File src/remiaudio/resampler/sinc.cr from the latest check-in


     1
     2
     3
     4
     5
     6
     7
     8
     9
    10
    11
    12
    13
    14
    15
    16
    17
    18
    19
    20
    21
    22
    23
    24
    25
    26
    27
    28
    29
    30
    31
    32
    33
    34
    35
    36
    37
    38
    39
    40
    41
    42
    43
    44
    45
    46
    47
    48
    49
    50
    51
    52
    53
    54
    55
    56
    57
    58
    59
    60
    61
    62
    63
    64
    65
    66
    67
    68
    69
    70
    71
    72
    73
    74
    75
    76
    77
    78
    79
    80
    81
    82
    83
    84
    85
    86
    87
    88
    89
    90
    91
    92
    93
    94
    95
    96
    97
    98
    99
   100
   101
   102
   103
   104
   105
   106
   107
   108
   109
   110
   111
   112
   113
   114
   115
   116
   117
   118
   119
   120
   121
   122
   123
   124
   125
   126
   127
   128
   129
   130
   131
   132
   133
   134
   135
   136
   137
   138
   139
   140
   141
   142
   143
   144
   145
   146
   147
   148
   149
   150
   151
   152
   153
   154
   155
   156
   157
   158
   159
   160
   161
   162
   163
   164
   165
   166
   167
   168
   169
   170
   171
   172
   173
   174
   175
   176
   177
   178
   179
   180
   181
   182
   183
   184
   185
   186
   187
   188
   189
   190
   191
   192
   193
   194
   195
   196
   197
   198
   199
   200
   201
   202
   203
   204
   205
   206
   207
   208
   209
   210
   211
   212
   213
   214
   215
   216
   217
   218
   219
   220
   221
   222
   223
   224
   225
   226
   227
   228
   229
   230
   231
   232
   233
   234
   235
   236
   237
   238
   239
   240
   241
   242
   243
   244
   245
   246
   247
   248
   249
   250
   251
   252
   253
   254
   255
   256
   257
   258
   259
   260
   261
   262
   263
   264
   265
   266
   267
   268
   269
   270
   271
   272
   273
   274
   275
   276
   277
   278
   279
   280
   281
   282
   283
   284
   285
   286
   287
   288
   289
   290
   291
   292
   293
   294
   295
   296
   297
   298
   299
   300
   301
   302
   303
   304
   305
   306
   307
   308
   309
   310
   311
   312
   313
   314
   315
   316
   317
   318
   319
   320
   321
   322
   323
   324
   325
   326
   327
   328
   329
   330
   331
   332
   333
   334
   335
   336
   337
   338
   339
   340
   341
   342
   343
   344
   345
   346
   347
   348
   349
   350
   351
   352
   353
   354
   355
   356
   357
   358
   359
   360
   361
   362
   363
   364
   365
   366
   367
   368
   369
   370
   371
   372
   373
   374
   375
   376
   377
   378
   379
   380
   381
   382
   383
   384
   385
   386
   387
   388
   389
   390
   391
   392
   393
   394
   395
   396
   397
   398
   399
   400
   401
   402
   403
   404
   405
   406
   407
   408
   409
   410
   411
   412
   413
   414
   415
   416
   417
   418
   419
   420
   421
   422
   423
   424
   425
   426
   427
   428
   429
   430
   431
   432
   433
   434
   435
   436
#### Based on libsamplerate
####
#### Copyright (c) 2002-2021, Erik de Castro Lopo <erikd@mega-nerd.com>
#### Copyright (c) 2024, Remilia Scarlet <remilia@posteo.jp>
#### All rights reserved.
####
#### This code is released under 2-clause BSD license. Please see the
#### file at : https://github.com/libsndfile/libsamplerate/blob/master/COPYING
require "./resampler"

@[Link(ldflags: "#{__DIR__}/libsinctables.a")]
lib LibRASincTables
  $sinc_fast_coeffs_size : LibC::Int
  $sinc_medium_coeffs_size : LibC::Int
  $sinc_best_coeffs_size : LibC::Int

  $sinc_fast_coeffs_index_inc : LibC::Int
  $sinc_medium_coeffs_index_inc : LibC::Int
  $sinc_best_coeffs_index_inc : LibC::Int

  $sinc_fast_coeffs : StaticArray(Float32, 2464)
  $sinc_medium_coeffs : StaticArray(Float32, 22438)
  $sinc_best_coeffs : StaticArray(Float32, 340239)
end

module RemiAudio::Resampler
  # A bandlimited interpolator derived from the mathematical sinc function.
  # Based on the techniques of [Julius
  # O. Smith](http://ccrma.stanford.edu/~jos/resample/), although this code was
  # developed independently.
  abstract class SincResampler < Resampler
    MAX_CHANNELS = 128

    # :nodoc:
    SHIFT_BITS = 12

    # :nodoc:
    FP_ONE = (1 << SHIFT_BITS).to_f64!

    # :nodoc
    INV_FP_ONE = 1.0 / FP_ONE

    # Defines the quality of a `SincResampler`.
    enum Quality
      # The fastest, but lowest quality, for a `SincResampler`. The resampler
      # will have a signal-to-noise ratio of 97dB and a bandwidth of 80%.
      Fast

      # A fairly fast, medium quality, for a `SincResampler`. The resampler will
      # have a signal-to-noise ratio of 97dB and a bandwidth of 90%
      Medium

      # A very slow, but very high quality, for a `SincResampler`.  This
      # provides a worst case signal-to-noise ratio of 97dB at a bandwidth of
      # 97%
      Best
    end

    # :nodoc:
    alias Coefficients = Pointer(Float32)

    @inCount : Int64 = 0i64
    @inUsed : Int64 = 0i64
    @outCount : Int64 = 0i64
    @outGen : Int64 = 0i64
    @coeffHalfLen : Int32 = 0
    @indexInc : Int32 = 0
    @srcRatio : Float64 = 0.0
    @inputIndex : Float64 = 0.0
    @coeffs : Coefficients
    @bCurrent : Int32 = 0
    @bEnd : Int32 = 0
    @bRealEnd : Int32 = 0
    @bLen : Int32 = 0
    @leftCalc : Array(Float64) = Array(Float64).new(MAX_CHANNELS, 0.0)
    @rightCalc : Array(Float64) = Array(Float64).new(MAX_CHANNELS, 0.0)
    @buffer : Array(Float32)

    # The `Quality` for this instance.
    getter quality : Quality

    # Appease the compiler deities
    private def initialize(@channels, @quality, @coeffs, @buffer)
    end

    # :inherit:
    def reset : Nil
      super
      @bCurrent = 0
      @bEnd = 0
      @bRealEnd = -1
      @srcRatio = 0.0
      @inputIndex = 0.0
      @buffer.fill(0.0f32)
    end

    @[AlwaysInline]
    protected def toFp(x : Float64) : Int32
      (x.round * FP_ONE).to_i32!
    end

    @[AlwaysInline]
    protected def toFp(x : Int) : Int32
      (x << SHIFT_BITS).to_i32!
    end

    @[AlwaysInline]
    protected def fpToInt(x : Int32) : Int32
      x >> SHIFT_BITS
    end

    @[AlwaysInline]
    protected def fpFracPart(x : Int32)
      x & ((1 << SHIFT_BITS) &- 1)
    end

    @[AlwaysInline]
    protected def fpToF64(x : Int32) : Float64
      fpFracPart(x) * INV_FP_ONE
    end

    @[AlwaysInline]
    protected def intDivCeil(divident : Int32, divisor : Int32) # == (divident.to_f32! / divisor).ceiling.to_i32!
      RemiLib.assert(divident >= 0 && divisor > 0) # For positive numbers only
      (divident &+ (divisor &- 1)).tdiv(divisor)
    end

    protected def prepareData(data : Data, halfFilterChanLen : Int32) : Nil
      return if @bRealEnd >= 0 # Should be terminating, just return
      return if data.dataIn.empty?

      len : Int32 = 0
      if @bCurrent == 0
        # Initial state. Set up zeros at the start of the buffer and then load
        # new data after that.
        len = @bLen - 2 * halfFilterChanLen
        @bCurrent = halfFilterChanLen
        @bEnd = halfFilterChanLen
      elsif (@bEnd + halfFilterChanLen + @channels) < @bLen
        # Load data at current end position.
        len = Math.max(@bLen - @bCurrent - halfFilterChanLen, 0)
      else
        # Move data at end of buffer back to the start of the buffer.
        len = @bEnd - @bCurrent
        @buffer.to_unsafe.move_from(@buffer.to_unsafe + @bCurrent - halfFilterChanLen,
                                    halfFilterChanLen + len)
        @bCurrent = halfFilterChanLen
        @bEnd = @bCurrent + len

        # Now load data at current end of buffer.
        len = Math.max(@bLen - @bCurrent - halfFilterChanLen, 0)
      end

      len = Math.min((@inCount - @inUsed).to_i32!, len)
      len -= (len % @channels)

      if len < 0 || (@bEnd + len) > @bLen
        raise Error.new("prepareData: bad length")
      end

      (@buffer.to_unsafe + @bEnd).copy_from(data.dataIn.to_unsafe + @inUsed, len)

      @bEnd += len
      @inUsed += len

      if @inUsed == @inCount && (@bEnd - @bCurrent) < (2 * halfFilterChanLen) && data.endOfInput?
        # Handle the case where all data in the current buffer has been consumed
        # and this is the last buffer.

        if (@bLen - @bEnd) < (halfFilterChanLen + 5)
          # If necessary, move data down to the start of the buffer.
          len = @bEnd - @bCurrent
          @buffer.to_unsafe.move_from(@buffer.to_unsafe + @bCurrent - halfFilterChanLen,
                                      halfFilterChanLen + len)

          @bCurrent = halfFilterChanLen
          @bEnd = @bCurrent + len
        end

        @bRealEnd = @bEnd
        len = halfFilterChanLen + 5

        if len < 0 || (@bEnd + len) > @bLen
          len = @bLen - @bEnd
        end

        @buffer.fill(0.0, @bEnd, len)
        @bEnd += len
      end
    end
  end

  # A `SincResampler` optimized for two channels.
  class SincResamplerStereo < SincResampler
    # Creates a new `SincResamplerStereo` instance that will operate at the
    # given `Quality`.
    def initialize(@quality : Quality)
      @channels = 2
      case @quality
      in .fast?
        @coeffs = LibRASincTables.sinc_fast_coeffs.to_unsafe
        @coeffHalfLen = LibRASincTables.sinc_fast_coeffs_size.to_i32 - 2
        @indexInc = LibRASincTables.sinc_fast_coeffs_index_inc.to_i32
      in .medium?
        @coeffs = LibRASincTables.sinc_medium_coeffs.to_unsafe
        @coeffHalfLen = LibRASincTables.sinc_medium_coeffs_size.to_i32 - 2
        @indexInc = LibRASincTables.sinc_medium_coeffs_index_inc.to_i32
      in .best?
        @coeffs = LibRASincTables.sinc_best_coeffs.to_unsafe
        @coeffHalfLen = LibRASincTables.sinc_best_coeffs_size.to_i32 - 2
        @indexInc = LibRASincTables.sinc_best_coeffs_index_inc.to_i32
      end

      @bLen = 3 * ((@coeffHalfLen + 2.0) / @indexInc * SRC_MAX_RATIO + 1).round.to_i32!
      @bLen = Math.max(@bLen, 4096)
      @bLen *= @channels
      @bLen += 1

      @buffer = Array(Float32).new(@bLen * @channels, 0.0f32)

      reset
    end

    private def calcOutput(increment : Int32, startFilterIndex : Int32, scale : Float64, output : Slice(Float32)) : Nil
      fraction : Float64 = 0.0
      left : StaticArray(Float64, 2) = StaticArray(Float64, 2).new(0.0)
      right : StaticArray(Float64, 2) = StaticArray(Float64, 2).new(0.0)
      icoeff : Float64 = 0.0
      idx : Int32 = 0

      # Convert input parameters into fixed point.
      maxFilterIndex : Int32 = toFp(@coeffHalfLen)

      # First apply the left half of the filter.
      filterIndex : Int32 = startFilterIndex
      coeffCount : Int32 = (maxFilterIndex - filterIndex).tdiv(increment)
      filterIndex = filterIndex + coeffCount * increment
      dataIndex : Int32 = @bCurrent - @channels * coeffCount
      if dataIndex < 0 # Avoid underflow access to filter->buffer.
        steps : Int32 = intDivCeil(-dataIndex, 2)
        # If the assert triggers we would have to take care not to underflow/overflow
        RemiLib.assert(steps <= intDivCeil(filterIndex, increment))
        filterIndex -= (increment * steps)
        dataIndex += (steps * 2)
      end

      while filterIndex >= 0
        fraction = fpToF64(filterIndex)
        idx = fpToInt(filterIndex)
        #RemiLib.assert(idx >= 0 && (idx + 1) < (@coeffHalfLen + 2))
        icoeff = @coeffs[idx].to_f64! + fraction * (@coeffs[idx + 1] - @coeffs[idx])
        #RemiLib.assert(dataIndex >= 0 && (dataIndex + 1) < @bLen)
        #RemiLib.assert((dataIndex + 1) < @bEnd)
        2.times do |ch|
          left[ch] += (icoeff * @buffer[dataIndex + ch])
        end

        filterIndex -= increment
        dataIndex = dataIndex + 2
      end

      # Now apply the right half of the filter.
      filterIndex = increment - startFilterIndex
      coeffCount = (maxFilterIndex - filterIndex).tdiv(increment)
      filterIndex = filterIndex + coeffCount * increment
      dataIndex = @bCurrent + @channels * (1 + coeffCount)

      loop do
        fraction = fpToF64(filterIndex)
        idx = fpToInt(filterIndex)
        #RemiLib.assert(idx >= 0 && (idx + 1) < (@coeffHalfLen + 2))
        icoeff = @coeffs[idx].to_f64! + fraction * (@coeffs[idx + 1] - @coeffs[idx])
        #RemiLib.assert(dataIndex >= 0 && (dataIndex + 1) < @bLen)
        #RemiLib.assert("dataIndex = #{dataIndex}, bEnd: #{@bEnd}",
        #               (dataIndex + 1) < @bEnd)
        2.times do |ch|
          right[ch] += (icoeff * @buffer[dataIndex + ch])
        end

        filterIndex -= increment
        dataIndex = dataIndex - 2

        break unless filterIndex > 0
      end

      2.times do |ch|
        output[ch] = (scale * (left[ch] + right[ch])).to_f32!
      end
    end

    protected def variProcess(data : Data) : Nil
      samplesInHand : Int32 = 0
      floatIncrement : Float64 = 0.0
      startFilterIndex : Int32 = 0
      increment : Int32 = 0
      @inCount = data.inputFrames * @channels
      @outCount = data.outputFrames * @channels
      @inUsed = 0
      @outGen = 0

      ratio : Float64 = @lastRatio

      # Check the sample rate ratio wrt the buffer len.
      count : Float64 = (@coeffHalfLen + 2.0) / @indexInc
      if Math.min(@lastRatio, data.srcRatio) < 1.0
        count /= Math.min(@lastRatio, data.srcRatio)
      end

      # Maximum coefficients on either side of center point.
      halfFilterChanLen : Int32 = @channels * (count.round.to_i32! &+ 1)

      inputIndex : Float64 = @lastPosition

      rem : Float64 = fmodOne(inputIndex)
      @bCurrent = ((@bCurrent.to_i64! + @channels * (inputIndex - rem).round.to_i64!) % @bLen).to_i32!
      inputIndex = rem

      terminate : Float64 = 1.0 / ratio + 1e-20

      # Main processing loop.
      while @outGen < @outCount
        # Need to reload buffer?
        samplesInHand = (@bEnd - @bCurrent + @bLen) % @bLen

        if samplesInHand <= halfFilterChanLen
          prepareData(data, halfFilterChanLen)
          samplesInHand = (@bEnd - @bCurrent + @bLen) % @bLen
          break if samplesInHand <= halfFilterChanLen
        end

        # This is the termination condition.
        if @bRealEnd >= 0
          break if (@bCurrent + inputIndex + terminate) >= @bRealEnd
        end

        if @outCount > 0 && (@lastRatio - data.srcRatio).abs > 1e-10
          ratio = @lastRatio + @outGen * (data.srcRatio - @lastRatio) / @outCount
        end

        floatIncrement = @indexInc * (ratio < 1.0 ? ratio : 1.0)
        increment = toFp(floatIncrement)

        startFilterIndex = toFp(inputIndex * floatIncrement)

        calcOutput(increment, startFilterIndex, floatIncrement / @indexInc, data.dataOut[@outGen..])
        @outGen += 2

        # Figure out the next index.
        inputIndex += (1.0 / ratio)
        rem = fmodOne(inputIndex)

        @bCurrent = ((@bCurrent.to_i64! + @channels * (inputIndex - rem).round.to_i64!) % @bLen).to_i32!
        inputIndex = rem
      end

      @lastPosition = inputIndex

      # Save current ratio rather then target ratio.
      @lastRatio = ratio

      data.inputFramesUsed = @inUsed.tdiv(@channels)
      data.outputFramesGen = @outGen.tdiv(@channels)
    end
  end

  # # A callback version of the `SincResamplerStereo` class.
  class SincResamplerStereoCb < SincResamplerStereo
    include CallbackResampler

    private def initialize(@channels : Int32)
      @coeffs = [] of Float32
      @buffer = [] of Float32
      @quality = Quality::Fast
      @callbackFunc = ->{ {Slice(Float32).empty, 0i64} }
      raise NotImplementedError.new("Use initialize(Int32, Float64, CallbackProc)")
    end

    # Creates a new `SincResamplerStereoCb` that will operate at the given
    # `Quality`.  The *ratio* parameter sets the initial ratio of the resampler
    # (`targetRate / sourceRate`), while *callbackFunc* is the method that will
    # be called whenever this resampler needs more input data.
    def initialize(@quality : Quality, ratio : Float64, @callbackFunc : CallbackProc)
      @channels = 2
      case @quality
      in .fast?
        @coeffs = LibRASincTables.sinc_fast_coeffs.to_unsafe
        @coeffHalfLen = LibRASincTables.sinc_fast_coeffs_size.to_i32 - 2
        @indexInc = LibRASincTables.sinc_fast_coeffs_index_inc.to_i32
      in .medium?
        @coeffs = LibRASincTables.sinc_medium_coeffs.to_unsafe
        @coeffHalfLen = LibRASincTables.sinc_medium_coeffs_size.to_i32 - 2
        @indexInc = LibRASincTables.sinc_medium_coeffs_index_inc.to_i32
      in .best?
        @coeffs = LibRASincTables.sinc_best_coeffs.to_unsafe
        @coeffHalfLen = LibRASincTables.sinc_best_coeffs_size.to_i32 - 2
        @indexInc = LibRASincTables.sinc_best_coeffs_index_inc.to_i32
      end

      @bLen = 3 * ((@coeffHalfLen + 2.0) / @indexInc * SRC_MAX_RATIO + 1).round.to_i32!
      @bLen = Math.max(@bLen, 4096)
      @bLen *= @channels
      @bLen += 1

      @buffer = Array(Float32).new(@bLen * @channels, 0.0f32)

      reset

      @data.srcRatio = ratio
      self.ratio = ratio
    end

    # This is not supported by this class since `LinearResamplerCb` uses the
    # `CallbackResampler` mixin.  Calling this always raises a
    # `NotImplementedError`.
    def process(source : Array(Float32)|Slice(Float32), dest : Array(Float32)|Slice(Float32),
                ratio : Float64) : Tuple(Int64, Int64, Bool)
      raise NotImplementedError.new("Not supported by callback resamplers")
    end

    # :ditto:
    def process(source : Array(Float64)|Slice(Float64), dest : Array(Float64)|Slice(Float64),
                ratio : Float64) : Tuple(Int64, Int64, Bool)
      raise NotImplementedError.new("Not supported by callback resamplers")
    end

    protected def processData : Nil
      variProcess(@data)
    end

    # :inherit:
    def reset : Nil
      super
      @data.reset
    end
  end
end