1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
| #### RemiAudio
#### Copyright (C) 2022-2024 Remilia Scarlet <remilia@posteo.jp>
####
#### This program is free software: you can redistribute it and/or modify it
#### under the terms of the GNU Affero General Public License as published by
#### the Free Software Foundation, either version 3 of the License, or (at your
#### option) any later version.
####
#### This program is distributed in the hope that it will be useful, but WITHOUT
#### ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
#### FITNESS FOR A PARTICULAR PURPOSE. See the GNU Affero General Public
#### License for more details.
####
#### You should have received a copy of the GNU Affero General Public License
#### along with this program. If not, see <https://www.gnu.org/licenses/>.
module RemiAudio::DSP
# A mono parametric EQ.
#
# The first band is always a low shelf, and the last band is always a high
# shelf. The others are all normal peaking bands.
class ParaEQ
@bands : Array(BiQuadFilter)
# When true, this equalizer will process audio, otherwise it will pass any
# audio through unmodified.
property? active : Bool = true
# The sample rate of the equalizer.
getter sampleRate : Float64
# This internal value is a linear value, not decibels.
@postGain : Float64 = 1.0
# The default cutoff frequency for low shelf, in Hertz.
DEFAULT_LOW_SHELF_FREQ = 80.0
# The default bandwidth for band 0, in octaves.
DEFAULT_LOW_SHELF_WIDTH = 0.7071067811865475 # Butterworth-y, 1 / sqrt(2)
# The default cutoff frequency for the high shelf, in Hertz.
DEFAULT_HIGH_SHELF_FREQ = 15000.0
# The default bandwidth for the high shelf, in octaves.
DEFAULT_HIGH_SHELF_WIDTH = 0.7071067811865475 # Butterworth-y, 1 / sqrt(2)
# The default cutoff frequency for the peaking bands, in Hertz.
DEFAULT_PEAKING_FREQ = 500.0
# The default bandwidth for the peaking bands, as a Q value.
DEFAULT_PEAKING_Q = 1.0
# Creates a new parametric EQ. Bands 1 through numBands-2 are peaking
# bands, while bands 0 and numBands-1 are the shelves. numBands must be at
# least 2, and includes the lowshelf and highshelf.
def initialize(numBands, newSampleRate)
raise RemiAudioError.new("Invalid number of parametric EQ bands") if numBands < 2
@sampleRate = newSampleRate.to_f64!
@bands = Array(BiQuadFilter).new(numBands) { |_| BiQuadFilter.new(@sampleRate) }
# Low shelf
@bands[0].setLowShelf(DEFAULT_LOW_SHELF_FREQ, 0.001, DEFAULT_LOW_SHELF_WIDTH)
# Normal bands
(1...(numBands - 1)).each do |i|
@bands[i].setPeakingEQ(DEFAULT_PEAKING_FREQ, 0.001, DEFAULT_PEAKING_Q)
end
# High shelf
@bands[numBands - 1].setLowShelf(DEFAULT_HIGH_SHELF_FREQ, 0.001, DEFAULT_HIGH_SHELF_WIDTH)
end
# The amount of gain to apply after the EQ, in decibels.
def postGain : Float64
RemiAudio.linearToDecibels(@postGain)
end
# The amount of gain to apply after the EQ, in decibels.
def postGain=(value : Float64) : Nil
@postGain = RemiAudio.decibelsToLinear(value)
self.postGain
end
# Sets the frequency/band/width for the given band.
#
# If `freq` is greater than 49.9% of the sampling frequency, that band will
# be disabled.
def setBand(band : Int, freq : Float64, gain : Float64, width : Float64) : Nil
# ameba:disable Style/RedundantBegin
begin
case band
when 0 then @bands[band].setLowShelf(freq, gain, width)
when @bands.size - 1 then @bands[band].setHighShelf(freq, gain, width)
else @bands[band].setPeakingEQ(freq, gain, width)
end
rescue IndexError
raise RemiAudioError.new("Invalid parametric EQ band: #{band}")
end
end
# Processes a single sample of audio with the equalizer, returning a
# processed sample.
def process(sample : Float64) : Float64
if @active
@bands.each do |band|
sample = band.process(sample)
end
sample *= @postGain
end
sample
end
# :ditto:
@[AlwaysInline]
def process(sample : Float32) : Float32
self.process(sample.to_f64!).to_f32!
end
# Processes a block of audio with the equalizer.
def process(block : Array(Float64)|Slice(Float64)) : Nil
if @active
@bands.each do |band|
band.process(block) unless band.gain == 0
end
block.map!(&.*(@postGain))
end
end
# Resets all bands in the equalizer.
def reset : Nil
@bands.each &.reset
end
# Generates a string that can be passed to a program to plot this equalizer
# on a graph. The `PlotType` dictates what kind of script is generated.
def plot(pt : PlotType) : String
case pt
in .gnu_plot?
String.build do |str|
str << "# gnuplot file\n"
str << "set title '5-band Parametric Equalizer, sample rate: #{@sampleRate}'\n"
str << "set xlabel 'Frequency (Hz)'\n"
str << "set ylabel 'Amplitude Response (dB)'\n"
str << sprintf("Fs = %g\n", 44100.0)
str << "o = 2 * pi / Fs\n"
str << "set logscale x\n"
str << "set samples 250\n"
str << "set grid xtics ytics\n"
str << "set key off\n"
@bands.each_with_index do |band, idx|
# Run the plot method. We're only interested in the coefficients,
# and we're going to adjust them.
str << band.plot(RemiAudio::PlotType::GnuPlot, coeffsOnly: true).gsub(/([ab][012])/, "\\1_#{idx}")
str << '\n'
# We create a function for Gnuplot now. Normally the #plot method does this
# for when plotting a single filter. But we're combining filters, so we
# need to do it differently than #plot does.
str << "H_#{idx}(f) = "
str << "sqrt((b0_#{idx} * b0_#{idx} + b1_#{idx} * b1_#{idx} + b2_#{idx} * b2_#{idx} + 2.0 * " <<
"(b0_#{idx} * b1_#{idx} + b1_#{idx} * b2_#{idx}) * cos(f * o) + 2.0 * " <<
"(b0_#{idx} * b2_#{idx}) * cos(2.0 * f * o)) / " <<
"(1.0 + a1_#{idx} * a1_#{idx} + a2_#{idx} * a2_#{idx} + 2.0 * (a1_#{idx} + a1_#{idx} * a2_#{idx}) * " <<
"cos(f * o)+2.0 * a2_#{idx} * cos(2.0 * f * o)))\n"
end
# Now we make the main function. Again, this isn't needed when you just plot
# a single filter.
str << "H(f) = "
@bands.size.times { |x| str << "H_#{x}(f)#{x == @bands.size - 1 ? "\n" : " * "}" }
# Finish up
str << "plot [f=10 : Fs/2] [-35:25] 20 * log10(H(f))"
end
in .octave?
raise RemiAudioError.new("Plotting equalizers to GNU Octave not yet supported")
end
end
end
end
|