1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
| #### libremiliacr
#### Copyright(C) 2020-2024 Remilia Scarlet <remilia@posteo.jp>
####
#### This program is free software: you can redistribute it and/or modify
#### it under the terms of the GNU General Public License as published
#### the Free Software Foundation, either version 3 of the License, or
#### (at your option) any later version.
####
#### This program is distributed in the hope that it will be useful,
#### but WITHOUT ANY WARRANTY; without even the implied warranty of
#### MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.See the
#### GNU General Public License for more details.
####
#### You should have received a copy of the GNU General Public License
#### along with this program.If not, see<http:####www.gnu.org/licenses/.>
require "./xxhash/*"
####
#### xxHash Implementation, public interface.
####
#### Remi: xxHash is meant to be a very fast hash. As such, the internal
#### implementations (in the xxhash/ directory, and the streaming
#### implementations below) use a lot of unsafe operations to save every last
#### cycle.
####
###=============================================================================
###
### xxHash XXH3 Algorithm (64-bit)
###
# An implementation of xxHash that produces 64-bit hashes using the XXH3
# algorithm.
class RemiLib::Digest::XXHash3
# Creates a new `XXHash3` instance.
private def initialize
end
# Calculates the hash for *buf* and returns it.
def self.calculate(buf : Bytes|Array(UInt8), seed : UInt64 = 0) : UInt64
slc = case buf
when Bytes then buf
else Slice(UInt8).new(buf.to_unsafe, buf.size)
end
getHash(slc, seed)
end
# Internal driver.
@[AlwaysInline]
private def self.getHash(input : Bytes, seed : UInt64) : UInt64
secret = Slice(UInt8).new(XXH3_SECRET.to_unsafe, XXH3_SECRET.size)
xxh64BitsInternal(input, seed, secret)
end
end
###=============================================================================
###
### xxHash XXH64 Algorithm
###
# An implementation of xxHash that produces 64-bit hashes using the XXH64
# algorithm.
class RemiLib::Digest::XXHash64
# Total length hashed. This is always 64-bit.
@totalLen : UInt64 = 0
# Accumulator lanes
@v1 : UInt64 = 0
@v2 : UInt64 = 0
@v3 : UInt64 = 0
@v4 : UInt64 = 0
# Internal buffer for partial reads. Treated as an Slice(UInt8) of 32
# elements.
@mem : Slice(UInt64) = Slice(UInt64).new(4, 0u64)
# Amount of data in @mem.
@memSize : UInt64 = 0
# Last computed hash.
@hash : UInt64? = nil
# Creates a new `XXHash64` instance that can be used to incrementally compute
# hashes.
def initialize(@seed : UInt64 = 0)
reset(@seed)
end
# Updates the current running hash using the bytes in *buffer*.
def update(buffer : Bytes|Array(UInt8)) : Nil
# Remi: This is actually taken from the original C code. See
# XXH64_update().
return if buffer.empty?
@hash = nil
len = buffer.size
inputPtr : PUInt8 = buffer.to_unsafe
finish : PUInt8 = inputPtr + len
memPtr : PUInt64 = @mem.to_unsafe
@totalLen = @totalLen &+ len
if @memSize &+ len < 32
# Fill in temp buffer.
(memPtr.unsafe_as(PUInt8) + @memSize).copy_from(inputPtr, len)
@memSize = @memSize &+ len
return
end
if @memSize != 0
# Temp buffer is full.
(memPtr.unsafe_as(PUInt8) + @memSize).copy_from(inputPtr, 32 &- @memSize)
{% for i in 1..4 %}
@v{{i}} = XXHash64.round(@v{{i}}, XXHash64.readLE64((memPtr + {{i - 1}}).unsafe_as(PUInt8)))
{% end %}
inputPtr += 32 &- @memSize
@memSize = 0
end
if (inputPtr + 32) <= finish
limit : PUInt8 = finish - 32
loop do
{% for i in 1..4 %}
@v{{i}} = XXHash64.round(@v{{i}}, XXHash64.readLE64(inputPtr))
inputPtr += 8
{% end %}
break unless inputPtr <= limit
end
end
if inputPtr < finish
memPtr.unsafe_as(PUInt8).copy_from(inputPtr, finish - inputPtr)
@memSize = (finish - inputPtr).to_u64!
end
end
# Returns the current hash value.
def hash : UInt64
# If we have a hash memoized, just return it.
@hash.try { |h| return h }
h64 : UInt64 = 0
if @totalLen >= 32
h64 = XXHash64.rotl64(@v1, 1) &+
XXHash64.rotl64(@v2, 7) &+
XXHash64.rotl64(@v3, 12) &+
XXHash64.rotl64(@v4, 18)
{% for i in 1..4 %}
h64 = XXHash64.mergeRound(h64, @v{{i}})
{% end %}
else
h64 = @seed &+ XXH_PRIME64_5
end
h64 = h64 &+ @totalLen
@hash = XXHash64.xxhFinalize(h64, @mem.to_unsafe.unsafe_as(PUInt8), @totalLen)
@hash.not_nil!
end
# Resets this instance to its initial state. This can also be used to change
# the seed that is used.
def reset(@seed : UInt64 = 0) : Nil
@v1 = @seed &+ XXH_PRIME64_1 &+ XXH_PRIME64_2
@v2 = @seed &+ XXH_PRIME64_2
@v3 = @seed
@v4 = @seed &- XXH_PRIME64_1
@totalLen = 0
@mem.fill(0u64)
@memSize = 0
@hash = nil
end
# Calculates the hash by reading from *io* until the end of the stream, then
# returns the calculated hash.
def self.calculate(io : IO, bufSize : Int = 4096) : UInt64
hasher = RemiLib::Digest::XXHash64.new
buf = Slice(UInt8).new(4096, 0u8)
while (numRead = io.read(buf)) > 0
hasher.update(buf[...numRead])
end
hasher.hash
end
# Internal driver.
@[AlwaysInline]
private def self.getHash(input : Bytes, seed : UInt64) : UInt64
xxh64(input, seed)
end
# Calculates the hash for *buf* and returns it.
def self.calculate(buf : Bytes|Array(UInt8), seed : UInt64 = 0)
slc = case buf
when Bytes then buf
else Slice(UInt8).new(buf.to_unsafe, buf.size)
end
getHash(slc, seed)
end
end
###=============================================================================
###
### xxHash XXH32 Algorithm
###
# An implementation of xxHash that produces 32-bit hashes using the XXH32
# algorithm.
class RemiLib::Digest::XXHash32
# Total length hashed, modulo 2^32
@totalLen : UInt32 = 0
# Whether the hash is >= 16 (handles @totalLen overflow)
@largeLen : UInt32 = 0
# Accumulator lanes
@v1 : UInt32 = 0
@v2 : UInt32 = 0
@v3 : UInt32 = 0
@v4 : UInt32 = 0
# Internal buffer for partial reads. Treated as an Slice(UInt8) of 16
# elements.
@mem32 : Slice(UInt32) = Slice(UInt32).new(4, 0u32)
# Amount of data in @mem32.
@memSize : UInt32 = 0
# Last computed hash.
@hash : UInt32? = nil
# Creates a new `XXHash32` instance that can be used to incrementally compute
# hashes.
def initialize(@seed : UInt32 = 0)
reset(@seed)
end
# Updates the current running hash using the bytes in *buffer*.
def update(buffer : Bytes|Array(UInt8)) : Nil
# Remi: This is actually taken from the original C code. See
# XXH32_update().
return if buffer.empty?
@hash = nil
len = buffer.size
inputPtr : PUInt8 = buffer.to_unsafe
finish : PUInt8 = inputPtr + len
mem32Ptr : PUInt32 = @mem32.to_unsafe
@totalLen = @totalLen &+ len
@largeLen |= ((len >= 16 ? 1u32 : 0u32) | (@totalLen >= 16 ? 1u32 : 0u32))
if @memSize + len < 16
# Fill in the temp buffer.
(mem32Ptr.unsafe_as(PUInt8) + @memSize).copy_from(inputPtr, len)
@memSize = @memSize &+ len
return
end
if @memSize != 0
# There is some data left from the previous update.
(mem32Ptr.unsafe_as(PUInt8) + @memSize).copy_from(inputPtr, 16 &- @memSize)
p32 : PUInt8 = mem32Ptr.unsafe_as(PUInt8)
{% for i in 1..4 %}
@v{{i}} = XXHash32.round(@v{{i}}, XXHash32.readLE32(p32))
p32 += 4
{% end %}
inputPtr += 16 &- @memSize
@memSize = 0
end
if inputPtr <= (finish - 16)
limit : PUInt8 = finish - 16
loop do
{% for i in 1..4 %}
@v{{i}} = XXHash32.round(@v{{i}}, XXHash32.readLE32(inputPtr))
inputPtr += 4
{% end %}
break unless inputPtr <= limit
end
end
if inputPtr < finish
mem32Ptr.unsafe_as(PUInt8).copy_from(inputPtr, finish - inputPtr)
@memSize = (finish - inputPtr).to_u32!
end
end
# Returns the current hash value.
def hash : UInt32
# If we have a hash memoized, just return it.
@hash.try { |h| return h }
h32 : UInt32 = if @largeLen != 0
XXHash32.rotl32(@v1, 1) &+
XXHash32.rotl32(@v2, 7) &+
XXHash32.rotl32(@v3, 12) &+
XXHash32.rotl32(@v4, 18)
else
@seed &+ XXH_PRIME32_5
end
h32 = h32 &+ @totalLen
@hash = XXHash32.xxhFinalize(h32, @mem32.to_unsafe.unsafe_as(PUInt8), @memSize)
@hash.not_nil!
end
# Resets this instance to its initial state. This can also be used to change
# the seed that is used.
def reset(@seed : UInt32 = 0) : Nil
@v1 = @seed &+ XXH_PRIME32_1 &+ XXH_PRIME32_2
@v2 = @seed &+ XXH_PRIME32_2
@v3 = @seed
@v4 = @seed &- XXH_PRIME32_1
@totalLen = 0
@largeLen = 0
@mem32.fill(0u32)
@memSize = 0
@hash = nil
end
# Calculates the hash for *buf* and returns it.
def self.calculate(buf : Bytes|Array(UInt8), seed : UInt32 = 0)
slc = case buf
when Bytes then buf
else Slice(UInt8).new(buf.to_unsafe, buf.size)
end
getHash(slc, seed)
end
# Calculates the hash by reading from *io* until the end of the stream, then
# returns the calculated hash.
def self.calculate(io : IO, bufSize : Int = 4096) : UInt32
hasher = RemiLib::Digest::XXHash32.new
buf = Slice(UInt8).new(4096, 0u8)
while (numRead = io.read(buf)) > 0
hasher.update(buf[...numRead])
end
hasher.hash
end
# Internal driver.
@[AlwaysInline]
private def self.getHash(input : Bytes, seed : UInt32) : UInt32
xxh32(input, seed)
end
end
###=============================================================================
###
### xxHash XXH3 Algorithm (128-bit)
###
# An implementation of xxHash that produces 128-bit hashes using the XXH3
# algorithm.
class RemiLib::Digest::XXHash128
# Creates a new `XXHash128` instance.
private def initialize
end
# Calculates the hash for *buf* and returns it.
def self.calculate(buf : Bytes|Array(UInt8), seed : UInt64 = 0) : UInt128
slc = case buf
when Bytes then buf
else Slice(UInt8).new(buf.to_unsafe, buf.size)
end
getHash(slc, seed)
end
# Internal driver.
@[AlwaysInline]
private def self.getHash(input : Bytes, seed : UInt64) : UInt128
secret = Slice(UInt8).new(XXH3_SECRET.to_unsafe, XXH3_SECRET.size)
xxh3Internal128Bit(input, seed, secret)
end
end
|