1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
| #### RemiAudio
#### Copyright (C) 2022-2024 Remilia Scarlet <remilia@posteo.jp>
####
#### This program is free software: you can redistribute it and/or modify it
#### under the terms of the GNU Affero General Public License as published by
#### the Free Software Foundation, either version 3 of the License, or (at your
#### option) any later version.
####
#### This program is distributed in the hope that it will be useful, but WITHOUT
#### ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
#### FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public
#### License for more details.
####
#### You should have received a copy of the GNU Affero General Public License
#### along with this program. If not, see <https://www.gnu.org/licenses/>.
require "./lpfilter"
###
### https://www.musicdsp.org/en/latest/Filters/197-rbj-audio-eq-cookbook.html
### plus some referencing of the SoX source code (biquads.c)
###
module RemiAudio::DSP
# A digital biquad lowpass filter.
#
# This is identical to using a normal `BiQuadFilter` instance, except it is
# optimized strictly for lowpass usage and includes the `LPFilter` module.
class BiquadLP
include LPFilter
# :nodoc:
RESONANCE_PEAK_OFFSET = 1.0f64 - (1.0f64 / Math.sqrt(2.0f64))
getter b0 : Float64 = 0.0f64
getter b1 : Float64 = 0.0f64
getter b2 : Float64 = 0.0f64
getter a1 : Float64 = 0.0f64
getter a2 : Float64 = 0.0f64
# The current frequency of the filter.
@[AlwaysInline]
getter cutoff : Float64 = CUTOFF_MAX
# The current Q value of the filter.
@[AlwaysInline]
getter resonance : Float64 = Float64::MIN_POSITIVE
@x1 : Float64 = 0.0f64
@x2 : Float64 = 0.0f64
@y1 : Float64 = 0.0f64
@y2 : Float64 = 0.0f64
@sampleRate : Float64
@invSampleRate : Float64
# Creates a new `BiQuadFilter`.
def initialize(newSampleRate)
@sampleRate = newSampleRate.to_f64!
@invSampleRate = 1.0 / @sampleRate
set(CUTOFF_MAX, RESONANCE_MIN)
end
# Clears the internal buffer. This does not change the settings of the EQ.
@[AlwaysInline]
def reset : Nil
@x1 = 0.0f64
@x2 = 0.0f64
@y1 = 0.0f64
@y2 = 0.0f64
end
# :nodoc:
RES_ADJUST = RemiAudio.decibelsToLinear(48.0)
@[AlwaysInline]
def updateCoefficients : Nil
omega : Float64 = RemiMath::TWO_PI * @cutoff * @invSampleRate
@active = @cutoff < 0.499 * @sampleRate # Was <= ENABLE_AT
res = RemiAudio.decibelsToLinear(@resonance * RES_ADJUST)
q = res - RESONANCE_PEAK_OFFSET / (1.0 + 6.0 * (res - 1.0))
alpha : Float64 = Math.sin(omega) / (2.0 * q)
cosO : Float64 = Math.cos(omega)
@b0 = (1.0f64 - cosO) * 0.5f64
@b1 = 1.0f64 - cosO
@b2 = (1.0f64 - cosO) * 0.5f64
@a1 = -2.0f64 * cosO
@a2 = 1.0f64 - alpha
a0 : Float64 = 1.0f64 + alpha
@b0 /= a0
@b1 /= a0
@b2 /= a0
@a1 /= a0
@a2 /= a0
end
def cutoff=(val : Float64) : Nil
return if val == @cutoff
@cutoff = val.clamp(CUTOFF_MIN, CUTOFF_MAX)
updateCoefficients
end
def resonance=(val : Float64) : Nil
return if @resonance == val
@resonance = val.clamp(Float64::MIN_POSITIVE, RESONANCE_MAX)
updateCoefficients
end
def set(newCutoff : Float64, newResonance : Float64)
return if @cutoff == newCutoff && @resonance == newResonance
@cutoff = newCutoff.clamp(CUTOFF_MIN, CUTOFF_MAX)
@resonance = newResonance.clamp(Float64::MIN_POSITIVE, RESONANCE_MAX - 0.99)
updateCoefficients
end
@[AlwaysInline]
def process(sample : Float64) : Float64
return sample unless @active
output : Float64 = ((@b0 * sample) + (@b1 * @x1) + (@b2 * @x2)) - (@a1 * @y1) - (@a2 * @y2)
@x2 = @x1
@x1 = sample
@y2 = @y1
@y1 = output
end
# Generates a string that can be passed to a program to plot this filter on
# a graph. The `PlotType` dictates what kind of script is generated.
def plot(pt : PlotType, *, coeffsOnly : Bool = false) : String
# Adapted from what SoX prints out.
String.build do |str|
case pt
in .gnu_plot?
if coeffsOnly
str << sprintf("b0 = %.15e; ", @b0)
str << sprintf("b1 = %.15e; ", @b1)
str << sprintf("b2 = %.15e; ", @b2)
str << sprintf("a1 = %.15e; ", @a1)
str << sprintf("a2 = %.15e", @a2)
else
str << "# gnuplot file\n"
str << "set title 'BiQuad Filter, sample rate: #{@sampleRate}'\n"
str << "set xlabel 'Frequency (Hz)'\n"
str << "set ylabel 'Amplitude Response (dB)'\n"
str << sprintf("Fs = %g\n", @sampleRate)
str << sprintf("b0 = %.15e; ", @b0)
str << sprintf("b1 = %.15e; ", @b1)
str << sprintf("b2 = %.15e; ", @b2)
str << sprintf("a1 = %.15e; ", @a1)
str << sprintf("a2 = %.15e\n", @a2)
str << "o = 2 * pi / Fs\n"
str << "H(f) = sqrt((b0 * b0 + b1 * b1 + b2 * b2 + 2.0 * (b0 * b1 + b1 * b2) * " <<
"cos(f * o) + 2.0 * (b0 * b2) * cos(2.0 * f * o)) / " <<
"(1.0 + a1 * a1 + a2 * a2 + 2.0 * (a1 + a1 * a2) * " <<
"cos(f * o) + 2.0 * a2 * cos(2.0 * f * o)))\n"
str << "set logscale x\n"
str << "set samples 250\n"
str << "set grid xtics ytics\n"
str << "set key off\n"
str << "plot [f=10 : Fs/2] [-35:25] 20 * log10(H(f))"
end
in .octave?
str << "%% GNU Octave file (may also work with MATLAB(R) )\n"
str << "Fs = #{@sampleRate};\n"
str << "minF = 10;\n"
str << "maxF = Fs/2;\n"
str << "sweepF = logspace(log10(minF), log10(maxF), 200);\n"
str << sprintf("[h, w] = freqz([%.15e %.15e %.15e], [1 %.15e %.15e], sweepF, Fs);\n",
@b0, @b1, @b2, @a1, @a2)
str << "semilogx(w, 20 * log10(h))\n"
str << "title('BiQuad Filter, sample rate: #{@sampleRate}')\n"
str << "xlabel('Frequency (Hz)')\n"
str << "ylabel('Amplitude Response (dB)')\n"
str << "axis([minF maxF -35 25])\n"
str << "grid on\n"
str << "disp('Hit return to continue')\n"
str << "pause\n"
end
end
end
end
end
|