once.

AD Disarm node

AA Arm node

5.3.1.2 FIRE Command This command will fire a selected circuit in the node immediately.
The node will be out of communication till the firing cycle is over. The available firing channels are
numbered from 0-5.

F3 Fire circuit # 3

This command is ignored if sent to the broadcast address. There is no response.

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 33 of 49

Pandora Products.

Network Firing Box
Program Manual

Application Layer

5.3.1.3 DELAY FIRE Command This is similar to the firing command but will fire the se-
lected circuit at the specified time. All nodes keep a 32 bit millisecond counter. The Z command
(see 5.3.1.8 on the next page) will sync the time for all the nodes. Thus you can send in a number
of firing commands for different nodes and they will all fire at the same time. The available firing
channels are numbered from 0-5. The command takes a single byte firing circuit value and 32 bit
time value.

D316384 Fire circuit 3 after at 16,384 ms into the run.

This command is ignored if sent to the broadcast address. There is no response.

5.3.1.4 PGM EVENT Command This is similar to the DELAY FIRE but stores the command
into a 6 element memory. All nodes keep a 32 bit millisecond counter. The ZP command (see 5.3.1.8
on the following page) will sync the time for all the nodes, also it will start the node cycling through
the memory firing the events in time order. The available firing channels are numbered from 0-5.
The command takes a single byte firing circuit value and 32 bit time value.

P316543 Store firing command for circuit 3 at 16,543 milliseconds.

This command is ignored if sent to the broadcast address. There is no response immediately

When the node fires a memory location it returns RP<ch #> allowing tracking of the auto firing.

5.3.1.5 STATUS Command This command generates a response message showing the node
status

S Return status of node

The return message looks like this (it is sent to the address of the unit that sent the status command

RS[A/D]<Fired circuits><Unfired circuits>

Field Meaning
RS Status response designator

[A/D] Armed (A) or Disarmed (D) status of node
Fired circuits Number 0-31 with it being the binary representation of fired ckts 03 - ckt, 0& 1

Unfired circuits Number 0-32 with it being the binary representation of unfired ckts 03 -ckt 0 & 1

The status message can be sent as a broadcast.

5.3.1.6 WHO (are you) Command Is used to set or read the address of a node. If the command
is sent with a parameter the node’s address will be changed. If no value is sent, the node’s address is
not changed. In either case the response will contain the current node address. A new address will
not be accepted if sent to the broadcast address. It will also not be accepted is sent to the control
node address.

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 34 of 49

Pandora Products.

Network Firing Box
Program Manual

Application Layer

W04 Set address of node to 4

W No address change

Message Data Response Data Meaning
Change node address W04 RW01 Returns current node address

Get node address W RW01 Returns current node address

The address value must be in the range 1-31 to be accepted. NOTE: That after the command is sent
the node’s address will NOT change till it has been restarted. (See 5.3.1.13 on page 38)

5.3.1.7 TIME Command This command is used to set the firing time, by default it is 100 ms.
This is the firing pulse time for all channels. This can be changed with this command and will be
set in the device till changed again.

T1000 Set firing time to 1000 ms (1 second)

Any value can be used and will depend on the device being fired.

Message Data Response Data Meaning
Set firing time to 1000 ms T1000 RT100 Returns current firing time

Get firing time T RT100 Returns current firing time

NOTE: That after the command is sent the node’s firing time will NOT change till it has been
restarted. (See 5.3.1.13 on page 38)

5.3.1.8 SYNCHRONIZE Node Clocks

Z[P] Synchronize node clocks

This command is used to set all node (and controller clocks to zero. All nodes in the system have
a 32 bit millisecond counter. This command when received will set that counter to zero. Then this
counter can be used to schedule synchronized events in the various firing boxes. (See Delay fire
command 5.3.1.3 on the previous page). If P is present then the node goes into auto mode and
beings firing the queue

Testing of the sync command with a script that syncs the nodes then has them fire at the same time
shows the following spread in 10 runs with 3 nodes, (4,5 and 6). Then monitoring the firing time of
channel 0 and using that to trigger a scope, it captured each of the nodes firing. Measuring between
the first firing node and the last we get the following spreads in 10 trials.

Spread (ms)

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 35 of 49

Pandora Products.

Network Firing Box
Program Manual

Application Layer

0.4
1.384
1.542
1.742
0.7336
0.6536
1.038
1.334
1.798

Mean 1.181 ms
SD 0.5000

This means that node synchronization should allow firing times of simultaneous nodes to be within
a few milliseconds of each other and this is well beyond anything people can notice.

A capture of the 10th firing run is shown In Figure 19 Trace 1 = Node 4 channel 0 firing, Trace 2
Node 5 and Trace 3 Node 6

Figure 19: Synchronized Firing

5.3.1.9 VERSION of Node code

V Query node code creation date

This message is used to get the creation date of the code running in a node. The message returned
is a string of the compiler constants DATE and TIME which shows the creation date of the
code. This is meant to be human interpreted and not machine used.

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 36 of 49

Pandora Products.

Network Firing Box
Program Manual

Application Layer

5.3.1.10 CHANNEL information

C Query for channel information

This message is used to inquire about a particular firing channel. The return message contains the
fired status (0/1) and the A/D reading of that channel.

RC<Fire Status 0-1><A/D Value 0-1024>

5.3.1.11 TEST MODE Command

M Turn test mode ON (1) OFF (0)

This message is designed to enable and disable test mode. When the Node is placed in test mode
can be used to simulate firing a show without having any ignitors attached to the firing channels and
will return status to the command node as if all channels had ignitors connected. It will also show
the ignitor going open on a Fire command. This allows a system test without using any of the one
time use ignitors.

Message Data Response Data Meaning
Enable Test mode M1 RM0 Returns current test mode status

Get Test mode status M RM1 Returns current test mode status

NOTE: That after the command is sent the node’s test mode will NOT change till it has been
restarted. (See 5.3.1.13 on the next page)

In addition in this mode the Version message will be returned with an X in the data.

Instead of:

RVMar 6 2011 16-23-19

you get

RVXMar 6 2011 16-23-19

5.3.1.12 BACKOFF Command

B Modify backoff time

This message is used to change the timing of response messages to a broadcast message. Each node
calculates when it will send its response with the formula:

wait = (node addr - 1) * backoff time

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 37 of 49

Pandora Products.

Network Firing Box
Program Manual

Firenet Hardware

Thus node 1 would wait 0 ms, node 2 would wait one backoff time and so on. This command is
used to set the backoff time in ms. The number following the command (0-255) is stored and used
as the new back off time. This allows tuning for differing networks.

B50 Set backoff time to 50 ms

Message Data Response Data Meaning
Set backoff to 50 ms B50 RB30 Returns current backoff time

Get backoff time B RB30 Returns current backoff time

NOTE: That after the command is sent the node’s backoff time will NOT change till it has been
restarted. (See 5.3.1.13)

5.3.1.13 RESTART Command

X Restart node software

A number of commands like BACKOFF, TEST and TIME reset parameters in EEPROM but those
don’t immediately take effect. They only work after the node has been restarted. This command is
used to do that without cycling power.

5.3.1.14 REQUEST Data Command

RF Request firing data

This command is used to extract data from a node. At present there is only one request, return the
firing times after a run but further commands will be added.

RF The response will be the firing times of all 6 channels as decimal numbers separated by a space.
This is the time it actually took to fire a particular ignitor on a channel.

6 Firenet Hardware

6.1 Introduction

The Firenet system has two main parts, the controller, a standard computer running the Firenet
program and a number of Firenet nodes which actually fire the pieces. The Firenet node is a small
computer system with 6 firing circuits and a network connection. The system will look like this.

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 38 of 49

Pandora Products.

Network Firing Box
Program Manual

Node Electronics

Laptop

Node 1

Node 2

Node 3

Node 4

Firing Ckts

Firing Ckts

Firing Ckts

Firing Ckts

Termination

Battery

Firenet
Interface

Firenet

USB

Figure 20: Firenet System

The Firenet Interface is a USB <-> RS485 interface that allows the Control Computer onto the
Firenet network.

This shows the nodes connected in a daisy-chained network with the laptop. Each node is connected
to up to 6 firework pieces and can fire them. They are also connected to a large 12V battery that
supplies the firing current and power for the nodes.

6.2 Node Electronics

Each node will have a processor running the Arduino kernel and then running a custom program
that will execute the Firenet commands. The network as shown in Section 5.1 on page 31 is an
RS-485 two wire system. The interconnect between each node is a stereo audio cable. The in and
out connections on each node are a standard audio jack. The schematic for the node is:

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 39 of 49

Pandora Products.

Network Firing Box
Program Manual

Node Electronics

Figure 21: Node Schematic

6.2.1 Power Supply

The power supply uses two regulators. One supplies 5V for the logic and processor circuits and
the second is a 1 Amp constant current supply (IC5) to supply the firing current. In front of the
regulators is a full wave bridge, a fuse and a 15 V Zener diode. These are a protection circuit/ To
make the wiring of the system simple and inexpensive we are using standard 120 outlet strips and
120 V plugs to distribute the 12 V battery power. These connectors are very inexpensive and readily
available. Also we can use standard 16 Gauge lamp cord for the power leads to the nodes. But with
standard plugs on the ends of these wires there are two problems:

1. The plugs are not polarized.

2. They could be plugged into a 120 V circuit.

The full wave bridge on the front end solves problem (1) since it will always supply the correct
polarity no matter which way the plug is inserted. The second problem is handled by the Zener
diode and fuse. The full wave bridge is rated for 120 V so it could handle the high voltage. But the
Zener conducts at 15 Volts and would short the high voltage to ground which would blow the fuse
and protect the rest of the circuit.

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 40 of 49

Pandora Products.

Network Firing Box
Program Manual

Node Electronics

6.2.2 Network

The network hardware is ISL8483 RS-485 chip. The transmit and receive lines are brought out to
pads where they will be connected to two stereo phone jacks (one in and the other out). The network
will be like that shown in Section 5.1 on page 31 . RS-485 networks require 120 ohm termination
resistors at each end of the network. The control computer interface has one built in and the user
will be responsible for putting a 120 ohm resistor plug in the last box on the daisy chain.

6.2.3 Network Interface

The control computer is attached to the Firenet network by a USB serial interface. This uses an
interface chip to convert the serial data from the USB chip to RS-485 balanced output. One problem
that arose is this is a half-duplex system where one node transmits at a time. The interface chip
must be switched to TRANSMIT mode while the message is being sent. On the control computer
(UNIX/LINUX) the serial output data is handled via a system driver. The TRANSMIT control
line was the DTR line in the serial interface. It was found that the DTR ON/OFF signal was very
deterministic and would occur at the exact line of code where it was called. Unfortunately this was
NOT the case with the serial data. It went into the driver and when exactly it came out the serial
port was highly dependent on the OS system loading and other factors. To make the XMIT control
ON/OFF properly overlap the actual data the code had to:

• Turn on DTR

• Delay a bit (5 ms)

• Send the data

• Delay a bit more (and make the delay longer on longer messages)

• Turn off DTR to close the transmit.

This would work about 90% of the time but occasionally the control program would be swapped out
and the disable of the XMIT would be very very late. Then the control computer’s transmit would
still be enabled while a node was trying to reply. This greatly affected actions where there was a lot
of message traffic between the control computer and nodes (like programming a show).

The solution was to put control of the TRANSMIT ON/OFF in the network interface. The board
used in the interface is a modified node board so instead of just the interface chip the Atmel/Arduino
processor was added also. It is loaded with special HeadEnd software that detects the start and end
of transmitted packets it can exactly control the TRANSMIT line like this:

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 41 of 49

Pandora Products.

Network Firing Box
Program Manual

Node Electronics

Figure 22: Control computer transmission

The blue line at the top is the transmitter control signal, the the two waveforms are the RS485 signal
and compliment signals.

The board is programmed as an Arduino with the main serial interface attached to the control com-
puter (see the program HeadEnd in the Arduino code section). The Arduino project has a library
that adds a second serial port on any I/O pins. That software serial port is used to connect to the
FIRENET network as shown above.

The only change in the FIRENET control program is that it no longer switches DTR when it trans-
mits a packet, all that is handled in the network interface board.

6.2.4 Firing Circuit

The firing circuit includes the 1 Amp constant current regulator, a relay and 6 FET drivers. IC5
(7812) is wired to produce 1 Amp output for loads down to 0 ohms. This current is switched by a
relay (RLY1) so the firing circuits are completely OFF except when needed. There is a 1,000 uF
capacitor added following the relay. This was added for a little more punch when the FET fires. It
was found that pieces weren’t firing at low temperatures (> 50 F). The resistor across the capacitor
was added to ensure it drains quickly when the relay is turned off.

The 6 FETs (QF0-QF5) are wired as simple switches so when the processor makes the gate high
the FET goes to low resistance. The Fireworks ignitor is wired between the CC supply and the FET
drain so up to 1 A flows firing the piece, plus an additional amount from the 1,000 uf capacitor. The
resistor divider off the drain is used to feed the voltage value present on the drain to the processor
A/D. If the transistor is OFF this will be the full voltage of the battery. The approximately 3:1
divider will give about 4 volts out which the A/D can handle. This will show which circuits have
unfired ignitors and can be used to control firing time when the circuit fires an ignitor.

6.2.4.1 Adaptive firing Since the circuit can both fire the ignitor and check it’s continuity we
can set up the software to do adaptive firing. Ignitors can vary from lot to lot and from different
manufacturers. It’s simpler to have the software adapt than have the user have to change firing
times. (See 5.3.1.7 on page 35). The firing time can now be set to a maximum that will guarantee

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 42 of 49

Pandora Products.

Network Firing Box
Program Manual

Node Electronics

that ANYTHING will be fired. We then monitor the continuity during the firing and turn off the
firing channel when the ignitor blows.

We cannot measure the continuity while the FET firing transistor is ON so while the ignitor is being
fired the transistor is switched off for a millisecond. The software reads the A/D for that channel
and if the ignitor is blown it will show a low voltage since the ignitor binding post is no longer
connected to the firing voltage (HOT1/HOT2). If the ignitor is not blown there will be a connection
and the A/D will read a high voltage. Thus as soon as the ignitor is blown we can cut off the FET
firing transistor and stand down from the firing state.

There are some considerations for this testing, it should be often enough to stop the firing reasonably
early. That is if the max firing time is 3000 ms testing at 2000 ms intervals wouldn’t be too useful
in ending early. On the other hand testing too often at say 10 ms intervals would not let the ignitor
heat up as we would be turning off the firing FET at very frequent intervals. So testing was done
to try to determine some reasonable values, testing at 100 ms intervals seems to be a good balance
between ending early and not heating the ignitor enough.

Figure 23: Firing Action

The above figure shows the firing action on a test resistor (that never opens) and shows the firing
pulse (purple) and the resulting current in the ignitor circuit. You can also see the tests where the
current is switched off and a continuity check is made. The checks are made at 100 ms intervals
during the 3,000 ms firing time.

6.2.5 Processor

The processor circuit is largely copied from the Arduino board. The serial, reset and power leads are
brought to a header which fits the SparcFun Serial <-> USB board. This can be used to talk to the
board for testing and programming using the standard Arduino IDE. Also two jumpers are added
to allow the USB board to power the board and control the network chip JP2,JP3). This modified
board is used as the control computer interface to the network.

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 43 of 49

Pandora Products.

Network Firing Box
Program Manual

Node Hardware

6.3 Node Hardware

6.3.1 Enclosure

Network

Power/Status
LED

Power

V

1 V23

4 5 6

Figure 24: Node Layout

The node hardware was built into a 4.6” square box 2.65” high (Polycase DC44C). The circuit board
was designed so the binding posts used for the ignitor connections also bolt the board to the top of
the box.

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 44 of 49

Pandora Products.

Network Firing Box
Program Manual

Node Hardware

Figure 25: Node Exterior

The network connections are stereo phone jacks, one in and one out. The are electrically identical
so either can be used as in or out. The Power/Status LED is a single color RED led that comes on
when the processor is ready and will blink when the node is armed and ready to fire. The 6 black
binding posts are the 6 firing channels, you would connect an ignitor to one of these and the other
end to the RED V (or power post). Finally the power lead is a standard 16 gauge 2 wire lamp cord
leading to a regular 120V two wire plug. As explained above this is a cost saving measure to allow
the use of regular 120 power cords and extension strips to distribute the 12 battery power.

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 45 of 49

Pandora Products.

Network Firing Box
Program Manual

Node Hardware

Figure 26: Node Interior

When placed in the box the back of the board is next to the lid of the box (see above) and thus all
the parts are facing down into the box. This is handy taking the lid off the box exposes all the circuit
and parts for easy debugging. As shown a SparcFun 5V FTDI BASIC USB <-> Serial is connected
to the board and this allows it to be programmed via the Arduino IDE.

6.3.2 Printed Circuit board

The printed circuit board was designed using Eagle CAD from the schematic shown above. Large
pads were used as the bolting points for the binding posts used as the ignitor connectors.

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 46 of 49

Pandora Products.

Network Firing Box
Program Manual

Node Hardware

Figure 27: Firenet PC board

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 47 of 49

Index
A
ABORT, 20
ARM, 15, 33

B
BACKOFF, 37
BCAST ADDR, 29
build fnet status(), 30

C
CHANNEL, 37

D
DELAY, 16
DELAY FIRE, 34

E
EVENTCommand, 34

F
FIRE, 15, 33
firenet.delete(), 26
firenet.new(), 26
firenet.read(), 27
firenet.write(), 27
FNET MAP, 29

H
http.close(), 22
http.data(), 23
http.lock(), 22
http.open(), 22
http.start(), 21
http.stop(), 21
http.url(), 23

K
kbd.close(), 28
kbd.getc(), 28
kbd.prep(), 27

L
LIST, 18
LOGOUT, 13

P
parsers.json(), 24
PGM, 15, 19
play file(), 30
play file stop(), 30
POWER, 12

R
REQUEST, 12, 38
RESPONSE, 13
RESTART, 38

S
SET, 18
START, 19
STATUS, 13, 19, 34
SYNC, 15
SYNCHRONIZE, 35

T
TEST MODE, 37
TIME, 12, 35
timer.delete(), 25
timer.done(), 25
timer.new(), 25
timer.read(), 26
timer.sleep(), 24
timer.start(), 25

V
VERSION, 36

W
WHO, 34

48

Pandora Products.

Network Firing Box
Program Manual

References

References

[1] Arduino. Arduino home page.

[2] D. Crockford. The application/json media type for javascript object notation. Request for
Comments 4627, Network Working Group, July 2006.

[3] Christian Grothoff. Gnu libmicrohttpd.

[4] Christian Grothoff. Gnu libmicrohttpd.

[5] PUC-Rio Roberto Ierusalimschy, Departamento de Informática. Lua home page.

[6] Wikipedia. Representational state transfer.

PAN-200908001

Revision: 3.3
23 January 2014

Firing Box Manual
Page 49 of 49

	1 System Design
	1.1 Introduction
	1.2 Software Design
	1.3 User Interface
	1.3.1 Interface Operation

	1.4 RESTful Interface
	1.4.1 REST use
	1.4.2 Startup
	1.4.2.1 Example

	1.4.3 REST API
	1.4.4 ADMIN
	1.4.4.1 ADMIN/TIME
	1.4.4.2 ADMIN/POWER
	1.4.4.3 ADMIN/LOGIN

	1.4.5 FIRENET
	1.4.5.1 FIRENET/STATUS
	1.4.5.2 FIRENET/ARM
	1.4.5.3 FIRENET/FIRE
	1.4.5.4 FIRENET/SYNC
	1.4.5.5 FIRENET/PGM
	1.4.5.6 FIRENET/DELAY
	1.4.5.7 FIRENET/VERSION
	1.4.5.8 FIRENET/CHANNEL
	1.4.5.9 FIRENET/LITERAL

	1.4.6 PROGRAM Automated Show Commands
	1.4.6.1 Introduction
	1.4.6.2 Show Directory
	1.4.6.3 FIRENET/PROGRAM/LIST
	1.4.6.4 FIRENET/PROGRAM/SET
	1.4.6.5 FIRENET/PROGRAM/PGM
	1.4.6.6 FIRENET/PROGRAM/START
	1.4.6.7 FIRENET/PROGRAM/STATUS
	1.4.6.8 FIRENET/PROGRAM/ABORT

	2 Lua Extension Classes
	2.1 Introduction
	2.2 RESTful Interface CLASS
	2.2.1 Introduction
	2.2.2 Class Operation
	2.2.3 Class Methods - Server Control
	2.2.3.1 http.start()
	2.2.3.2 http.stop()
	2.2.3.3 http.lock()
	2.2.3.4 http.open()
	2.2.3.5 http.close()
	2.2.3.6 http.url(h)
	2.2.3.7 http.data()
	2.2.3.8 parsers.json()

	2.3 Timer CLASS
	2.3.1 Timer Class Methods
	2.3.1.1 timer.sleep()

	2.3.2 Timer Constructors/Destructors
	2.3.2.1 timer.new()
	2.3.2.2 timer.delete()

	2.3.3 Timer Methods
	2.3.3.1 timer.start()
	2.3.3.2 timer.done()
	2.3.3.3 timer.read()

	2.4 Firenet Class
	2.4.1 Data Format
	2.4.2 Creators/Destructors
	2.4.2.1 firenet.new()
	2.4.2.2 firenet.delete()

	2.4.3 Methods
	2.4.3.1 firenet.read()
	2.4.3.2 firenet.write()

	2.5 Keyboard Class
	2.5.1 Class Methods
	2.5.1.1 kbd.prep()
	2.5.1.2 kbd.close()
	2.5.1.3 kbd.getc()

	2.5.2 Use

	3 Lua Support Code (firenet_sup.lua)
	3.1 Introduction
	3.2 Lua Globals
	3.2.1 BCAST_ADDR
	3.2.2 FNET_MAP
	3.2.3 OS_MUSIC_PLAYER

	3.3 Network Support Routines
	3.3.1 build_fnet_status()

	3.4 Misc Support Routines
	3.4.1 play_file()
	3.4.2 play_file_stop()

	4 FIRENET Node Design
	5 Firenet Network Design
	5.1 Physical Layer
	5.2 Data Link Layer
	5.2.1 Packet Format
	5.2.2 Addressing

	5.3 Application Layer
	5.3.1 Commands
	5.3.1.1 ARM Command
	5.3.1.2 FIRE Command
	5.3.1.3 DELAY FIRE Command
	5.3.1.4 PGM EVENT Command
	5.3.1.5 STATUS Command
	5.3.1.6 WHO (are you) Command
	5.3.1.7 TIME Command
	5.3.1.8 SYNCHRONIZE Node Clocks
	5.3.1.9 VERSION of Node code
	5.3.1.10 CHANNEL information
	5.3.1.11 TEST MODE Command
	5.3.1.12 BACKOFF Command
	5.3.1.13 RESTART Command
	5.3.1.14 REQUEST Data Command

	6 Firenet Hardware
	6.1 Introduction
	6.2 Node Electronics
	6.2.1 Power Supply
	6.2.2 Network
	6.2.3 Network Interface
	6.2.4 Firing Circuit
	6.2.4.1 Adaptive firing

	6.2.5 Processor

	6.3 Node Hardware
	6.3.1 Enclosure
	6.3.2 Printed Circuit board

