
Graphical User Interfaces
Introduction
In the world of Linux, there are several graphical toolkits available. Some famous examples are GTK,
Qt, Motif, and FLTK. But there are many others which allow the creation of advanced user interfaces.
Each of these toolkits follow their own logic and provide an API which is specific for their
implementation.

The BaCon project tries to be as generic as possible and it strives to be compatible with all toolkits. But
it is almost impossible to support such a diverse landscape. However, if BaCon would stick to a
specific graphical toolkit then this would be a limitation.

To overcome this problem, BaCon follows a strategy which implements a simple, small and flexible
API to embed the essential functions of a graphical toolkit. First of all, BaCon will always assume an
object/property model. This means that each individual widget in a toolkit, like a window or a button or
a text field, is considered to be an object with properties. Secondly, the particular naming of widgets
and their respective properties will not be part of the BaCon syntax itself. Instead, a very small set of
native high-level functions shall be able to define the GUI.

This approach works fine for X-based toolkits like Xaw, Xaw3d, Motif and GTK. But a lot of graphical
toolkits use different design principles. Other toolkits already use an object/property model, like the TK
toolkit. Because if this, TK has a slightly different embedding into BaCon.

Of course, BaCon can impose its object/property philosophy upon a toolkit like TK. However, the
question is where that leads us. The code base required to forcefully embed TK into BaCon would be a
lot bigger. Also, designing a graphical interface would become lot more tedious for the programmer. It
would be very clumsy to define a GUI requiring multiple lines of code while the same thing can be
done within TK in just a few statements. The TK toolkit is known for its flexibility, but this advantage
would then disappear soon. Furthermore, we’re not really interested to force the universality of an
object-property model upon all graphical user interfaces. At the end of the day, the goal is to see if
BaCon can integrate graphical toolkits using a small set of functions.

In total, six functions are available to integrate with an external graphical toolkit. These are the
following:

• GUIDEFINE

• GUIEVENT$

• GUIFN

• GUISET

• GUIGET

• GUIWIDGET

At the time of writing, BaCon supports the following toolkits: Xaw, Xaw3D, Motif with optional
support for MRM and UIL, GTK2, GTK3, GTK4, TK and CDK.

The next paragraphs contain an overview of the purpose and meaning of these functions.

GUIDEFINE

The function GUIDEFINE accepts one string argument in which the user interface is defined. The string
argument describes the objects with their properties, each object surrounded by curly brackets (except
for the TK toolkit). A property consist of a name-value pair. A few of these names are BaCon specific:

• type
Defines the object type (obligatory).

• name
Defines the name for the object which the program may refer to in a later stage (obligatory).

• parent
Defines the widget to which the current object will be attached (optional).

• callback
Defines the name of the signal to which the object will respond. Multiple callbacks can be
defined. By default, the signal will emit the name of the widget. Instead, and alternative string
can be provided (optional, will be discussed later).

• map
When the user interface is provided by a User Interface Language (UIL) definition then this
function maps the signals to the keywords defined in the UIL. Mostly used by the Motif toolkit.

• uid
When the user interface is provided by a User Interface Language (UIL) definition then this
function sets module name defined in the UIL. Mostly used by the Motif toolkit.

• resources
Defines external properties related to X, like coloring and font. Mostly used by Xaw, Xaw3d
and Motif.

• args
Defines the properties directly as arguments to the current object. Used by the Curses
Development Kit (CDK).

The GUIDEFINE function returns an identifier which has to be used in the other GUI functions as a
reference.

GUIEVENT$

Executes the main loop of the GUI and returns the name of the widget or the defined string from the
callback definition. This function accepts the reference ID returned by GUIDEFINE . The optional

second argument allows returning a pointer to data which was passed to the internal callback function
(discussed later).

GUIFN

Calls a GUI helper function based on a previously defined function pointer. It allows to omit specific
type casting and does not perform argument type checks providing more code flexibility. For the TK
toolkit, GUIFN enables adding TCL code in the current namespace.

GUIGET

Fetches a value from a property of a widget. It sets the result into a pointer variable.

GUISET

Sets a property of a widget to a value.

GUIWIDGET

Returns the memory address of the widget in a GUI.

Hello World
To explain the aforementioned functions, we will build a simple “Hello World” application for all
supported toolkits.

Xaw

The following code will setup a plain window in X Athena Widgets (Xaw):

OPTION GUI TRUE

id = GUIDEFINE(" \
{ type=window name=window XtNtitle=\"Hello world program\" XtNwidth=250 XtNheight=50 } \
{ type=labelWidgetClass name=label parent=window XtNlabel=\"Hello world\" }")

CALL GUIEVENT$(id)

BaCon can compile this code without any additional command line parameters.

The first line in the above program enables access to GUI programming. By default, BaCon will
assume the Xaw toolkit. The reason for this is the generic availability of Xaw. It automatically is
available when the package for the X environment is installed.

In the second line, the objects for the “Hello World” application are defined. The definition is contained
in a single string which wraps to the next line. Each object is enclosed in curly brackets.

A user interface always is kept within a window. So the first object is defined as a window using the
following property definition: “type=window”. The value “window” is a placeholder for Xaw. It is the
only exception for this toolkit. The other widgets can be defined by their respective classes.

The window then gets a name assigned. We will use this name in the definition for the label.

The window also has a text in the title bar. In the above definition, the text will show “Hello world
application”. It should be noted that this is defined by a toolkit specific property called “XtNtitle”. It
may be unclear where this property comes from. As mentioned in the introduction, the particular
naming of toolkit dependent properties is not part of BaCon itself. It will therefore remain
undocumented in any BaCon reference manual. Instead, the programmer should lookup the toolkit
dependent properties in the manual of that toolkit.

Similarly, the width and height of the window are defined by assigning values to toolkit dependent
properties as well. The “XtNwidth” defines the width of the window in pixels, and “XtNheight” defines
the height.

The next object is a label. The type is set to “labelWidgetClass”. This type can be looked up in the Xaw
documentation as well.

Also the label gets a name assigned. The name can be used later in the program to refer to the label.
This can be handy when the contents of the label needs to be changed, for example.

Then, the label should be put somewhere. The “parent” property defines the name of the widget or
window on top of which the label will appear. In this example, it is the main window.

Lastly, the label should display some text. This is defined by the toolkit dependent property
“XtNlabel”.

After defining the GUI, it should be displayed on the screen. The events caused by any user interaction
should be caught and brought to the attention of the BaCon program. This is the purpose of the function
GUIEVENT$. It contains the reference number of the previous GUI definition as an argument. The GUI
is displayed on the screen and events are monitored and returned to the program.

In this simple example, any event simply will end the program and it will close the user interface.

Motif

A simple program to implement “Hello world” in Motif:

OPTION GUI TRUE
PRAGMA GUI motif

id = GUIDEFINE(" \
{ type=window name=window XmNtitle=\"Hello world program\" XmNwidth=250 XmNheight=50 } \
{ type=xmLabelWidgetClass name=label parent=window }")

CALL GUISET(id, "label", XmNlabelString, XmStringCreateLocalized("Hello world"))

CALL GUIEVENT$(id)

The structure of this program is similar to the Xaw version shown in the previous paragraph. However,
after enabling GUI programming, there is a second line to define the type of GUI. In this case, the
program uses the Motif toolkit. As mentioned, BaCon always assumes the Xaw toolkit by default, but
the PRAGMA statement can override this assumption.

The GUIDEFINE function again contains one string with two objects: a window and a label. Note how
the property names used by Motif are slightly different compared to Xaw.

The GUISET function is new. As Motif expects a localized string with text, BaCon needs to set it
explicitly after the GUI definition. The arguments are the reference ID of the user interface, the actual
name of the label, the property to set and a Motif function to create a localized string. Details for the
Motif properties can be looked up in the related documentation.

GTK

BaCon supports GTK version 2, 3 and 4.

OPTION GUI TRUE
PRAGMA GUI gtk4

id = GUIDEFINE(" \
{ type=WINDOW name=window callback=destroy title=\"Hello world program\" \
 width-request=250 height-request=50 } \
{ type=LABEL name=label parent=window label=\"Hello world\" }")

CALL GUIEVENT$(id)

This program will work for all versions of GTK. The PRAGMA statement defines the GTK version. In
the above example, it is defined as GTK4. Instead, it also is possible to use “gtk2” or “gtk3” as well.

Again the GUIDEFINE function contains a string with two objects: a window and a label. Note that the
“type” is set to the GTK definition of its known object types. In the GTK documentation, the definition
for a window is set to “GTK_WINDOW”, and a label to “GTK_LABEL”. The BaCon “type” property
allows omitting the “GTK_” prefix. However, the property should still use capitals.

The “callback” property is new. It defines the signal to which the window will listen. In the above
program, the window will listen to the “destroy” signal. The name of the signal should be looked up in
the GTK documentation. The “destroy” signal occurs when the user presses on the “close” symbol top-
right of the window. The definition will return the name of the main window to the BaCon program. In
this case, the program ends and the returned name of the window is ignored.

TK

BaCon supports the TK toolkit from the TCL project.

OPTION GUI TRUE
PRAGMA GUI tk

id = GUIDEFINE(" \
wm title . {Hello world program}; \
wm protocol . \"WM_DELETE_WINDOW\" window; \
wm geometry . 250x50; \
label .lbl -text {Hello world}; \
place .lbl -relwidth .35 -relx .35 -relheight .35 -rely .35")

CALL GUIEVENT$(id)

As explained in the introduction, TK has a slightly different embedding into BaCon compared to the
other toolkits. The above program demonstrates that the elements of the user interface are defined in a
manner suitable for the TCL/TK interpreter. It therefore does not enclose objects in curly brackets, but
sends the full GUI definition to the TCL/TK interpreter instead. It already is formatted in a
object/property model similar to the way BaCon uses for other toolkits.

Clearly, a thorough knowledge of the TK toolkit is required. The actual meaning of the string argument
for GUIDEFINE can be understood when reading the documentation for TK.

Having said that, it should be clear that the global structure of the BaCon program is similar to the
previous example programs. In case of an event, the GUIEVENT$ function will return a defined text just
the same. In this example, the “WM_DELETE_WINDOW” event will return the text “window”,
however, when returned, the program simply will end.

Callbacks

When programming a graphical user interface, the program should be able to process user events.
BaCon can return user events back to the program by using the GUIEVENT$ function.

To allow a response from a user, the widget needs to set a “callback” property which defines the actual
signal. By default, events will return the name of the widget.

In the next examples, we will expand the “Hello World” program with two buttons. One button will
change the text in the label, and the other will exit the program.

Xaw

This is an enhanced version of the Hello World application, containing two buttons:

OPTION GUI TRUE

id = GUIDEFINE(" \
{ type=window name=window XtNtitle=\"Hello world program\" XtNwidth=250 XtNheight=150 } \
{ type=formWidgetClass name=form parent=window } \
{ type=labelWidgetClass name=label parent=form XtNlabel=\"Hello world\" XtNwidth=200 } \
{ type=commandWidgetClass name=button parent=form callback=XtNcallback XtNfromVert=label \
 XtNfromHoriz=NULL XtNwidth=100 XtNheight=40 XtNlabel=\"Click me\" \

 XtNleft=XawChainLeft XtNright=XawChainLeft XtNtop=XawChainBottom \
 XtNbottom=XawChainBottom } \
{ type=commandWidgetClass name=exit_b parent=form callback=XtNcallback XtNfromVert=label \
 XtNfromHoriz=button XtNwidth=100 XtNheight=40 XtNlabel=\"Exit\" \
 XtNleft=XawChainRight XtNright=XawChainRight XtNtop=XawChainBottom \
 XtNbottom=XawChainBottom XtNhorizDistance=100 }")

WHILE TRUE
 SELECT GUIEVENT$(id)
 CASE "button"
 CALL GUISET(id, "label", XtNlabel, "Goodbye!")
 CASE "exit_b"
 BREAK
 ENDSELECT
WEND

The GUIDEFINE definition now also mentions a “form” which is attached to the window. On top of this
form, the program attaches the label and two buttons. This logic is specific to the X Athena Widgets
toolkit and should be looked up in their documentation. The important thing in this example is to
observe how callbacks work in a BaCon program.

The GUIDEFINE function mentions the “callback” property for each button. It is configured as
“XtNcallback” which will instruct the Xaw toolkit to respond to a user event. As mentioned before,
BaCon will return the name of the widget by default.

In the WHILE/WEND loop, each event coming back from the Xaw toolkit is examined. If either the
button with the name “button” is clicked or the button with the name “exit_b”, the program will
perform an action.

In case the name “button” comes back, the program will set the “XtNlabel” property of the label. The
BaCon function GUISET is used to perform such action. In the example, GUISET uses four arguments.
The first argument refers to the ID of the GUI. The second argument refers to the name of the widget
for which the property is set. The third argument contains the name of the property and the fourth
argument sets the value for that property.

In case the name “exit_b” comes back, it simply breaks out the endless loop, effectively terminating the
program.

Motif

This is the “Hello World” program with two more buttons:

OPTION GUI TRUE
PRAGMA GUI motif

id = GUIDEFINE(" \
{ type=window name=window XmNtitle=\"Hello world program\" XmNwidth=250 XmNheight=150 } \
{ type=xmFormWidgetClass name=form parent=window } \
{ type=xmLabelWidgetClass name=label parent=form XmNalignment=XmALIGNMENT_CENTER } \
{ type=xmPushButtonWidgetClass name=button parent=form callback=XmNactivateCallback \

 XmNbottomAttachment=XmATTACH_FORM XmNleftAttachment=XmATTACH_FORM XmNheight=30 \
 XmNwidth=90 } \
{ type=xmPushButtonWidgetClass name=Exit parent=form callback=XmNactivateCallback \
 XmNbottomAttachment=XmATTACH_FORM XmNrightAttachment=XmATTACH_FORM XmNheight=30 \
 XmNwidth=90 }")

CALL GUISET(id, "label", XmNlabelString, XmStringCreateLocalized("Hello world"))
CALL GUISET(id, "button", XmNlabelString, XmStringCreateLocalized("Click Me"))

WHILE TRUE
 SELECT GUIEVENT$(id)
 CASE "button"
 CALL GUISET(id, "label", XmNlabelString, XmStringCreateLocalized("Goodbye!"))
 CASE "Exit"
 BREAK
 ENDSELECT
WEND

The above program achieves the same thing but uses Motif. Note that the name of the button by default
appears as text on the button, but also can be defined explicitly using GUISET.

The callback signal for the buttons is defined as “XmNactivateCallback”, which is a toolkit dependent
setting.

GTK

The expanded GTK version:

OPTION GUI TRUE
PRAGMA GUI gtk3

id = GUIDEFINE(" \
{ type=WINDOW name=window callback=delete-event title=\"Hello world program\" \
 width-request=250 height-request=50 } \
{ type=BOX name=vbox parent=window orientation=GTK_ORIENTATION_VERTICAL } \
{ type=LABEL name=mylabel parent=vbox label=\"Hello world\" } \
{ type=BUTTON_BOX name=bbox parent=vbox layout-style=GTK_BUTTONBOX_EDGE } \
{ type=BUTTON name=button parent=bbox callback=clicked margin=5 label=\"Click Me\" } \
{ type=BUTTON name=exit_b parent=bbox callback=clicked margin=5 label=\"Exit\" }")

WHILE TRUE
 SELECT GUIEVENT$(id)
 CASE "button"
 CALL GUISET(id, "mylabel", "label", "Goodbye!")
 CASE "exit_b", "window"
 BREAK
 ENDSELECT
WEND

The above program only works for GTK3. The GTK example from the previous chapter worked with
all versions of GTK. However, there are many subtle changes and differences between various GTK

versions. It is almost impossible to create a GUI which works for all GTK versions without
modification of code.

The program shows a callback for the main window which is defined as “delete-event”. As always, this
is a toolkit dependent setting. The main loop at the end of the program will be notified when this event
occurs. Both the name of the window and the name of the “Exit” button will break out the endless loop.

TK

The following example shows callbacks in a TK program:

OPTION GUI TRUE
PRAGMA GUI tk

id = GUIDEFINE(" \
 wm title . {Hello world program}; \
 wm protocol . \"WM_DELETE_WINDOW\" window; \
 label .lbl -justify center -text {Hello world}; \
 button .btn -text \"Click me\" -command btn; \
 button .exit_b -text \"Exit\" -command exit_b; \
 grid .lbl -row 0 -column 0 -columnspan 2 -padx 5 -pady 5; \
 grid .btn -row 1 -column 0 -padx 5 -pady 5 -sticky w; \
 grid .exit_b -row 1 -column 1 -padx 5 -pady 5 -sticky e;")

WHILE TRUE
 SELECT GUIEVENT$(id)
 CASE "btn"
 CALL GUIFN(id, ".lbl configure -text {Goodbye!}")
 CASE "exit_b", "window"
 BREAK
 ENDSELECT
WEND

Again, it should be noted that the TK toolkit has a slightly different embedding into BaCon. The GUI
definition consists of one string which is sent to the TCL/TK interpreter. BaCon examines this string to
determine the signals for a callback. When a widget is configured with a “-command” parameter then
BaCon will take the argument for this parameter as a string to be passed back to the program, unless
that argument is enclosed in curly brackets. In that case, BaCon will skip the definition and leave the
handling of the “-command” parameter to the TCL/TK interpreter.

Next to the “-command” parameter, BaCon also will verify any “bind” TK command. The occurrence
of “bind” will be considered a callback as well, and BaCon will return the 4 th parameter to “bind” as a
string back to the program, unless this parameter is enclosed in curly brackets.

The main loop verifies the strings coming back when a user event has occurred. Note that due to the
interpreted nature of TK and its tight connection to TCL, setting a property of a widget works in a
different way. BaCon can execute TCL/TK code directly to achieve a similar result. In the example, the
GUIFN function is used for this purpose. This function can contain any TCL or TK code, as long as it
refers to the same ID returned by the GUIDEFINE function.

For all toolkits is should be clear that additional knowledge of the particular design of a toolkit is
required. Most documentation can be found online and is not in scope of this BaCon manual.

Callback renaming

From the previous examples, it became clear that the callback mechanism will return the name of a
widget when a signal occurs. However, when we want to define multiple signals for the same widget,
then for all events the same widget name will be passed back to the main loop. The BaCon program
then cannot see which event actually has happened.

This is where the callback renaming comes in. When defining a callback with GUIDEFINE, the
callback property defines signal for the widget. This property supports additional information, which
can be added after a comma. The BaCon event handler for the toolkit will then return this information
instead of the name of the widget. The following Motif program demonstrates this principle:

OPTION GUI TRUE
PRAGMA GUI motif

prompt = GUIDEFINE(" \
{ type=window name=window } \
{ type=transientShellWidgetClass name=form parent=window XmNtitle=\"Info\" } \
{ type=xmMessageBoxWidgetClass name=dialog parent=form callback=XmNcancelCallback,cancel \
 callback=XmNokCallback,ok callback=XmNhelpCallback,help \
 XmNdialogType=XmDIALOG_INFORMATION }")

CALL GUISET(prompt, "dialog", XmNmessageString, XmStringCreateLocalized("Hello world"))
CALL XtPopup(GUIWIDGET(prompt, "form"), XtGrabNone)

WHILE TRUE
 SELECT GUIEVENT$(prompt)
 CASE "ok"
 PRINT "OK clicked"
 CASE "help"
 PRINT "HELP clicked"
 CASE "cancel"
 PRINT "Cancel clicked"
 BREAK
 ENDSELECT
WEND

This example creates a dialog box with multiple buttons. The dialog is one object for which multiple
callback signals must be defined, one for each button. The callback property sets the name of the
signal, a comma, and a string which will be passed back to the main loop. Note that in the definition,
the signal name, comma and additional information should all be attached together, without spaces.

The following is an example using GTK, distinguishing between button pressed and released events:

OPTION GUI TRUE
PRAGMA GUI gtk3

id = GUIDEFINE(" \
{ type=WINDOW name=window callback=delete-event title=\"Hello world program\" \
 width-request=250 height-request=50 } \
{ type=BOX name=vbox parent=window orientation=GTK_ORIENTATION_VERTICAL } \
{ type=LABEL name=mylabel parent=vbox label=\"Hello world\" } \
{ type=BUTTON_BOX name=bbox parent=vbox layout-style=GTK_BUTTONBOX_EDGE } \
{ type=BUTTON name=button parent=bbox callback=pressed,press callback=released,unpress \
 margin=5 label=\"Click Me\" } \
{ type=BUTTON name=exit_b parent=bbox callback=clicked margin=5 label=\"Exit\" }")

WHILE TRUE
 SELECT GUIEVENT$(id)
 CASE "press"
 PRINT "Button pressed"
 CASE "unpress"
 PRINT "Button released"
 CASE "exit_b", "window"
 BREAK
 ENDSELECT
WEND

In this example, the signals for “pressed” and “released” are renamed, so different strings will be
passed back to the main loop for each event on the same button widget.

Callback codes (TK)

In case of TK, BaCon will setup a callback mechanism in case it either discovers a “-command” widget
definition or detects a TK “bind” command. The latter command however has a peculiarity which
should be taken into account. The way TK works is that some widgets already contain a set of default
bindings. For example, the text widget already has a lot of key combinations defined. The famous
<CTRL>+<c> will copy text, <CTRL>+<v> will paste the text, <CTRL>+<a> will select all text, and
so on. If a “bind” command adds a callback to a key combination, then TK will execute this user
definition first, but it also will continue to perform the default bindings. To prevent this from
happening, the 4th argument to the “bind” command allows additional information. It should be added
after a “+” sign and without any spaces in between:

bind .textwidget <Control-KeyPress-m> callback+break;

This line of code connects the <CTRL>+<m> key combination to the string “callback”. The additional
“break” will make sure that the event is not propagated further to the text widget. This prevents a
<return> symbol being inserted somewhere in the text.

So after the event occurs in TK, the callback now will return a break to the toolkit. Various return codes
are possible, causing different results. The programmer can choose between “error”, “return”, “break”,
or “continue”. These correspond to the TCL_ERROR, TCL_RETURN, TCL_BREAK and

TCL_CONTINUE return codes. If no additional information is specified then Bacon assumes “ok”
(TCL_OK).

Advanced events

In some cases it may be necessary to obtain a special value which is passed to the callback by the
widget library. In such situation, the GUIEVENT$ function accepts an optional second boolean
parameter. This will add a pointer to the internal callback value which is attached as a string to the
returned result. The format of the result is a delimited string which can be processed using default
BaCon functions.

For example, to obtain the selected item in a XawList widget, the Xaw library returns an internal
pointer to a C-struct containing information about the XawList. This can be fetched as follows:

OPTION GUI TRUE

DECLARE info TYPE XawListReturnStruct*
DECLARE data$[3]

id = GUIDEFINE(" \
{ type=window name=window XtNtitle=\"Hello world program\" XtNwidth=250 XtNheight=120 } \
{ type=formWidgetClass name=form parent=window } \
{ type=viewportWidgetClass name=view parent=form XtNwidth=250 XtNallowVert=True \
 XtNleft=XawChainLeft XtNuseRight=True XtNright=XawChainRight \
 XtNtop=XawChainTop XtNbottom=XawChainTop } \
{ type=listWidgetClass name=list parent=view callback=XtNcallback XtNverticalList=True \
 XtNforceColumns=True XtNdefaultColumns=1 XtNleft=XawChainLeft XtNright=XawChainRight \
 XtNtop=XawChainTop XtNbottom=XawChainBottom } \
{ type=commandWidgetClass name=exit_b parent=form callback=XtNcallback XtNfromVert=list \
 XtNwidth=100 XtNheight=40 XtNlabel=\"Exit\" XtNleft=XawChainRight \
 XtNright=XawChainRight XtNtop=XawChainBottom XtNbottom=XawChainBottom \
 XtNhorizDistance=100 }")

data$[0] = "Hello"
data$[1] = "World"
data$[2] = NULL

CALL GUISET(id, "list", XtNlist, data$, XtNnumberStrings, 0)

WHILE TRUE
 event$ = GUIEVENT$(id, TRUE)
 SELECT TOKEN$(event$, 1)
 CASE "exit_b"
 BREAK
 CASE "list"
 info = (XawListReturnStruct*)DEC(TOKEN$(event$, 2))
 PRINT TOKEN$(info->string, 1)
 ENDSELECT
WEND

A little bit of C knowledge is required to understand what is going on. When the second argument to
GUIEVENT$ is set to TRUE then the return string also contains a pointer which directs to the data from
the list widget. After converting this pointer to the appropriate C-struct, the BaCon program can obtain
the value of the item which was selected by the user.

This advanced functionality of GUIEVENT$ also can be used in case of GTK dialogues. The next
program can verify which button was pressed in a default GTK dialog:

OPTION GUI TRUE
PRAGMA GUI gtk3

DECLARE (*show)(GtkWidget*) = gtk_widget_show_all TYPE void
DECLARE (*hide)(GtkWidget*) = gtk_widget_hide TYPE void

DECLARE resp TYPE int

id = GUIDEFINE(" \
{ type=WINDOW name=window callback=delete-event title=\"Hello world program\" \
 width-request=250 height-request=50 } \
{ type=BOX name=vbox parent=window orientation=GTK_ORIENTATION_VERTICAL } \
{ type=LABEL name=mylabel parent=vbox label=\"Hello world\" } \
{ type=BUTTON_BOX name=bbox parent=vbox layout-style=GTK_BUTTONBOX_EDGE } \
{ type=BUTTON name=button parent=bbox callback=clicked margin=5 label=\"Click Me\" } \
{ type=BUTTON name=exit_b parent=bbox callback=clicked margin=5 label=\"Exit\" } \
{ type=MESSAGE_DIALOG name=dlg callback=delete-event callback=response,yesno \
 message-type=GTK_MESSAGE_WARNING buttons=GTK_BUTTONS_YES_NO \
 title=\"Question\" text=\"Are you sure?\" }")

WHILE TRUE
 event$ = GUIEVENT$(id, TRUE)
 SELECT TOKEN$(event$, 1)
 CASE "button"
 CALL GUIFN(id, "dlg", show)
 CASE "yesno"
 resp = *(intptr_t*)DEC(TOKEN$(event$, 2))
 IF resp = GTK_RESPONSE_YES THEN PRINT "Clicked on YES"
 IF resp = GTK_RESPONSE_NO THEN PRINT "Clicked on NO"
 CALL GUIFN(id, "dlg", hide)
 CASE "exit_b", "window"
 BREAK
 ENDSELECT
WEND

The additional GTK pointer attached to the result is converted to an integer value and then assigned to
a variable. Then it is just a matter of finding out which button was pressed.

Clearly, these constructions require some knowledge of the respective toolkits and of the way C
handles pointers. Fortunately, the programmer of graphical user interfaces will likely not run into other
advanced events. The demonstration programs available at the BaCon website do not contain a usage of
the GUIEVENT$ function other than mentioned in the previous examples.

The last program also demonstrates how the GUIFN function works. This will be explained in more
detail in the next chapter.

Helper functions

A lot of times it is useful to add native GUI functions because the property we’re looking for simply is
not available. Some toolkits only allow to set a certain property by using a C function in their API. In
BaCon, it is allowed to mix C code with regular statements. But a lot of times this looks ugly and
confusing. Also, the BaCon program needs to declare the correct argument types for the API function.
This can be a difficult undertaking.

But there are other situations for which the C API of a toolkit has to be used. For example, it sometimes
may happen that the program needs to popup a dialog window, or hide that window again. Showing
and hiding dialog windows typically is an action performed by a C function from the toolkit being
used. The BaCon program then has to mix its code with the API of the toolkit.

This is where the GUIFN function comes in. With GUIFN it is possible to define a supplementary helper
function. This creates a generic interface by embedding a function pointer to the API we need to
invoke. Here is an example of how it works using the Xaw toolkit:

DECLARE (*show)() = XtPopup TYPE void
DECLARE (*hide)() = XtPopdown TYPE void

In the example, two function pointers are defined to point to two native C functions from the Xaw
toolkit: XtPopup and XtPopdown. These functions are used to show and hide dialogs. The BaCon
program then can use GUIFN to invoke these native functions in an unambiguous manner:

CALL GUIFN(id, "window", show, XtGrabNonexclusive)

The GUIFN function always requires at least 3 arguments:

• the id of the GUI, which is created by GUIDEFINE;

• the name of the widget to which the function will be applied;

• the name of the function pointer, previously declared in a DECLARE or LOCAL statement.

In the example, GUIFN has a 4th argument, “XtGrabNonexclusive”, required by the native XtPopup
function. It relates to the way the dialog will be shown. If the C function requires more arguments, then
these can be added as well.

To demonstrate closing the window again:

CALL GUIFN(id, "window", hide)

The native XtPopdown function only requires one argument, which is the widget that needs to be
hidden.

At first glance, using GUIFN may look a bit redundant. Of course, the programmer is always free to not
use GUIFN and mix BaCon code with native API functions. However, the GUIFN function has several
advantages:

• it is compliant with the overall API design of BaCon

• the BaCon program becomes smaller in size

• the BaCon program becomes more readable

• no need to worry about the argument types of the helper function

It is important to observe that the GUIFN function is preceded by the CALL statement. The reason is that
native BaCon functions cannot appear standalone in the program, because then they would be a plain
statement.

For the TK toolkit the situation is a little different. As TK and TCL are connected to closely, it is often
more convenient to perform complicated operations in the TCL/TK interpreter itself, by using a few
native TCL statements. Being an interpreter, the TK toolkit can accept this code during runtime, which
provides a very powerful way to manipulate a user interface. Therefore, the GUIFN function works in
such a way that it can directly enter native TCL/TK code into the interpreted TK environment.

For example:

CALL GUIFN(id, "tk_messageBox -title {Demo} -message {Hello world} -icon info -type ok")

As with the previous example in Xaw, the GUIFN function also needs to provide the id of the GUI as its
first argument.

Then, the one line of TK code performs a few actions: it creates a dialog, defines a message to the user,
it will popup that dialog as well, and shows an “ok” button, which, when pressed, lets the dialog
disappear again. While the other toolkits need multiple lines of code to define a window, button and
label, and code to handle the events, the TK toolkit can manage a dialog with just one line of native TK
code.

The BaCon source package contains fully working code editors written both for the GTK and the TK
toolkits. The implementation of these editors clearly shows how to use the GUIFN function,
demonstrating the advantages of defining function pointers (GTK) and native interpreted code (TK).

Setting and getting

The generic GUI functions in BaCon try to follow an object/property model. It therefore makes sense
to set properties of objects (widgets). Also, the BaCon program might be interested in the current value
of the property and needs a way to fetch a value. These actions can be implemented by the GUISET and
GUIGET functions.

For example, in GTK the user interface might contain an entry where some text can be inserted. When
this entry needs to be filled with a text, this can be achieved by setting the “text” property of the
widget:

OPTION GUI TRUE
PRAGMA GUI gtk3

id = GUIDEFINE(" \
{ type=WINDOW name=window callback=delete-event title=\"Entry Demo\" width-request=250 } \
{ type=BOX name=vbox parent=window orientation=GTK_ORIENTATION_VERTICAL } \
{ type=ENTRY name=entry parent=vbox margin=5 } \
{ type=BUTTON_BOX name=bbox parent=vbox layout-style=GTK_BUTTONBOX_EDGE } \
{ type=BUTTON name=setup parent=bbox callback=clicked margin=5 label=\"Set Text\" } \
{ type=BUTTON name=fetch parent=bbox callback=clicked margin=5 label=\"Get Text\" }")

DECLARE text$

WHILE TRUE
 SELECT GUIEVENT$(id)
 CASE "setup"
 CALL GUISET(id, "entry", "text", "Fill in text")
 CASE "fetch"
 CALL GUIGET(id, "entry", "text", &text$)
 PRINT text$
 CASE "window"
 BREAK
 ENDSELECT
WEND

In the above program, the first argument of the GUISET function refers to the GUI id returned by
GUIDEFINE. The second argument mentions the name of the widget. The third argument sets the name
of the property. This property name can be looked up in the documentation of the GTK toolkit. The last
argument defines the actual text which should be inserted into the entry widget.

Obtaining the text from an entry widget comes down to simply fetching the value of the “text” property
of the widget. For this, BaCon provides the GUIGET function. The arguments have the same purpose,
except for the last argument, indicating where the result is stored. Note the ampersand ‘&’ symbol in
the argument. This means that the variable is referred to by reference, and not by value. As a result, de
variable will point to an existing memory address containing the text, instead of being assigned a fresh
block of memory where the text will be copied to.

Again, in TK things work different. In this toolkit, the GUISET and GUIGET functions are used to
exchange the values of variables between BaCon and TK.

This is small TK program demonstrates how it works:

OPTION GUI TRUE
PRAGMA GUI tk

id = GUIDEFINE(" \
 wm title . {Entry Demo}; \
 wm protocol . \"WM_DELETE_WINDOW\" window; \
 entry .ent -justify left; \
 focus .ent; \
 button .btn1 -text \"Set Text\" -command setup; \
 button .btn2 -text \"Get Text\" -command fetch; \
 grid .ent -row 0 -column 0 -columnspan 2 -padx 5 -pady 5; \
 grid .btn1 -row 1 -column 0 -padx 5 -pady 5 -sticky w; \
 grid .btn2 -row 1 -column 1 -padx 5 -pady 5 -sticky e;")

DECLARE text$

WHILE TRUE
 SELECT GUIEVENT$(id)
 CASE "setup"
 text$ = "Fill in text"
 CALL GUISET(id, "txt", text$)
 CALL GUIFN(id, ".ent insert 0 $txt")
 CASE "fetch"
 CALL GUIFN(id, "set txt [.ent get]")
 CALL GUIGET(id, "txt", text$)
 PRINT text$
 CASE "window"
 BREAK
 ENDSELECT
WEND

First, the BaCon variable “text$” is assigned some text. Then, the contents of that variable is assigned
to a variable in TK. Lastly, that TK variable is used to update the “entry” widget in the user interface.
Of course, in this simple case it could have been done faster by simply concatenating the text to the
GUIFN function argument. But often it is unknown what value a variable contains. In any case, it is just
an example to demonstrate the principle of using GUISET in TK.

The GUIGET function works in a similar way, except it fetches a value from the TCL/TK interpreter
and passes it on to the BaCon program.

The widget ID

The last GUI function to discuss is GUIWIDGET. This function can obtain the memory address of the
widget. It sometimes is necessary to refer to the memory address when configuring a graphical user
interface. Also it can come handy when mixing BaCon code with C API functions from the toolkit.

In the following example, a button is put on a GtkFixed container after the definition in GUIDEFINE:

OPTION GUI TRUE
PRAGMA GUI gtk3

DECLARE (*put)() = gtk_fixed_put TYPE void

id = GUIDEFINE(" \
{ type=WINDOW name=window callback=delete-event title=\"Demo\" width-request=300 } \
{ type=FIXED name=fixed parent=window } \
{ type=BUTTON name=button callback=clicked margin=10 label=\"Click here\" }")

CALL GUIFN(id, "fixed", put, GUIWIDGET(id, "button"), 100, 50)

WHILE TRUE
 SELECT GUIEVENT$(id)
 CASE "window"
 BREAK
 CASE "button"
 PRINT "Button clicked"
 ENDSELECT
WEND

Here, as always the GUI is defined by GUIDEFINE. But GTK does not allow to set the position of the
button using properties. Therefore, the button has no “parent” property defined. Instead, the button
needs to be put onto the GtkFixed container with an explicit call to the C function “gtk_fixed_put”. The
above program first defines a helper function to wrap it into the more generic GUIFN function.
However, referring to the button requires knowledge of its memory address. This address can be
obtained by the use of GUIWIDGET.

The first argument of the GUIWIDGET function is the id of the created GUI. The second argument
mentions the name of the button. This way the memory address of each widget can be retrieved.

For the TK toolkit, GUIWIDGET has no purpose. It simply returns the name of the widget.

This documentation © by Peter van Eerten.

	Graphical User Interfaces
	Introduction
	GUIDEFINE
	GUIEVENT$
	GUIFN
	GUIGET
	GUISET
	GUIWIDGET

	Hello World
	Xaw
	Motif
	GTK
	TK

	Callbacks
	Xaw
	Motif
	GTK
	TK

	Callback renaming
	Callback codes (TK)
	Advanced events
	Helper functions
	Setting and getting
	The widget ID

