File r37/packages/crack/conlaw1.red artifact 380114db79 part of check-in aacf49ddfa


comment paralist, found, solns, plcopy, parti_fn
;


%      CONLAW version 1, to calculate conservation laws of systems
%              of PDEs by calculating the conserved currents

%                   by Thomas Wolf, September 1997

%----------------------------------------------------------------------

symbolic fluid '(print_ logoprint_ potint_ facint_ adjust_fnc)$ 

%-------------

algebraic procedure conlaw1(problem,runmode)$
begin
  scalar contrace,eqlist,ulist,xlist,dequ,cllist,pllist,
  sb,densord,flist,eqord,maxord,dulist,revdulist,vl,expl,
  deplist,e1,e2,e3,n,h1,h2,h3,h4,h5,h6,h7,h8,h9,h10,condi,
  soln,soln2,adjust_old,potold,adjustold,udens,gensepold,
  inequ0,inequ,logoold,treqlist,fl,fl2,facold,u,lhslist,
  cpu,gc,cpustart,gcstart,found,cf0,rtnlist,deglist,maxdf,
  qlist,extraorder,nx,nde,highdensord,print_old,paralist,
  plcopy,desyli,ddesyli,vl1,lhsord,loworderlimit,extraline,
  rules;

  lisp <<adjustold:=adjust_fnc; adjust_fnc:=t;
	 logoold:=logoprint_;   logoprint_:=t;
	 potold:=potint_;       potint_:=t;
	 facold:=facint_;       facint_:=1000>>;

  cpustart:=lisp time()$ gcstart:=lisp gctime()$
% contrace:=t;

  %--- extracting input data
  eqlist:= maklist first problem;
  ulist := maklist second problem;
  xlist := maklist third problem;
  nx:=length xlist;
  nde:=length eqlist;
  if contrace then write"eqlist=",eqlist,
  " ulist=",ulist," xlist=",xlist;

  mindensord:=part(runmode,1)$
  maxdensord:=part(runmode,2)$
  expl      :=part(runmode,3)$
  flist     :=part(runmode,4)$
  inequ0    :=part(runmode,5)$
  problem:=runmode:=0;

  %--- initial printout
  lisp(if logoprint_ then <<terpri()$
    write "--------------------------------------------------",
    "------------------------"$ terpri()$terpri()$
    write "This is CONLAW1 - a program for calculating conservation",
    " laws of DEs"; terpri()
  >>                 else terpri());
  if nde = 1 
  then write "The DE under investigation is :"
  else write "The DEs under investigation are :";
  for each e1 in eqlist do write e1;
  write "for the function(s): ",ulist;
  write"======================================================"$

  %--- lhslist is the list of derivatives to substitute
  %--- is needed in order not to let the P depend on them and their deriv.s
  lhslist:={};
  for each h1 in eqlist do lhslist:=cons(lhs h1,lhslist);

  %--- bringing eqlist and ulist in line
  h1:={};  h2:={};
  if nde neq length ulist then n:=t else
  for each e1 in eqlist do <<
    e2:=part(lhs e1,1);
    if freeof(ulist,e2) then n:=t
			else h1:=cons(e2,h1);
    h2:=cons(lhs e1 - rhs e1, h2)
  >>;

  if n then
  rederr("The lists of equations and functions are not consistent!")
       else <<ulist:=h1; eqlist:=h2>>;

  if contrace then write"ulist=",ulist,"    eqlist=",eqlist;

  %--- initializations to be done only once
  rtnlist:={};
  deglist:={};

  %------ the list of parameters of the equation to be determined
  paralist:={};
  for each e1 in flist do
  if not freeof(eqlist,e1) then paralist:=cons(e1,paralist);

  %------ determination of the order of the input equations
  eqord:=0;       % the max. degree of any equation
  extraorder:=0;  % increase of order through substitution
  lhsord:=0;      % max. order of an lhs
  for e1:=1:nde do <<
    e3:=part(eqlist,e1);
    h2:=0; % degree of this equation
    h3:=totdeg(part(lhslist,e1),part(ulist,e1));
    if h3>lhsord then lhsord:=h3;
    for each e2 in ulist do <<
      h1:=totdeg(e3,e2);
      if h1>h2 then h2:=h1;
      if h1>eqord then eqord:=h1;
    >>;
    deglist:=cons(h2,deglist);
    if h2>h3 then extraorder:=extraorder+h2-h3;
  >>;
  deglist:=reverse deglist;

  %------ determination of the order of the ansatz
  for n:=1:nx do <<
    % if the index of p_ should be a number then use n instead of h4
    h4:=lisp(reval algebraic(part(xlist,n)));
    h1:=mkid(p_,h4);
    if not lisp(null get(mkid('p_,h4),'avalue)) then <<
      for each e2 in ulist do <<
        h2:=totdeg(h1,e2);
        if h2>eqord then eqord:=h2;
        if h2>mindensord then mindensord:=h2
      >>;
      cf0:=t;
    >>
  >>;
  if contrace then write"eqord=",eqord,"   mindensord=",mindensord,
                   "   extraorder=",extraorder,"   lhsord=",lhsord$;
  if maxdensord<mindensord then maxdensord:=mindensord;

  %------ all transformations into jet-space
  sb:=subdif1(xlist,ulist,eqord)$
  if contrace then write"sb=",sb;
  treqlist:=eqlist;
  for each e1 in sb do treqlist:=sub(e1,treqlist);
  for each e1 in sb do  lhslist:=sub(e1, lhslist);
  if contrace then write"treqlist=",treqlist,
                        " lhslist=", lhslist;
  if cf0 then
  for n:=1:nx do <<
    % if the index of p_ should be a number then use n instead of h4
    h4:=lisp(reval algebraic(part(xlist,n)));
    h1:=mkid(p_,h4);
    if not lisp(null get(mkid('p_,h4),'avalue)) then <<
      for each e1 in sb do h1:=sub(e1,h1);
      lisp(mkid('p_,h4)):=h1;
    >>
  >>;
  for each e1 in sb do inequ0:=sub(e1,inequ0);

  %--- investigate conservation laws of increasing order
  for densord:=mindensord:maxdensord do <<

    cpu:=lisp time()$ gc:=lisp gctime()$
    if cf0 then
    lisp<<write"A special ansatz of order ",densord," for the",
               " conserved current is investigated.";
          terpri()>>  else
    lisp<<write"Currently conservation laws with a conserved",
	       " density";terpri()$
          write"of order ",densord," are determined";terpri();
         write"======================================================"$
    >>;

    if densord+1<lhsord then lisp << write
      "The order of the ansatz is too low for substitutions of equations"$
      terpri()$write"to be done --> no investigation"$terpri()$terpri()
    >>                  else <<     
      % If densord+1=lhsord then conservation laws of lower order
      % than the ansatz are to be considered because this is the
      % first time they can appear because for a lower order ansatz
      % substitutions can not be made and no non-trivial CLs can be detected
      if densord+1=lhsord then loworderlimit:=nil
                          else loworderlimit:=t;
      if contrace then write"loworderlimit=",loworderlimit$   
      %--- repeated initializations

      highdensord:=densord+extraorder;   %--- the max. order of P_xi
         % which is the the order of P_x1 (densord) plus  extraorder 
         % to get the max order P_x2,P_x3,...
      maxord:=highdensord+1+extraorder;  %--- the maximal order of
         % derivatives in condition, = highdensord + extraorder due 
         % to substitutions + 1 due to Div
      if contrace then write"densord=",densord,"  highdensord=",highdensord,
                            "  maxord=",maxord;

      if {}=fargs first ulist then
      for each e1 in ulist do depnd(e1,{xlist});
      sb:=subdif1(xlist,ulist,maxord)$
      nodepnd ulist;

      if contrace then write"sb=",sb;

      dulist:=ulist . reverse for each e1 in sb collect
			      for each e2 in e1 collect rhs e2;
      revdulist:=reverse dulist;         % dulist with decreasing order
      udens:=part(dulist,densord+1);     % derivatives of order densord
      vl:=for each e1 in dulist join e1;
      if contrace then write"vl=",vl,"  udens=",udens;
      vl1:=for e1:=1:(highdensord+2) join part(dulist,e1);
      % vl1 is to generate subst. of u-deriv. up to order highdensord+1
      if contrace then write"vl1=",vl1;


      %--- initializing the list of unknown functions fl,
      %--- the conserved current pl and the condition condi
      if not flist then fl:={}
		   else fl:=flist;
      deplist:=ulist . for h3:=1:highdensord collect  
		       listdifdif2(lhslist,part(dulist,h3+1));
      deplist1:=for h3:=1:(densord+1) collect part(deplist,h3);
      if expl then << deplist :=xlist . deplist;
		      deplist1:=xlist . deplist1>>;
      deplist :=reverse deplist;
      deplist1:=reverse deplist1;

      if contrace then lisp (write"1. depl*=",depl!*);
      pl:={};
      condi:=0;
      for n:=1:nx do <<
	% if the index of p_ should be a number then use n instead of h4
	h4:=lisp(reval algebraic(part(xlist,n)));
	h1:=mkid(p_,h4);
	if lisp(null get(mkid('p_,h4),'avalue)) then <<
	  nodepnd({h1}); 
	  if n=1 then depnd(h1, deplist1)
		 else depnd(h1, deplist);
	  fl:=h1 . fl;
	>>;%                                      else h1:=sub(sb,h1);
	pl:=cons(h1,pl);
	condi:=condi+totdif(h1,h4,n,dulist)
      >>;
      pl:=reverse pl;

      if contrace then write"fl=",fl," cf=",cf," pl=",pl;
      if contrace then lisp (write"2. depl*=",depl!*);
      if contrace then write"condi=",condi;
      if contrace then write"udens=",udens;

      %--- generating a substitution list with equations represented
      % by a symbol and derivatives of equations represented by
      % derivatives of that symbol

      %--- at first using the equations themselves
      sbreserve:={};
      desyli:={};     % list of symbols each representing an equation
      ddesyli:={};    % list of all these symbols + their derivatives
      % with the following structure: each element of ddesyli has
      % the form {derivative of the symbol, 
      %           {numbers of the differentiation variables}, 
      %           number of the symbol}
      h1:=treqlist;
      h2:=lhslist;
      h5:=0;          % h5 is an index of the equations
      while h1 neq {} do <<
	h5:=h5+1;
	h4:=lisp gensym();
	depnd(h4,{xlist});
	desyli :=cons(h4, desyli);
	ddesyli:=cons({h4,{},h5},ddesyli);
	h3:=first h2;
	sbreserve:=cons(h3 = h3 - first h1 + h4, sbreserve);
	h1:=rest h1;
	h2:=rest h2;
      >>;
      sbreserve:=reverse sbreserve;
      desyli:=reverse desyli;

      %--- then their derivatives
      h1:=sbreserve;
      lisp(h2:=nil);  % h2 is list of underived substitutions
      for each e1 in h1 do lisp <<
	e3:=combidif(algebraic lhs e1);
	h2:=cons(list(car e3, cdr e3, algebraic rhs e1), h2)
	% function name and derivative list of e1
      >>;
      for each e1 in vl1 do lisp <<  % e1 occurs in condi
	h1:=h2;
	h5:=0;        % counter of the equation
	while h1 neq nil do <<
	  h5:=h5+1;
	  h3:=comparedif2(caar h1, cadar h1, reval algebraic e1);
	  if (h3 neq nil) and (h3 neq 0) then algebraic <<
	    h3:=lisp(cons('LIST,h3));
	    dequ:=lisp caddar h1; % rhs which is to be differentiated
	    for each n in h3 do dequ:=totdif(dequ,part(xlist,n),n,dulist);
	    % new highest derivatives should be added to vl afterwards
	    % if lower derivatives are substituted by higher derivatives
	    h6:=part(desyli,h5);
	    for each n in h3 do h6:=df(h6,part(xlist,n));
	    ddesyli:=cons({h6,h3,h5}, ddesyli);
	    sbreserve:=cons(e1 = dequ, sbreserve);
	    lisp(h1:=nil)
          >>                             else lisp(h1:=cdr h1);
        >>
      >>;
      if contrace then write"sbreserve=",sbreserve;
      sb:=sub(for each e1 in desyli collect e1=0,sbreserve);
      if contrace then write"sb=",sb;

      rules:={};
      for each e1 in sb do <<
       h5:=lhs e1; h6:=rhs e1;
       rules:=cons(h5 => h6,rules)
      >>$
      if contrace then write"rules=",rules;
      let rules; 
      condi:=condi;
      clearrules rules$
      if contrace then write"condi=",condi;

      vl:=append(vl,xlist); % now the full list

      inequ:=inequ0;
      %--- inequ is to stop crack if order of pl is too low
      if loworderlimit then <<
	% for the investigation to stop if
	% P_x1 is independent of derivatives of order densord
	dequ:=0;
	e1:=first pl;
	h1:=udens;
	while h1 neq {} do <<
	  dequ:=dequ+df(e1,first h1)*(lisp gensym());
	  h1:=rest h1
	>>;
	inequ:=cons(dequ,inequ)
      >>;
      if contrace then write"inequ=",inequ;

      %--- freeing some space
      sb:=revdulist:=e1:=e2:=e3:=
      n:=h1:=h2:=h3:=soln:=u:=dequ:=0;

      %--- the real calculation
      if lisp(!*time) then
      write "time to formulate condition: ", lisp time() - cpu,
	    " ms    GC time : ", lisp gctime() - gc," ms"$
      solns:=crack({condi},inequ,fl,vl);

      %--- postprocessing

      lisp terpri()$
      pllist:={};
      cllist:={};
      found:=nil;
      while solns neq {} do << % for each solution (if param. are determ.)
        soln:=first solns;
        solns:=rest solns;
        condi:=first soln;
	plcopy:=sub(second soln,pl);
	h1:=third soln;        % list of free/undeterm. const./functions
	if contrace then <<
	  write"plcopy=",plcopy;
	  write"soln=",soln;
	  write"third soln=",h1;
	>>;
	fl:={};
	h2:={};

	for each e1 in h1 do <<
	  if not freeof(condi,e1) then fl:=cons(e1,fl); 
	  % fl to output remaining conditions later
	  if freeof(paralist,e1) then h2:=cons(e1,h2)
	>>;
	h1:=parti_fn(h2,condi)$
	if contrace then write"h1(partitioned)=",h1;

        extraline:=nil;
	while h1 neq {} do <<  % for each potential conservation law
	  % h1 is the list of lists of constants/functions
	  % depending on each other
	  h2:=first h1;h1:=rest h1;

	  if contrace then write"h2=",h2;
	  %--- h4 is the currant for a single conservation law
	  h4:=for each e2 in plcopy collect
	      for each e1 in h2 sum fdepterms(e2,e1);

	  if contrace then write"h4-1=",h4;
	  sb:=absorbconst(h4,h2)$
	  if (sb neq nil) and (sb neq 0) then h4:=sub(sb,h4);
	  if contrace then write"h4-2=",h4;
	  if (length(h2)=1) and (fargs first h2 = {}) then <<
	    e1:=first h2;
	    h4:=sub(e1=1,h4);
	  >>;

	  if contrace then write"udens=",udens;
	  h5:=udens;
	  if (cf0=nil) and loworderlimit then 
	  while (h5 neq {}) and freeof(first h4,first h5) do h5:=rest h5;
	  if contrace then write"h5=",h5;
	  if h5 neq {} then <<  
            % P_x1 in h4 is of order densord or no loworderlimit
	    % h3 is the lhs of the conservation law
	    h3:=for e1:=1:nx sum
		totdif(part(h4,e1),part(xlist,e1),e1,dulist);
	    if contrace then write"h3-1=",h3;
	    if h3 neq 0 then << % non-trivial conservation law
	      %--- Compute the characteristic functions
	      %--- We have already h3 = Div P 
	      h3:=sub(sbreserve,h3);
	      if contrace then write"h3-2=",h3;
	      if contrace then write"ddesyli=",ddesyli;
	      divlist:={};
	      for each e1 in ddesyli do <<
		h6:=coeffn(h3,first e1,1);
		if h6 neq 0 then <<
		  h3:=h3-h6*first e1;
		  divlist:=cons({h6,second e1,third e1},divlist)
		>>
	      >>;
	      if contrace then write"h3-3=",h3;
	      if contrace then write"divlist=",divlist;

	      qlist:=for e1:=1:nde collect 0;
	      for each e1 in divlist do << % for each derivative of an equ.
		h9:=first e1;       % the coeff of the equn. derivative
		e2:=second e1;
		h10:=third e1;
		if h9 neq 0 then 
		if e2={} then
		qlist:=part(qlist,h10):=
		       part(qlist,h10)+h9
			 else <<
		  h6:=-1;             % the alternating sign
		  if length e2>1 then <<
		    h7:=part(treqlist,h10);
		    if paralist neq {} then h7:=sub(second soln,h7);
		    h8:=for each e2 in rest second e1 collect
		    h7:=totdif(h7,part(xlist,e2),e2,dulist)$
		  >>             else h8:={};
		  h8:=append(h8,{part(treqlist,h10)});
		  while e2 neq {} do <<
		    e3:=first e2; e2:=rest e2;
		    h4:=part(h4,e3):=
			part(h4,e3)+h6*h9*(first h8);
		    h9:=totdif(h9,part(xlist,e3),e3,dulist)$
		    if e2 neq {} then <<
		      h8:=rest h8;
		      h6:=-h6;
		    >>           else 
		    qlist:=part(qlist,h10):=
			   part(qlist,h10)+h6*h9
		  >>;
		>>;
	      >>;
	      %--- Is the CL trivial, i.e. all Q's are 0 ?
	      e2:=t;
	      for each e1 in qlist do
	      if e1 neq 0 then e2:=nil;
	      if e2 then h4:=nil;

	      if h4 then <<
		for each e1 in h2 do 
		if fargs e1 neq {} then lisp <<
		  write"The function "$
		  fctprint list reval e1$
		  write" is not constant!";
                  extraline:=t;
		  terpri()
		>>;
		cllist:=cons(qlist,cllist);
		pllist:=cons(h4,pllist);
	      >>;
	      if contrace then write"cllist=",cllist;
	      if contrace then write"pllist=",pllist$
	    >>
	  >>
	>>;
	if condi neq {} then <<
          write"There are remaining conditions: ",
                condi;
	  lisp <<
	  write"for the functions: ";
          fctprint cdr reval algebraic fl;terpri();
          write"Corresponding CLs might not be shown below as they";
          terpri()$write"could be of too low order.";terpri()>>;
          extraline:=t;
	>>;
        if extraline then lisp <<
          write"======================================================"$
          terpri()
        >>;
	for each e1 in ulist do depnd(e1,{xlist});
	if contrace then write"cllist2=",cllist,"  pllist2=",pllist$
	on evallhseqp;
	sb:=subdif1(xlist,ulist,highdensord)$
	sb:=for each e1 in sb join
	    for each e2 in e1 collect(rhs e2 = lhs e2); 
	if contrace then write"sb=",sb$
	off evallhseqp;
	cllist:=sub(sb,cllist);
	if contrace then write"cllist3=",cllist$
	pllist:=sub(sb,pllist);
	if contrace then write"pllist3=",pllist$
	if nx=2 then
	pllist:=simppl(pllist,ulist,first xlist,second xlist)$

	if contrace then <<
	  write"cllist3=",cllist;
	  write"pllist3=",pllist;
	  write"eqlist=",eqlist;
	  write"xlist=",xlist
	>>;
	while pllist neq {} do <<
	  h2:=first pllist;
	  h3:=first cllist;
	  %-- Is P_x1 of order densord? To be tested only now after simppl
	  e1:=ulist;
	  if (cf0=nil) and loworderlimit then
	  while (e1 neq {}) and 
		(totdeg(first h2,first e1) < densord) do e1:=rest e1;
	  if e1 neq {} then <<
	    found:=t;
	    write"Conservation law:";
	    rtnlist:=cons({h3,h2},rtnlist);

	    %--- conditions on parameters
	    if paralist neq {} then 
	    for each e2 in second soln do
	    if not freeof(paralist,lhs e2) then 
	    <<write e2,",";lisp(terpri())>>$

	    %--- the conservation laws
	    if 0 = (for each e1 in h3 sum e1) then write" 0 = "
					      else <<
	      h4:=eqlist;
	      if paralist then h4:=sub(second soln,h4);
	      n:=length h4$
	      while h3 neq {} do <<
		if length h3 < n then write "+"$
		write"( ",first h3," ) * ( ",first h4," )"$
		h3:=rest h3; h4:=rest h4
	      >>$
	      write" = "$
	    >>;
	    h4:=xlist$
	    while h2 neq {} do <<
	      if length h2 < nx then write "+"$
	      write"df( ",first h2,", ",first h4," )"$
	      h2:=rest h2;
	      h4:=rest h4
	    >>;
	    write"======================================================"$
	  >>;
	  pllist:=rest pllist;
	  cllist:=rest cllist;
	>>$
	if solns neq {} then nodepnd(ulist); 
      >>;
      sbreserve:=0;
      nodepnd(desyli); 
      if found=nil then <<
        write"There is no conservation law of this order.";
        write"======================================================"
      >>$
    >>
  >>; % for densord:=mindensord:maxdensord

  if fargs(first ulist)={} then
  for each e1 in ulist do depnd(e1,{xlist});

  if lisp(!*time) then
  write "time to run conlaw_1: ", lisp time() - cpustart,
        " ms    GC time : ", lisp gctime() - gcstart," ms"$

  lisp <<adjust_fnc:=adjustold;
         logoprint_:=logoold;
         potint_:=potold;
         facint_:=facold>>;

  return rtnlist

end$ % of conlaw1

end$


REDUCE Historical
REDUCE Sourceforge Project | Historical SVN Repository | GitHub Mirror | SourceHut Mirror | NotABug Mirror | Chisel Mirror | Chisel RSS ]