<A NAME=STIRLING1>
<TITLE>STIRLING1</TITLE></A>
<b><a href=r37_idx.html>INDEX</a></b><p><p>
<B>STIRLING1</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>operator</B><P>
<P>
The <em>Stirling1</em> operator returns the Stirling Numbers S(n,m) of the first
kind, i.e. the number of permutations of n symbols which have exactly m cycles
(divided by (-1)**(n-m)).
<P>
<P>
<P> <H3>
syntax: </H3>
<em>Stirling1</em>(<integer>,<integer>)
<P>
<P>
<P>
<P> <H3>
examples: </H3>
<P><PRE><TT>
Stirling1 (17,4);
-87077748875904
Stirling1 (n,n-1);
-gamma(n+1)
-------------
2*gamma(n-1)
</TT></PRE><P>The operator <em>Stirling1</em> evaluates the Stirling numbers of
the
first kind by rulesets for special cases or by a computing the closed
form, which is a series involving the operators
<A HREF=r37_0520.html>BINOMIAL</A>
and
<A HREF=r37_0522.html>STIRLING2</A>.
<P>
<P>
<P>