1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
| #### libremiliacr
#### Copyright(C) 2020-2024 Remilia Scarlet <remilia@posteo.jp>
####
#### This program is free software: you can redistribute it and/or modify
#### it under the terms of the GNU General Public License as published
#### the Free Software Foundation, either version 3 of the License, or
#### (at your option) any later version.
####
#### This program is distributed in the hope that it will be useful,
#### but WITHOUT ANY WARRANTY; without even the implied warranty of
#### MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.See the
#### GNU General Public License for more details.
####
#### You should have received a copy of the GNU General Public License
#### along with this program.If not, see<http:####www.gnu.org/licenses/.>
require "math"
require "big"
####
#### Extensions to the standard library.
####
# A convenience macro that is the as doing `(thing & flag) != 0`, but slightly
# cleaner looking.
macro bitflag?(thing, flag)
(({{thing}} & {{flag}}) != 0)
end
struct Time
UNIVERSAL_TIME_OFFSET = 2_208_988_800
# Returns the number of seconds since the beginning of the year 1900.
#
# [See the Common Lisp documentation on Universal Time](http://www.lispworks.com/documentation/HyperSpec/Body/26_glo_u.htm#universal_time)
def toUniversal : Int64
self.to_unix + UNIVERSAL_TIME_OFFSET
end
# Creates a new `Time` instance from the given universal time.
#
# [See the Common Lisp documentation on Universal Time](http://www.lispworks.com/documentation/HyperSpec/Body/26_glo_u.htm#universal_time)
def self.universal(seconds : Int64) : Time
self.unix(universalToUnix(seconds))
end
# Converts a universal time to a Unix time.
#
# [See the Common Lisp documentation on Universal Time](http://www.lispworks.com/documentation/HyperSpec/Body/26_glo_u.htm#universal_time)
def self.universalToUnix(sec : Int64) : Int64
sec - UNIVERSAL_TIME_OFFSET
end
# Converts a Unix time to a Universal time.
#
# [See the Common Lisp documentation on Universal Time](http://www.lispworks.com/documentation/HyperSpec/Body/26_glo_u.htm#universal_time)
def self.unixToUniversal(sec : Int64) : Int64
sec + UNIVERSAL_TIME_OFFSET
end
end
class ::Array(T)
# Returns a new `Slice` that contains the same elements as this array.
def toSlice : Slice(T)
ret = Slice(T).new(self.size)
self.to_unsafe.copy_to(ret.to_unsafe, self.size)
ret
end
end
struct ::Slice(T)
# Returns a new `Array` that contains the same elements as this slice.
def toArray : Array(T)
Array(T).new(self.size) do |i|
self.[i]
end
end
# Similar to `realloc()` in C. This returns a new `Slice` with the new
# requested size. The contents of `self` are copied over to the new `Slice`.
# If the new `Slice` is larger than `self`, then the new elements are set to
# `default`. If the new `Slice` is smaller, then only as many items as will
# fit are copied over.
#
# Internally, this is equivalent to either using `Slice#[range]` when the new
# size is smaller, `Slice#dup` when the sizes are the same, and
# `Slice#initialize` + `Slice#copy_from` when the new size is larger.
def realloc(newSize : Int32, default : T) : self
if newSize < self.size
# Just return a new slice
self[0...newSize]
elsif newSize == self.size
# Copy
self.dup
else
# Larger than self
ret = Slice(T).new(newSize, default)
ret.copy_from(self)
ret
end
end
end
abstract class ::IO
# Temporarily changes the stream position to `gotoHere`, then yields. This
# automatically returns to the position before calling this method before it
# returns.
#
# This only works for types that can get and set their position.
def withExcursion(gotoHere, &)
oldPos = self.pos
self.pos = gotoHere
yield
self.pos = oldPos
end
# Yields, then automatically returns to the position before calling this
# method before it returns.
#
# This only works for types that can get and set their position.
def withExcursion(&)
oldPos = self.pos
yield
self.pos = oldPos
end
# Reads *count* bytes into a `::Bytes` and returns the new `::Bytes`. If
# *count* bytes could not be read, this will return a `::Bytes` that is equal
# in length to the number of bytes actually read.
def self.readBytes(io : IO, count : Int) : Bytes
raise ::ArgumentError.new("Bad byte count") if count < 0
ret = Bytes.new(count)
numRead = io.read(ret)
if numRead == count
ret
else
ret[0...numRead]
end
end
# :ditto:
@[AlwaysInline]
def readBytes(count : Int) : Bytes
IO.readBytes(self, count)
end
# Reads a 24-bit signed little-endian integer from `io`.
@[AlwaysInline]
def self.readInt24(io : IO) : Int32
b1 = io.read_byte.try &.to_i32! || raise IO::EOFError.new("Could not read the first byte of a 24-bit int")
b2 = io.read_byte.try &.to_i32! || raise IO::EOFError.new("Could not read the second byte of a 24-bit int")
b3 = io.read_byte.try &.to_i32! || raise IO::EOFError.new("Could not read the third byte of a 24-bit int")
ret : Int32 = b3 << 16 | b2 << 8 | b1
ret |= ~0x7FFFFF if ret & 0x800000 != 0
ret
end
# Reads a 24-bit signed big-endian integer from `io`.
@[AlwaysInline]
def self.readInt24BE(io : IO) : Int32
b3 = io.read_byte.try &.to_i32! || raise IO::EOFError.new("Could not read the first byte of a 24-bit int")
b2 = io.read_byte.try &.to_i32! || raise IO::EOFError.new("Could not read the second byte of a 24-bit int")
b1 = io.read_byte.try &.to_i32! || raise IO::EOFError.new("Could not read the third byte of a 24-bit int")
ret : Int32 = b3 << 16 | b2 << 8 | b1
ret |= ~0x7FFFFF if ret & 0x800000 != 0
ret
end
# Reads a 24-bit signed little-endian integer from `io`.
@[AlwaysInline]
def readInt24
IO.readInt24(self)
end
# Reads a 24-bit signed big-endian integer from `io`.
@[AlwaysInline]
def readInt24BE
IO.readInt24BE(self)
end
# Writes `data` as a 24-bit signed little-endian integer. This does not check
# to see if `data` is within the range of a 24-bit integer and always writes
# it as 24-bits.
@[AlwaysInline]
def writeInt24(data : Int32)
write_byte((data & 0x0000FF).to_u8!)
write_byte(((data & 0x00FF00) >> 8).to_u8!)
write_byte(((data & 0xFF0000) >> 16).to_u8!)
end
# Writes `data` as a 24-bit signed big-endian integer. This does not check to
# see if `data` is within the range of a 24-bit integer and always writes it
# as 24-bits.
@[AlwaysInline]
def writeInt24BE(data : Int32)
write_byte(((data & 0xFF0000) >> 16).to_u8!)
write_byte(((data & 0x00FF00) >> 8).to_u8!)
write_byte((data & 0x0000FF).to_u8!)
end
###
### Convenience functions.
###
### These can all be accomplished with the standard library, but these names
### are a bit shorter to type.
###
# Convenience method to read a signed 8-bit byte from `io`. If the byte
# cannot be read, this will raise an `IO::EOFError`.
#
# This is the same as calling `io.read_byte.try &.to_i8! || raise IO::EOFError.new`,
# just shorter.
@[AlwaysInline]
def self.readInt8(io : IO) : Int8
io.read_byte.try &.to_i8! || raise IO::EOFError.new
end
# Convenience method to read a signed 8-bit byte. If the byte cannot be read,
# this will raise an `IO::EOFError`.
#
# This is the same as calling `io.read_byte.try &.to_i8! || raise IO::EOFError.new`,
# just shorter.
@[AlwaysInline]
def readInt8
IO.readInt8(self)
end
# Convenience method to write a signed 8-bit byte to `io`.
#
# This is the same as calling `io.write_byte(value.to_u8!)`, just shorter.
@[AlwaysInline]
def self.writeInt8(io : IO, value : Int8) : Nil
io.write_byte(value.to_u8!)
end
# Convenience method to write a signed 8-bit byte.
#
# This is the same as calling `io.write_byte(value.to_u8!)`, just shorter.
@[AlwaysInline]
def writeInt8(value : Int8) : Nil
self.write_byte(value.to_u8!)
end
# Convenience method to read an unsigned 8-bit byte from `io`. If the byte
# cannot be read, this will raise an `IO::EOFError`.
#
# This is the same as calling `io.read_byte || raise IO::EOFError.new`, just
# shorter.
@[AlwaysInline]
def self.readUInt8(io : IO) : UInt8
io.read_byte || raise IO::EOFError.new
end
# Convenience method to read an unsigned 8-bit byte. If the byte cannot be
# read, this will raise an `IO::EOFError`.
#
# This is the same as calling `io.read_byte || raise IO::EOFError.new`, just
# shorter.
@[AlwaysInline]
def readUInt8
IO.readUInt8(self)
end
# Convenience method to write an unsigned 8-bit byte to `io`.
#
# This is the same as calling `io.write_byte(value)` and is included for
# consistency.
@[AlwaysInline]
def self.writeUInt8(io : IO, value : UInt8) : Nil
io.write_byte(value)
end
# Convenience method to write an unsigned 8-bit byte.
#
# This is the same as calling `io.write_byte(value)` and is included
# for consistency.
@[AlwaysInline]
def writeUInt8(value : UInt8) : Nil
self.write_byte(value)
end
{% begin %}
{% classes = [Int16, UInt16, Int32, UInt32, Int64, UInt64, Int128, UInt128] %}
{% bits = [16, 16, 32, 32, 64, 64, 128, 128] %}
{% for i in 0...classes.size %}
# Convenience method to read a signed {{bits[i]}}-bit little-endian integer from `io`.
#
# This is the same as calling `io.read_bytes({{classes[i]}}, IO::ByteFormat::LittleEndian)`,
# just shorter.
@[AlwaysInline]
def self.read{{classes[i].id}}(io : IO) : {{classes[i].id}}
io.read_bytes({{classes[i].id}}, IO::ByteFormat::LittleEndian)
end
# Convenience method to read a signed {{bits[i]}}-bit big-endian integer from `io`.
#
# This is the same as calling `io.read_bytes({{classes[i].id}}, IO::ByteFormat::BigEndian)`,
# just shorter.
@[AlwaysInline]
def self.read{{classes[i].id}}BE(io : IO) : {{classes[i].id}}
io.read_bytes({{classes[i].id}}, IO::ByteFormat::BigEndian)
end
# Convenience method to read a signed {{bits[i]}}-bit little-endian integer.
#
# This is the same as calling `read_bytes({{classes[i].id}}, IO::ByteFormat::LittleEndian)`,
# just shorter.
@[AlwaysInline]
def read{{classes[i].id}}
IO.read{{classes[i].id}}(self)
end
# Convenience method to read a signed {{bits[i]}}-bit big-endian integer.
#
# This is the same as calling `read_bytes({{classes[i].id}}, IO::ByteFormat::BigEndian)`,
# just shorter.
@[AlwaysInline]
def read{{classes[i].id}}BE
IO.read{{classes[i].id}}BE(self)
end
# Convenience method to write a signed {{bits[i]}}-bit little-endian integer. This returns `self.
#
# This is the same as calling `write_bytes(value, IO::ByteFormat::LittleEndian)`,
# just shorter.
@[AlwaysInline]
def write{{classes[i].id}}(value : {{classes[i].id}}) : self
self.write_bytes(value, IO::ByteFormat::LittleEndian)
self
end
# Convenience method to write a signed {{bits[i]}}-bit big-endian integer. This returns `self.
#
# This is the same as calling `write_bytes(value, IO::ByteFormat::BigEndian)`,
# just shorter.
@[AlwaysInline]
def write{{classes[i].id}}BE(value : {{classes[i].id}}) : self
self.write_bytes(value, IO::ByteFormat::BigEndian)
self
end
{% end %}
{% end %}
# Convenience method to write a signed 32-bit little-endian float. This returns `self.
#
# This is the same as calling `write_bytes(value, IO::ByteFormat::LittleEndian)`,
# just shorter.
@[AlwaysInline]
def writeFloat32(value : Float32) : self
self.write_bytes(value, IO::ByteFormat::LittleEndian)
self
end
# Convenience method to write a signed 64-bit little-endian float. This returns `self.
#
# This is the same as calling `write_bytes(value, IO::ByteFormat::LittleEndian)`,
# just shorter.
@[AlwaysInline]
def writeFloat64(value : Float64) : self
self.write_bytes(value, IO::ByteFormat::LittleEndian)
self
end
# Convenience method to write a signed 32-bit big-endian float. This returns `self.
#
# This is the same as calling `write_bytes(value, IO::ByteFormat::BigEndian)`,
# just shorter.
@[AlwaysInline]
def writeFloat32BE(value : Float32) : self
self.write_bytes(value, IO::ByteFormat::BigEndian)
self
end
# Convenience method to write a signed 64-bit big-endian float. This returns `self.
#
# This is the same as calling `write_bytes(value, IO::ByteFormat::BigEndian)`,
# just shorter.
@[AlwaysInline]
def writeFloat64BE(value : Float64) : self
self.write_bytes(value, IO::ByteFormat::BigEndian)
self
end
# Convenience method to read a 32-bit little-endian floating point number from `io`.
#
# This is the same as calling `io.read_bytes(Float32, IO::ByteFormat::LittleEndian)`,
# just shorter.
@[AlwaysInline]
def self.readFloat32(io : IO) : Float32
io.read_bytes(Float32, IO::ByteFormat::LittleEndian)
end
# Convenience method to read a 32-bit big-endian floating point number from `io`.
#
# This is the same as calling `io.read_bytes(Float32, IO::ByteFormat::BigEndian)`,
# just shorter.
@[AlwaysInline]
def self.readFloat32BE(io : IO) : Float32
io.read_bytes(Float32, IO::ByteFormat::BigEndian)
end
# Convenience method to read a 32-bit little-endian floating point number.
#
# This is the same as calling `io.read_bytes(Float32, IO::ByteFormat::LittleEndian)`,
# just shorter.
@[AlwaysInline]
def readFloat32
IO.readFloat32(self)
end
# Convenience method to read a 32-bit big-endian floating point number.
#
# This is the same as calling `io.read_bytes(Float32, IO::ByteFormat::BigEndian)`,
# just shorter.
@[AlwaysInline]
def readFloat32BE
IO.readFloat32BE(self)
end
# Convenience method to read a 64-bit little-endian floating point number from `io`.
#
# This is the same as calling `io.read_bytes(Float64, IO::ByteFormat::LittleEndian)`,
# just shorter.
@[AlwaysInline]
def self.readFloat64(io : IO) : Float64
io.read_bytes(Float64, IO::ByteFormat::LittleEndian)
end
# Convenience method to read a 64-bit big-endian floating point number from `io`.
#
# This is the same as calling `io.read_bytes(Float64, IO::ByteFormat::BigEndian)`,
# just shorter.
@[AlwaysInline]
def self.readFloat64BE(io : IO) : Float64
io.read_bytes(Float64, IO::ByteFormat::LittleEndian)
end
# Convenience method to read a 64-bit little-endian floating point number.
#
# This is the same as calling `io.read_bytes(Float64, IO::ByteFormat::LittleEndian)`,
# just shorter.
@[AlwaysInline]
def readFloat64
IO.readFloat64(self)
end
# Convenience method to read a 64-bit big-endian floating point number.
#
# This is the same as calling `io.read_bytes(Float64, IO::ByteFormat::BigEndian)`,
# just shorter.
@[AlwaysInline]
def readFloat64BE
IO.readFloat64BE(self)
end
end
module RemiLib
# :nodoc:
PRETTY_SIZE_SUFFIXES = [
"Bytes", "KiB", "MiB", "GiB", "TiB", "PiB", "EiB", "ZiB", "YiB"
]
PRETTY_SIZE_SUFFIXES_SHORT = [
"B", "K", "M", "G", "T", "P", "E", "Z", "Y"
]
end
struct ::Int
# Similar to `Int#humanize_bytes`, except that this always uses
# `Int::BinaryPrefixFormat::JEDEC` for the format, and formats numbers
# slightly differently.
#
# If `alwaysShowAsBytes` is true, then this will always show the size as
# bytes.
#
# `separator` is used for the decimal separator. `delimiter` is used only
# when `alwaysShowAsBytes` is true, and is used as the thousands delimiter.
#
# `padding` instances of `padChar` will be inserted to the left of the
# formatted size if `padding` is positive. If it's negative, then that many
# instances of `padChar` will be inserted to the right of the formatted size.
def prettySize(*, alwaysShowAsBytes : Bool = false, decimalPlaces : Int = 2, separator : Char = '.',
delimiter : Char = ',', padding : Int = 0, padChar : Char = ' ', shortSuffix : Bool = false) : String
String.build do |str|
self.prettySize(str, alwaysShowAsBytes: alwaysShowAsBytes, decimalPlaces: decimalPlaces, separator: separator,
delimiter: delimiter, padding: padding, padChar: padChar,
shortSuffix: shortSuffix)
end
end
def prettySize(io : IO, *, alwaysShowAsBytes : Bool = false, decimalPlaces : Int = 2, separator : Char = '.',
delimiter : Char = ',', padding : Int = 0, padChar : Char = ' ', shortSuffix : Bool = false) : Nil
if padding > 0
padding.times { |_| io << padChar }
end
if alwaysShowAsBytes
self.format(io, separator, delimiter, only_significant: false)
io << (shortSuffix ? " B" : " Bytes")
else
mag : Int128 = if self > 0
Math.log(self, 1024).to_i128!
elsif self < 0
Math.log(self.abs, 1024).to_i128!
else
0i128
end
humanSize : Float64 = if self > 0
self.to_i128! / (1u128 << (mag * 10))
elsif self < 0
-(self.abs.to_i128! / (1u128 << (mag * 10)))
else
0.0f64
end
if mag == 0
self.format(io, separator, delimiter, only_significant: false)
io << (shortSuffix ? " B" : " Bytes")
elsif decimalPlaces == 0
humanSize.to_i.format(io, separator, delimiter, only_significant: true)
io << ' ' << (shortSuffix ? RemiLib::PRETTY_SIZE_SUFFIXES_SHORT[mag] :
RemiLib::PRETTY_SIZE_SUFFIXES[mag])
else
humanSize.format(io, separator, delimiter, decimalPlaces, only_significant: false)
io << ' ' << (shortSuffix ? RemiLib::PRETTY_SIZE_SUFFIXES_SHORT[mag] :
RemiLib::PRETTY_SIZE_SUFFIXES[mag])
end
end
if padding < 0
padding.abs.times { |_| io << padChar }
end
end
ROMAN_NUMERALS = [
{1000, "M"},
{900, "CM"},
{500, "D"},
{400, "CD"},
{100, "C"},
{90, "XC"},
{50, "L"},
{40, "XL"},
{10, "X"},
{9, "IX"},
{5, "V"},
{4, "IV"},
{1, "I"}]
ENGLISH_NUMBERS = {
0 => "zero",
1 => "one",
2 => "two",
3 => "three",
4 => "four",
5 => "five",
6 => "six",
7 => "seven",
8 => "eight",
9 => "nine",
10 => "ten",
11 => "eleven",
12 => "twelve",
13 => "thirteen",
14 => "fourteen",
15 => "fifteen",
16 => "sixteen",
17 => "seventeen",
18 => "eighteen",
19 => "nineteen",
20 => "twenty",
30 => "thirty",
40 => "forty",
50 => "fifty",
60 => "sixty",
70 => "seventy",
80 => "eighty",
90 => "ninety"
}.to_h
# Converts this number to a Roman numeral. Only values between 1
# and 3999, inclusive, are supported, otherwise an `ArgumentError`
# is raised.
def toRoman : String
unless self > 0 && self < 4000
raise ArgumentError.new("Cannot represent number as a roman numeral: #{self}")
end
self.toRoman? || raise "Unexpected nil from #toRoman?"
end
# Converts this number to a Roman numeral. Only values between 1
# and 3999, inclusive, are supported, otherwise this returns `nil`.
def toRoman? : String?
# Adapted from https://github.com/jkfurtney/clformat
unless self > 0 && self < 4000
return nil
end
i = self
String.build do |str|
ROMAN_NUMERALS.each do |num|
count = i // num[0]
str << num[1] * count
i -= num[0] * count
end
end
end
# :nodoc:
ONE_DUODECILLION = BigInt.new("1000000000000000000000000000000000000000")
# :nodoc:
ONE_TREDECILLION = BigInt.new("1000000000000000000000000000000000000000000")
# Converts a number into a string such that it appears as English words. For
# example, 100 would return `"one hundred"`.
@[AlwaysInline]
def positiveSpokenNumber : String
Int.positiveSpokenNumber(self)
end
# :ditto:
def self.positiveSpokenNumber(num) : String
# Adapted from https://github.com/jkfurtney/clformat
# Try to early out
return ENGLISH_NUMBERS[num] if ENGLISH_NUMBERS[num]?
raise "ENGLISH_NUMBERS check failed" if num <= 20
rem = 0
String.build do |str|
{% begin %}
case
when num < 100
str << positiveSpokenNumber((num // 10) * 10) << '-' << positiveSpokenNumber(num % 10)
{% if @type != Int8 && @type != UInt8 %}
when num < 1000
str << positiveSpokenNumber(num // 100) << ' ' << "hundred "
rem = num % 100
when num < 1000000
str << positiveSpokenNumber(num // 1000) << ' ' << "thousand"
rem = num % 1000
when num < 1000000000
str << positiveSpokenNumber(num // 1000000) << ' ' << "million"
rem = num % 1000000
when num < 1000000000000
str << positiveSpokenNumber(num // 1000000000) << ' ' << "billion"
rem = num % 1000000000
{% if @type != Int16 && @type != UInt16 %}
when num < 1000000000000000
str << positiveSpokenNumber(num // 1000000000000) << ' ' << "trillion"
rem = num % 1000000000000
when num < 1000000000000000000
str << positiveSpokenNumber(num // 1000000000000000) << ' ' << "quadrillion"
rem = num % 1000000000000000
when num < 1000000000000000000000_i128
str << positiveSpokenNumber(num // 1000000000000000000_i128) << ' ' << "quintillion"
rem = num % 1000000000000000000_i128
{% if @type != Int32 && @type != UInt32 %}
when num < 1000000000000000000000000_i128
str << positiveSpokenNumber(num // 1000000000000000000000_i128) << ' ' << "sextillion"
rem = num % 1000000000000000000000_i128
when num < 1000000000000000000000000000_i128
str << positiveSpokenNumber(num // 1000000000000000000000000_i128) << ' ' << "septillion"
rem = num % 1000000000000000000000000_i128
when num < 1000000000000000000000000000000_i128
str << positiveSpokenNumber(num // 1000000000000000000000000000_i128) << ' ' << "octillion"
rem = num % 1000000000000000000000000000_i128
when num < 1000000000000000000000000000000000_i128
str << positiveSpokenNumber(num // 1000000000000000000000000000000_i128) << ' ' << "nonillion"
rem = num % 1000000000000000000000000000000_i128
when num < 1000000000000000000000000000000000000_i128
str << positiveSpokenNumber(num // 1000000000000000000000000000000000_i128) << ' ' << "decillion"
rem = num % 1000000000000000000000000000000000_i128
{% if @type != Int64 && @type != UInt64 %}
when num < ONE_DUODECILLION
str << positiveSpokenNumber(num // 1000000000000000000000000000000000000_i128) << ' ' << "undecillion"
rem = num % 1000000000000000000000000000000000000_i128
{% if BigFloat.has_method?(:to_i128) %}
when num < ONE_TREDECILLION
str << positiveSpokenNumber(num // ONE_DUODECILLION) << ' ' << "duodecillion"
rem = num % ONE_DUODECILLION
{% end %}
{% end %}
{% end %}
{% end %}
{% end %}
else
raise ArgumentError.new("Number cannot be represented as an English number")
end
{% end %}
unless rem == 0
str << (rem >= 100 ? ", " : "") << positiveSpokenNumber(rem)
end
end
end
def toSpoken : String
{% begin %}
{% if @type != UInt8 && @type != UInt16 && @type != UInt32 && @type != UInt64 && @type != UInt128 %}
if self < 0
return "minus #{Int.positiveSpokenNumber(-self)}"
end
{% end %}
{% end %}
Int.positiveSpokenNumber(self)
end
end
{% begin %}
{% classes = [::Int8, ::UInt8, ::Int16, ::UInt16, ::Int32, ::UInt32, ::Int64, ::UInt64, ::Int128, ::UInt128] %}
{% bitSizes = [8, 8, 16, 16, 32, 32, 64, 64, 128, 128] %}
{% for i in 0...classes.size %}
struct {{classes[i]}}
# Returns the number of zero bits in the number before a 1 bit is encountered.
def numLeadingZeros : Int
total = 0
{{bitSizes[i] - 1}}.downto(0) do |i|
if self.bit(i) == 0
total += 1
else
break
end
end
total
end
# Returns the number of one bits in the number before a 0 bit is encountered.
def numLeadingOnes : Int
total = 0
{{bitSizes[i] - 1}}.downto(0) do |i|
if self.bit(i) == 1
total += 1
else
break
end
end
total
end
end
{% end %}
{% end %}
{% begin %}
{% classes = [::Int8, ::UInt8, ::Int16, ::UInt16, ::Int32, ::UInt32, ::Int64, ::UInt64, ::Int128, ::UInt128] %}
{% maskSuffixes = [:_u8, :_u8, :_u16, :_u16, :_u32, :_u32, :_u64, :_u64, :_u128, :_u128] %}
{% retClasses = [Union(::Int8, ::UInt8), Union(::Int16, ::UInt16), Union(::Int32, ::UInt32),
Union(::Int64, ::UInt64), Union(::Int128, ::UInt128)] %}
{% bitSizes = [8, 8, 16, 16, 32, 32, 64, 64, 128, 128] %}
{% for i in 0...classes.size %}
struct {{classes[i]}}
# Converts this integer to a number that is `bits` bits wide. If
# `asUnsigned` is `true`, then the converted value is converted into an
# unsigned integer of `bits` size, otherwise it is converted to a
# twos-complement signed integer of `bits` size.
#
# `bits` must be at least 1. If `bits` is greater than or equal to the
# size of `self` in bits, then `self` is simply returned (possibly
# converted to an unsigned version if `asUnsigned` is `true`).
def asBitSize(bits : Int, asUnsigned : Bool = false) : {{retClasses[i // 2]}}
# Check the requested bit size.
if bits <= 0
raise ArgumentError.new("Bad bit size for an integer of #{ {{bitSizes[i]}} } bits")
elsif bits >= {{bitSizes[i]}}
if asUnsigned
return self.to_u{{bitSizes[i]}}!
else
return self.to_i{{bitSizes[i]}}!
end
end
# (logand x (logior x (- (mask-field (byte 1 (1- bit-size)) x))))
mask = ((2{{maskSuffixes[i].id}} << (bits - 1)) - 1)
ret = self.to_u{{bitSizes[i]}}! & mask
if asUnsigned
ret
else
if ret.bit(bits - 1) == 0
ret.to_i{{bitSizes[i]}}
else
retMask = -{{bitSizes[i]}}.to_u{{bitSizes[i]}}! & ~mask
(ret | retMask).to_i{{bitSizes[i]}}!
end
end
end
end
{% end %}
{% end %}
class File
# Creates a file at *path* that is *size* bytes large, filled entirely with
# zeros.
def self.createEmpty(path : String|Path, size : Int) : Nil
File.open(path, "wb") do |file|
if size > 0
file.seek((size - 1).to_i64, File::Seek::Set)
file.write_byte(0)
file.flush
end
end
end
end
{% begin %}
{% if compare_versions(Crystal::VERSION, "1.7.0") < 0 %}
{% puts "Monkey patching byte_swap into the integer classes" %}
{% classes = [::Int16, ::UInt16, ::Int32, ::UInt32, ::Int64, ::UInt64, ::Int128, ::UInt128] %}
{% sizes = [2, 2, 4, 4, 8, 8, 16, 16] %}
{% for klass in 0...classes.size %}
struct {{classes[klass]}}
# Swaps the bytes of self; a little-endian value becomes a big-endian
# value, and vice-versa. The bit order within each byte is unchanged.
def byte_swap : self
{% for i in 0...sizes[klass] %}
b{{i}} = (self & {{0xFF << (8 * i)}}) >> {{8 * i}}
{% end %}
{% for i in 0...sizes[klass] %}
(b{{i}} << {{8 * ((sizes[klass] - 1) - i)}}) |
{% end %}
0
end
end
{% end %}
{% end %}
{% end %}
|