File r36/help/linalg.tex artifact ed0014a015 part of check-in aacf49ddfa


\section{Linear Algebra package}

\begin{Introduction}{Linear Algebra package}

This section briefly describes what's available in the Linear Algebra
package.

Note on examples: In the examples throughout this
document, the matrix A will be
\begin{verbatim}
     [1  2  3]
     [4  5  6]
     [7  8  9].
\end{verbatim}

The functions can be divided into four categories:

{\bf Basic matrix handling}
 
\nameref{add\_columns},

\nameref{add\_rows},
 
\nameref{add\_to\_columns},
 
\nameref{add\_to\_rows},   
 
\nameref{augment\_columns},
 
\nameref{char\_poly},
 
\nameref{column\_dim},      
 
\nameref{copy\_into},
 
\nameref{diagonal},
 
\nameref{extend},
 
\nameref{find\_companion},
 
\nameref{get\_columns},
 
\nameref{get\_rows},
 
\nameref{hermitian\_tp},    
 
\nameref{matrix\_augment},  
 
\nameref{matrix\_stack} ,
 
\nameref{minor},   
 
\nameref{mult\_columns},    
 
\nameref{mult\_rows},

\nameref{pivot},      
 
\nameref{remove\_columns},  
 
\nameref{remove\_rows}, 
 
\nameref{row\_dim},    
 
\nameref{rows\_pivot},     
 
\nameref{stack\_rows},     
 
\nameref{sub\_matrix},     
 
\nameref{swap\_columns},    
 
\nameref{swap\_entries},   
 
\nameref{swap\_rows}.  

{\bf Constructors -- functions that create matrices}
 
\nameref{band\_matrix},
 
\nameref{block\_matrix},
 
\nameref{char\_matrix},
 
\nameref{coeff\_matrix},
 
\nameref{companion},
 
\nameref{hessian},
 
\nameref{hilbert},
 
\nameref{jacobian},
 
\nameref{jordan\_block},
 
\nameref{make\_identity},
 
\nameref{random\_matrix},
 
\nameref{toeplitz},
 
\nameref{vandermonde}.

{\bf High level algorithms}
 
\nameref{char\_poly},
 
\nameref{cholesky},
 
\nameref{gram\_schmidt},
 
\nameref{lu\_decom},
 
\nameref{pseudo\_inverse},
 
\nameref{simplex},
 
\nameref{svd}.  

{\bf Normal Forms}

There is a separate package, NORMFORM, for computing
the following matrix normal forms in \REDUCE:

\nameref{smithex}, 

\nameref{smithex\_int}, 

\nameref{frobenius}, 

\nameref{ratjordan}, 

\nameref{jordansymbolic}, 

\nameref{jordan}.


{\bf Predicates}

\nameref{matrixp},
 
\nameref{squarep},
 
\nameref{symmetricp}.

\end{Introduction}


\begin{Switch}{fast_la}

By turning the \name{fast\_la} switch on, the speed of the following
functions will be increased:

 
\nameref{add\_columns},
 
\nameref{add\_rows},
 
\nameref{augment\_columns},
 
\nameref{column\_dim},
 
\nameref{copy\_into},
 
\nameref{make\_identity},
 
\nameref{matrix\_augment},
 
\nameref{matrix\_stack},
 
\nameref{minor},
 
\nameref{mult\_columns},
 
\nameref{mult\_rows},
 
\nameref{pivot},
 
\nameref{remove\_columns},
 
\nameref{remove\_rows},
 
\nameref{rows\_pivot},
 
\nameref{squarep},
 
\nameref{stack\_rows},
 
\nameref{sub\_matrix},
 
\nameref{swap\_columns},
 
\nameref{swap\_entries},
 
\nameref{swap\_rows},
 
\nameref{symmetricp}.                                  
              

The increase in speed will be negligible unless you are making a
significant number (i.e. thousands) of calls. When using this switch,
error checking is minimized. This means that illegal input may give
strange error messages. Beware.
\end{Switch}

\begin{Operator}{add_columns}
Add columns, add rows:
\begin{Syntax}
\name{add\_columns}\(\meta{matrix},\meta{c1},\meta{c2},\meta{expr}\)
\end{Syntax}

\meta{matrix} :- a \nameref{matrix}. 

\meta{c1},\meta{c2} :- positive integers. 

\meta{expr} :- a scalar expression. 

The Operator \name{add\_columns} replaces column \meta{\meta{c2}} of 
\meta{matrix}  by \meta{expr} * column(\meta{matrix},\meta{c1}) +
column(\meta{matrix},\meta{c2}).

\name{add\_rows} performs the equivalent task on the rows of 
\meta{matrix}.

\begin{Examples}

add_columns(A,1,2,x); &
\begin{multilineoutput}{6cm}
[1   x + 2   3]
[             ]
[4  4*x + 5  6]
[             ]
[7  7*x + 8  9]
\end{multilineoutput} \\

add_rows(A,2,3,5); & 
\begin{multilineoutput}{6cm}
[1   2   3 ]
[          ]
[4   5   6 ]
[          ]
[27  33  39]
\end{multilineoutput} \\

\end{Examples}

Related functions: \nameref{add\_to\_columns}, 
\nameref{add\_to\_rows}, \nameref{mult\_columns}, 
\nameref{mult\_rows}.

\end{Operator}


\begin{Operator}{add_rows}
 see: \nameref{add\_columns}.
\end{Operator}


\begin{Operator}{add_to_columns}
Add to columns, add to rows:

\begin{Syntax}
\name{add\_to\_columns}\(\meta{matrix},\meta{column\_list},\meta{expr}\)
\end{Syntax}

\meta{matrix}       :- a matrix. 

\meta{column\_list} :- a positive integer or a list of positive 
                       integers. 

\meta{expr}         :- a scalar expression.

\name{add\_to\_columns} adds \meta{expr} to each column specified in 
\meta{column\_list} of \meta{matrix}.  

\name{add\_to\_rows} performs the equivalent task on the rows of 
\meta{matrix}.

\begin{Examples}

add_to_columns(A,\{1,2\},10); &
\begin{multilineoutput}{6cm}
[11  12  3]
[         ]
[14  15  6]
[         ]
[17  18  9]
\end{multilineoutput}\\

add_to_rows(A,2,-x) &
\begin{multilineoutput}{6cm} 
[   1         2         3    ]
[                            ]
[ - x + 4   - x + 5   - x + 6]
[                            ]
[   7         8         9    ]
\end{multilineoutput} \\
\end{Examples}

Related functions:
\nameref{add\_columns},  \nameref{add\_rows},  \nameref{mult\_rows}, 
\nameref{mult\_columns}.

\end{Operator}


\begin{Operator}{add_to_rows}
 see:  \nameref{add\_to\_columns}.
\end{Operator}


\begin{Operator}{augment_columns}
Augment columns, stack rows:

\begin{Syntax}
\name{augment\_columns}(\meta{matrix},\meta{column\_list})
\end{Syntax}

\meta{matrix}       :- a matrix. 

\meta{column\_list} :-  either a positive integer or a list of positive 
                        integers. 

\name{augment\_columns} gets hold of the columns of \meta{matrix} 
specified in \name{column\_list} and sticks them together. 

\name{stack\_rows} performs the same task on rows of \meta{matrix}.

\begin{Examples}

augment_columns(A,\{1,2\}) &
\begin{multilineoutput}{6cm} 
[1  2]
[    ]
[4  5]
[    ]
[7  8]
\end{multilineoutput} \\

stack_rows(A,\{1,3\}) &
\begin{multilineoutput}{6cm}
[1  2  3]
[       ]
[7  8  9]
\end{multilineoutput} \\
\end{Examples}

Related functions:
\nameref{get\_columns},  \nameref{get\_rows}, \nameref{sub\_matrix}.

\end{Operator}


\begin{Operator}{band_matrix}

\begin{Syntax}
\name{band\_matrix}(\meta{expr\_list},\meta{square\_size})
\end{Syntax}

\meta{expr\_list}   :- either a single scalar expression or a list of 
                       an odd number of scalar expressions.

\meta{square\_size} :- a positive integer.

\name{band\_matrix} creates a square matrix of dimension
\meta{square\_size}. The diagonal consists of the middle expression
of the \meta{expr\_list}. The expressions to the left of this fill
the required number of sub\_diagonals and the expressions to the right 
the super\_diagonals. 

\begin{Examples}

band_matrix(\{x,y,z\},6) & 
\begin{multilineoutput}{6cm}
[y  z  0  0  0  0]
[                ]
[x  y  z  0  0  0]
[                ]
[0  x  y  z  0  0]
[                ]
[0  0  x  y  z  0]
[                ]
[0  0  0  x  y  z]
[                ]
[0  0  0  0  x  y]
\end{multilineoutput} \\
\end{Examples}

Related functions: \nameref{diagonal}.

\end{Operator}


\begin{Operator}{block_matrix}

\begin{Syntax}
\name{block\_matrix}(\meta{r},\meta{c},\meta{matrix\_list})
\end{Syntax}

\meta{r},\meta{c}          :- positive integers. 

\meta{matrix\_list}        :- a list of matrices. 

\name{block\_matrix} creates a matrix that consists of \meta{r} by 
\meta{c} matrices filled from the \meta{matrix\_list} row wise.

\begin{Examples}
B := make_identity(2); &
\begin{multilineoutput}{6cm}
     [1  0]
b := [    ]
     [0  1]
\end{multilineoutput} \\

C := mat((5),(5)); &
\begin{multilineoutput}{6cm}
     [5]
c := [ ]
     [5]
\end{multilineoutput} \\

D := mat((22,33),(44,55)); &
\begin{multilineoutput}{6cm}
     [22  33]
d := [      ]
     [44  55]
\end{multilineoutput} \\

block_matrix(2,3,\{B,C,D,D,C,B\}); & 
\begin{multilineoutput}{6cm}
[1   0   5  22  33]
[                 ]
[0   1   5  44  55]
[                 ]
[22  33  5  1   0 ]
[                 ]
[44  55  5  0   1 ]
\end{multilineoutput} \\

\end{Examples}

\end{Operator}


\begin{Operator}{char_matrix}

\begin{Syntax}
\name{char\_matrix}(\meta{matrix},\meta{lambda})
\end{Syntax}

\meta{matrix} :- a square matrix. 
\meta{lambda}  :- a symbol or algebraic expression. 

\meta{char\_matrix} creates the characteristic matrix C of 
\meta{matrix}.

This is C = \meta{lambda} * Id - A. 
Id is the identity matrix.

\begin{Examples}

char_matrix(A,x); & 
\begin{multilineoutput}{6cm}
[x - 1   -2     -3  ]
[                   ]
[ -4    x - 5   -6  ]
[                   ]
[ -7     -8    x - 9]
\end{multilineoutput} \\

\end{Examples}

Related functions: \nameref{char\_poly}. 

\end{Operator}


\begin{Operator}{char_poly}

\begin{Syntax}
\name{char\_poly}(\meta{matrix},\meta{lambda})
\end{Syntax}

\meta{matrix} :- a square matrix. 

\meta{lambda} :- a symbol or algebraic expression.

\name{char\_poly} finds the characteristic polynomial of \meta{matrix}.
This is the determinant of \meta{lambda} * Id - A.
Id is the identity matrix.

\begin{Examples}
char_poly(A,x); &
x^3-15*x^2-18*x
\end{Examples}

Related functions: \nameref{char\_matrix}. 

\end{Operator}


\begin{Operator}{cholesky}

\begin{Syntax}
\name{cholesky}(\meta{matrix})
\end{Syntax}

\meta{matrix} :- a positive definite matrix containing numeric entries.

\name{cholesky} computes the cholesky decomposition of \meta{matrix}.

It returns \{L,U\} where L is a lower matrix, U is an upper matrix, 
A = LU, and U = $L^T$.

\begin{Examples}
F := mat((1,1,0),(1,3,1),(0,1,1)); &
\begin{multilineoutput}{6cm}
     [1  1  0]
     [       ]
f := [1  3  1]
     [       ]
     [0  1  1]
\end{multilineoutput} \\

on rounded; \\
cholesky(F); & 
\begin{multilineoutput}{6cm}
\{

 [1        0               0       ]
 [                                 ]
 [1  1.41421356237         0       ]
 [                                 ]
 [0  0.707106781187  0.707106781187]

 ,


 [1        1              0       ]
 [                                ]
 [0  1.41421356237  0.707106781187]
 [                                ]
 [0        0        0.707106781187]

\}
\end{multilineoutput} \\

\end{Examples}

Related functions: \nameref{lu\_decom}.

\end{Operator}


\begin{Operator}{coeff_matrix}

\begin{Syntax}
\name{coeff\_matrix}(\{\meta{lineq\_list}\}) 
\end{Syntax}

(If you are feeling lazy then the braces can be omitted.)

\meta{lineq\_list}  :- linear equations. Can be of the form equation = number
or just equation.

\name{coeff\_matrix} creates the coefficient matrix C of the linear 
equations. 

It returns \{C,X,B\} such that CX = B.

\begin{Examples}

coeff_matrix(\{x+y+4*z=10,y+x-z=20,x+y+4\}); &
\begin{multilineoutput}{6cm}
\{

 [4   1  1]
 [        ]
 [-1  1  1]
 [        ]
 [0   1  1]

 ,

 [z]
 [ ]
 [y]
 [ ]
 [x]

 ,

 [10]
 [  ]
 [20]
 [  ]
 [-4]

\}
\end{multilineoutput} \\

\end{Examples}

\end{Operator}


\begin{Operator}{column_dim}
Column dimension, row dimension:

\begin{Syntax}
\name{column\_dim}(\meta{matrix})
\end{Syntax}

\meta{matrix} :- a matrix.

\name{column\_dim} finds the column dimension of \meta{matrix}. 

\name{row\_dim} finds the row dimension of \meta{matrix}.


\begin{Examples}

column_dim(A); &
3 \\
row_dim(A); &
3 \\

\end{Examples}

\end{Operator}


\begin{Operator}{companion}

\begin{Syntax}
\name{companion}(\meta{poly},\meta{x})
\end{Syntax}

\meta{poly} :- a monic univariate polynomial in \meta{x}. 

\meta{x}    :- the variable.


\name{companion} creates the companion matrix C of \meta{poly}. 

This is the square matrix of dimension n, where n is the degree of 
\meta{poly} w.r.t. \meta{x}.

The entries of C are: 

                C(i,n) = -coeffn(\meta{poly},\meta{x},i-1) for i = 1 
                \ldots n, C(i,i-1) = 1 for i = 2 \ldots n and 
                the rest are 0.

\begin{Examples}

companion(x^4+17*x^3-9*x^2+11,x); &
\begin{multilineoutput}{6cm}
[0  0  0  -11]
[            ]
[1  0  0   0 ]
[            ]
[0  1  0   9 ]
[            ]
[0  0  1  -17]
\end{multilineoutput} \\

\end{Examples}

Related functions:
\nameref{find\_companion}.

\end{Operator}


\begin{Operator}{copy_into}

\begin{Syntax}
\name{copy\_into}(\meta{A},\meta{B},\meta{r},\meta{c})
\end{Syntax}

\meta{A},\meta{B} :- matrices. 

\meta{r},\meta{c} :- positive integers. 


\name{copy\_into} copies matrix \meta{matrix} into \meta{B} with 
\meta{matrix}(1,1) at \meta{B}(\meta{r},\meta{c}).

\begin{Examples} 

G := mat((0,0,0,0,0),(0,0,0,0,0),(0,0,0,0,0),(0,0,0,0,0),(0,0,0,0,0)); &
\begin{multilineoutput}{6cm}
     [0  0  0  0  0]
     [             ]
     [0  0  0  0  0]
     [             ]
g := [0  0  0  0  0]
     [             ]
     [0  0  0  0  0]
     [             ]
     [0  0  0  0  0]
\end{multilineoutput} \\

copy_into(A,G,1,2); &
\begin{multilineoutput}{6cm}
[0  1  2  3  0]
[             ]
[0  4  5  6  0]
[             ]
[0  7  8  9  0]
[             ]
[0  0  0  0  0]
[             ]
[0  0  0  0  0]
\end{multilineoutput} \\

\end{Examples}

Related functions: 
\nameref{augment\_columns}, \nameref{extend}, \nameref{matrix\_augment}, 
\nameref{matrix\_stack}, \nameref{stack\_rows}, \nameref{sub\_matrix}.

\end{Operator}


\begin{Operator}{diagonal}

\begin{Syntax}
\name{diagonal}(\{\meta{mat\_list}\}) 
\end{Syntax}
(If you are feeling lazy then the braces can be omitted.)

\meta{mat\_list} :- each can be either a scalar expression or a 
square \nameref{matrix}. 

\name{diagonal} creates a matrix that contains the input on the 
diagonal.

\begin{Examples}

H := mat((66,77),(88,99)); &
\begin{multilineoutput}{6cm}
     [66  77]
h := [      ]
     [88  99]
\end{multilineoutput} \\

diagonal(\{A,x,H\}); &
\begin{multilineoutput}{6cm}
[1  2  3  0  0   0 ]
[                  ]
[4  5  6  0  0   0 ]
[                  ]
[7  8  9  0  0   0 ]
[                  ]
[0  0  0  x  0   0 ]
[                  ]
[0  0  0  0  66  77]
[                  ]
[0  0  0  0  88  99]
\end{multilineoutput} \\

\end{Examples}

Related functions: 
\nameref{jordan\_block}.

\end{Operator}


\begin{Operator}{extend}

\begin{Syntax}
\name{extend}(\meta{matrix},\meta{r},\meta{c},\meta{expr})
\end{Syntax}

\meta{matrix}            :- a \nameref{matrix}. 

\meta{r},\meta{c}        :- positive integers. 

\meta{expr}              :- algebraic expression or symbol.

\name{extend} returns a copy of \meta{matrix} that has been extended by 
\meta{r} rows and \meta{c} columns. The new entries are made equal to 
\meta{expr}.

\begin{Examples}

extend(A,1,2,x); &
\begin{multilineoutput}{6cm}
[1  2  3  x  x]
[             ]
[4  5  6  x  x]
[             ]
[7  8  9  x  x]
[             ]
[x  x  x  x  x]
\end{multilineoutput} \\

\end{Examples}

Related functions: 
\nameref{copy\_into}, \nameref{matrix\_augment}, \nameref{matrix\_stack},  
\nameref{remove\_columns}, \nameref{remove\_rows}.

\end{Operator}


\begin{Operator}{find_companion}

\begin{Syntax}
\name{find\_companion}(\meta{matrix},\meta{x})
\end{Syntax}

\meta{matrix} :- a \nameref{matrix}. 

\meta{x}      :- the variable.

Given a companion matrix, \name{find\_companion} finds the polynomial 
from which it was made.

\begin{Examples}

C := companion(x^4+17*x^3-9*x^2+11,x); &
\begin{multilineoutput}{6cm}
     [0  0  0  -11]
     [            ]
     [1  0  0   0 ]
c := [            ]
     [0  1  0   9 ]
     [            ]
     [0  0  1  -17]
\end{multilineoutput}\\

find_companion(C,x); &
x^4+17*x^3-9*x^2+11

\end{Examples}

Related functions:
\nameref{companion}.

\end{Operator}


\begin{Operator}{get_columns}
Get columns, get rows:

\begin{Syntax}
\name{get\_columns}(\meta{matrix},\meta{column\_list})
\end{Syntax}

\meta{matrix} :- a \nameref{matrix}.

\meta{c}      :- either a positive integer or a list of positive 
                 integers.

\name{get\_columns} removes the columns of \meta{matrix} specified in 
\meta{column\_list} and returns them as a list of column matrices. 

\name{get\_rows} performs the same task on the rows of \meta{matrix}. 

\begin{Examples}

get_columns(A,\{1,3\}); & 
\begin{multilineoutput}{6cm}
\{

 [1]
 [ ]
 [4]
 [ ]
 [7]

 ,

 [3]
 [ ]
 [6]
 [ ]
 [9]

\}
\end{multilineoutput} \\

get_rows(A,2); &
\begin{multilineoutput}{6cm}
\{

 [4  5  6]

\}
\end{multilineoutput} \\

\end{Examples}

Related functions:
\nameref{augment\_columns}, \nameref{stack\_rows}, \nameref{sub\_matrix}.

\end{Operator}


\begin{Operator}{get_rows}
see:  \nameref{get\_columns}.
\end{Operator}


\begin{Operator}{gram_schmidt}

\begin{Syntax}
\name{gram\_schmidt}(\{\meta{vec\_list}\}) 
\end{Syntax}

(If you are feeling lazy then the braces can be omitted.)

\meta{vec\_list} :- linearly independent vectors. Each vector must be 
written as a list, eg:\{1,0,0\}. 

\name{gram\_schmidt} performs the gram\_schmidt orthonormalization on
the input vectors. 

It returns a list of orthogonal normalized vectors.

\begin{Examples}

gram_schmidt(\{\{1,0,0\},\{1,1,0\},\{1,1,1\}\}); &
\{\{1,0,0\},\{0,1,0\},\{0,0,1\}\} \\

gram_schmidt(\{\{1,2\},\{3,4\}\}); &
\{\{ \rfrac{1}{{sqrt(5)}} , \rfrac{2}{sqrt(5)} \},
\{ \rfrac{2*sqrt(5)}{5} , \rfrac{-sqrt(5)}{5} \}\}

\end{Examples}

\end{Operator}


\begin{Operator}{hermitian_tp}

\begin{Syntax}
\name{ hermitian\_tp}(\meta{matrix})
\end{Syntax}

\meta{matrix} :- a \nameref{matrix}. 

\name{hermitian\_tp} computes the hermitian transpose of \meta{matrix}. 

This is a \nameref{matrix} in which the (i,j)'th entry is the conjugate
of the (j,i)'th entry of \meta{matrix}. 

\begin{Examples}

J := mat((i+1,i+2,i+3),(4,5,2),(1,i,0)); &
\begin{multilineoutput}{6cm}
     [i + 1  i + 2  i + 3]
     [                   ]
j := [  4      5      2  ]
     [                   ]
     [  1      i      0  ]
\end{multilineoutput} \\

hermitian_tp(j); &
\begin{multilineoutput}{6cm}
[ - i + 1  4   1  ]
[                 ]
[ - i + 2  5   - i]
[                 ]
[ - i + 3  2   0  ]
\end{multilineoutput} \\

\end{Examples}

Related functions:
\nameref{tp}.

\end{Operator}


\begin{Operator}{hessian}

\begin{Syntax}
\name{hessian}(\meta{expr},\meta{variable\_list})
\end{Syntax}

\meta{expr}           :- a scalar expression. 

\meta{variable\_list} :- either a single variable or a list of 
                         variables.

\name{hessian} computes the hessian matrix of \meta{expr} w.r.t. the 
variables in \meta{variable\_list}.

% Does df exist in the help pages?
This is an n by n matrix where n is the number of variables and the 
(i,j)'th  entry is \nameref{df}(\meta{expr},\meta{variable\_list}(i),
\meta{variable\_list}(j)).

\begin{Examples}

hessian(x*y*z+x^2,\{w,x,y,z\}); &
\begin{multilineoutput}{6cm}
[0  0  0  0]
[          ]
[0  2  z  y]
[          ]
[0  z  0  x]
[          ]
[0  y  x  0]
\end{multilineoutput}{6cm}

\end{Examples}

Related functions: \nameref{df}.

\end{Operator}


\begin{Operator}{hilbert}

\begin{Syntax}
\name{hilbert}(\meta{square\_size},\meta{expr})
\end{Syntax}

\meta{square\_size} :- a positive integer. 

\meta{expr}         :- an algebraic expression.

\name{hilbert} computes the square hilbert matrix of dimension 
\meta{square\_size}. 

This is the symmetric matrix in which the (i,j)'th entry is 
1/(i+j-\meta{expr}).

\begin{Examples}

hilbert(3,y+x); &
\begin{multilineoutput}{6cm}
[    - 1          - 1          - 1    ]
[-----------  -----------  -----------]
[ x + y - 2    x + y - 3    x + y - 4 ]
[                                     ]
[    - 1          - 1          - 1    ]
[-----------  -----------  -----------]
[ x + y - 3    x + y - 4    x + y - 5 ]
[                                     ]
[    - 1          - 1          - 1    ]
[-----------  -----------  -----------]
[ x + y - 4    x + y - 5    x + y - 6 ]
\end{multilineoutput}

\end{Examples}

\end{Operator}


\begin{Operator}{jacobian}

\begin{Syntax}
\name{jacobian}(\meta{expr\_list},\meta{variable\_list})
\end{Syntax}

\meta{expr\_list}     :- either a single algebraic expression or a list 
                         of algebraic expressions.

\meta{variable\_list} :- either a single variable or a list of 
                         variables.

\name{jacobian} computes the jacobian matrix of \meta{expr\_list} 
w.r.t. \meta{variable\_list}. 

This is a matrix whose (i,j)'th entry is \nameref{df}(\meta{expr\_list}
(i),\meta{variable\_list}(j)).

The matrix is n by m where n is the number of variables and m the number
of expressions.

\begin{Examples}
 
jacobian(\{x^4,x*y^2,x*y*z^3\},\{w,x,y,z\}); &
\begin{multilineoutput}{6cm}
[      3                 ]
[0  4*x     0       0    ]
[                        ]
[     2                  ]
[0   y    2*x*y     0    ]
[                        ]
[      3     3          2]
[0  y*z   x*z    3*x*y*z ]
\end{multilineoutput}

\end{Examples}

Related functions:
\nameref{hessian}, \nameref{df}.

\end{Operator}


\begin{Operator}{jordan_block}

\begin{Syntax}
\name{jordan\_block}(\meta{expr},\meta{square\_size})
\end{Syntax}

\meta{expr}         :- an algebraic expression or symbol. 

\meta{square\_size} :- a positive integer.

\name{jordan\_block} computes the square jordan block matrix J of 
dimension \meta{square\_size}. 

The entries of J are:

                J(i,i) = \meta{expr} for i=1 
                \ldots n, J(i,i+1) = 1 for i=1 
                \ldots n-1, and all other entries are 0.

\begin{Examples}

jordan\_block(x,5); &
\begin{multilineoutput}{6cm}
[x  1  0  0  0]
[             ]
[0  x  1  0  0]
[             ]
[0  0  x  1  0]
[             ]
[0  0  0  x  1]
[             ]
[0  0  0  0  x]
\end{multilineoutput}

\end{Examples}

Related functions: \nameref{diagonal}, \nameref{companion}.

\end{Operator}


\begin{Operator}{lu_decom}

\begin{Syntax}
\name{lu\_decom}(\meta{matrix})
\end{Syntax}

\meta{matrix} :- a \nameref{matrix} containing either numeric entries 
                 or imaginary entries with numeric coefficients.

\name{lu\_decom} performs LU decomposition on \meta{matrix}, ie: it 
returns \{L,U\} where L is a lower diagonal \nameref{matrix},  U an 
upper diagonal \nameref{matrix} and A = LU.

Caution:

The algorithm used can swap the rows of \meta{matrix} during the 
calculation. This means that LU does not equal \meta{matrix} but a row 
equivalent of it. Due to this,  \name{lu\_decom} returns \{L,U,vec\}. 
The call \name{convert(\meta{matrix},vec)} will return the matrix that has
been decomposed, i.e: LU = convert(\meta{matrix},vec).


\begin{Examples}

K := mat((1,3,5),(-4,3,7),(8,6,4)); &
\begin{multilineoutput}{6cm}
     [1   3  5]
     [        ]
k := [-4  3  7]
     [        ]
     [8   6  4]
\end{multilineoutput}\\

on rounded;\\
lu :=  lu_decom(K); &
\begin{multilineoutput}{6cm}
lu := \{

       [8    0      0  ]
       [               ]
       [-4  6.0     0  ]
       [               ]
       [1   2.25  1.125]

       ,


       [1  0.75  0.5]
       [            ]
       [0   1    1.5]
       [            ]
       [0   0     1 ]

       ,

       [3 2 3]\}
\end{multilineoutput} \\

first lu * second lu; &
\begin{multilineoutput}{6cm}
[8   6.0  4.0]
[            ]
[-4  3.0  7.0]
[            ]
[1   3.0  5.0]
\end{multilineoutput}\\

convert(K,third lu); &
\begin{multilineoutput}
[8   6  4]
[        ]
[-4  3  7]
[        ]
[1   3  5]
\end{multilineoutput}\\

P := mat((i+1,i+2,i+3),(4,5,2),(1,i,0)); &
\begin{multilineoutput}{6cm}
     [i + 1  i + 2  i + 3]
     [                   ]
p := [  4      5      2  ]
     [                   ]
     [  1      i      0  ]
\end{multilineoutput}\\

lu :=  lu_decom(P); &
\begin{multilineoutput}{6cm}
lu := \{

       [  1        0                      0                ]
       [                                                   ]
       [  4     - 4*i + 5                 0                ]
       [                                                   ]
       [i + 1      3       0.414634146341*i + 2.26829268293]

       ,


       [1  i                 0                ]
       [                                      ]
       [0  1  0.19512195122*i + 0.243902439024]
       [                                      ]
       [0  0                 1                ]

       ,

       [3 2 3]\}
\end{multilineoutput}\\

first lu * second lu; &
\begin{multilineoutput}{6cm}
[  1      i       0   ]
[                     ]
[  4      5      2.0  ]
[                     ]
[i + 1  i + 2  i + 3.0]
\end{multilineoutput}\\

convert(P,third lu); &
\begin{multilineoutput}{6cm}
[  1      i      0  ]
[                   ]
[  4      5      2  ]
[                   ]
[i + 1  i + 2  i + 3]
\end{multilineoutput}\\

\end{Examples}

Related functions: \nameref{cholesky}.

\end{Operator}


\begin{Operator}{make_identity}

\begin{Syntax}
\name{make\_identity}(\meta{square\_size})
\end{Syntax}

\meta{square\_size} :- a positive integer.

\name{make\_identity} creates the identity matrix of dimension 
\meta{square\_size}.

\begin{Examples}

make_identity(4); &
\begin{multilineoutput}{6cm}
[1  0  0  0]
[          ]
[0  1  0  0]
[          ]
[0  0  1  0]
[          ]
[0  0  0  1]
\end{multilineoutput}

\end{Examples}

Related functions: \nameref{diagonal}.

\end{Operator}


\begin{Operator}{matrix_augment}
Matrix augment, matrix stack:

\begin{Syntax}
\name{matrix\_augment} \{\meta{matrix\_list}\}
\end{Syntax}

(If you are feeling lazy then the braces can be omitted.)

\meta{matrix\_list} :- matrices.

\name{matrix\_augment} sticks the matrices in \meta{matrix\_list}
together horizontally. 

\name{matrix\_stack} sticks the matrices in \meta{matrix\_list} 
together vertically.


\begin{Examples}

matrix_augment(\{A,A\}); &
\begin{multilineoutput}{6cm}
[1  2  3  1  2  3]
[                ]
[4  5  6  4  5  6]
[                ]
[7  8  9  7  8  9]
\end{multilineoutput}\\

matrix_stack(A,A); &
\begin{multilineoutput}{6cm}
[1  2  3]
[       ]
[4  5  6]
[       ]
[7  8  9]
[       ]
[1  2  3]
[       ]
[4  5  6]
[       ]
[7  8  9]
\end{multilineoutput} \\

\end{Examples}

Related functions:
\nameref{augment\_columns}, \nameref{stack\_rows}, \nameref{sub\_matrix}.

\end{Operator}


\begin{Operator}{matrixp}

\begin{Syntax}
\name{matrixp}(\meta{test\_input})
\end{Syntax}

\meta{test\_input} :- anything you like.

\name{matrixp} is a boolean function that returns t if the input is a 
matrix and nil otherwise.


\begin{Examples}

matrixp A; &
t \\
matrixp(doodlesackbanana);&
nil 

\end{Examples}

Related functions: \nameref{squarep}, \nameref{symmetricp}.

\end{Operator}


\begin{Operator}{matrix_stack}
see:  \nameref{matrix\_augment}.
\end{Operator}


\begin{Operator}{minor}

\begin{Syntax}
\name{minor}(\meta{matrix},\meta{r},\meta{c})
\end{Syntax}

\meta{matrix}            :- a \nameref{matrix}.
\meta{r},\meta{c}        :- positive integers.

\name{minor} computes the (\meta{r},\meta{c})'th minor of \meta{matrix}.
This is created by removing the \meta{r}'th row and the \meta{c}'th 
column from \meta{matrix}.

                
\begin{Examples}

minor(A,1,3); &
\begin{multilineoutput}{6cm}
[4  5]
[    ]
[7  8]
\end{multilineoutput}

\end{Examples}

Related functions:
\nameref{remove\_columns}, \nameref{remove\_rows}.

\end{Operator}


\begin{Operator}{mult_columns}
Mult columns, mult rows:

\begin{Syntax}
\name{mult\_columns}(\meta{matrix},\meta{column\_list},\meta{expr})
\end{Syntax}

\meta{matrix}       :- a \nameref{matrix}. 

\meta{column\_list} :- a positive integer or a list of positive 
                       integers. 

\meta{expr}         :- an algebraic expression.

\name{mult\_columns} returns a copy of \meta{matrix} in which the 
columns specified in \meta{column\_list} have been multiplied by 
\meta{expr}. 

\name{mult\_rows} performs the same task on the rows of \meta{matrix}.

\begin{Examples}

mult_columns(A,\{1,3\},x); &
\begin{multilineoutput}{6cm}
[ x   2  3*x]
[           ]
[4*x  5  6*x]
[           ]
[7*x  8  9*x]
\end{multilineoutput}\\

mult_rows(A,2,10); &
\begin{multilineoutput}{6cm}
[1   2   3 ]
[          ]
[40  50  60]
[          ]
[7   8   9 ]
\end{multilineoutput}

\end{Examples}

Related functions: \nameref{add\_to\_columns}, \nameref{add\_to\_rows}.

\end{Operator}


\begin{Operator}{mult_rows}
see:  \nameref{mult\_columns}.
\end{Operator}


\begin{Operator}{pivot}

\begin{Syntax}
\name{pivot}(\meta{matrix},\meta{r},\meta{c})
\end{Syntax}
 
\meta{matrix}     :- a matrix. 

\meta{r},\meta{c} :- positive integers such that \meta{matrix}(\meta{r},
                     \meta{c}) neq 0.

\name{pivot} pivots \meta{matrix} about it's (\meta{r},\meta{c})'th 
entry. 
 
To do this, multiples of the \meta{r}'th row are added to every other 
row in the matrix. 

This means that the \meta{c}'th column will be 0 except for the 
(\meta{r},\meta{c})'th entry. 


\begin{Examples}

pivot(A,2,3); &
\begin{multilineoutput}{6cm}
[      - 1    ]
[-1  ------  0]
[      2      ]
[             ]
[4     5     6]
[             ]
[      1      ]
[1    ---    0]
[      2      ]
\end{multilineoutput}

\end{Examples}

Related functions:
\nameref{rows\_pivot}.

\end{Operator}

\begin{Operator}{pseudo_inverse}

\begin{Syntax}
\name{pseudo\_inverse}(\meta{matrix})
\end{Syntax}

\meta{matrix} :- a \nameref{matrix}.

\name{pseudo\_inverse}, also known as the Moore-Penrose inverse, 
computes the pseudo inverse of \meta{matrix}. 

Given the singular value decomposition of \meta{matrix}, i.e: 
A = $U*P*V^T$, then the pseudo inverse $A^{-1}$ is defined by
$A^{-1} = V^T*P^{-1}*U$.

Thus \meta{matrix} *  pseudo\_inverse(A) = Id.
(Id is the identity matrix).


\begin{Examples}

R := mat((1,2,3,4),(9,8,7,6)); &
\begin{multilineoutput}{6cm}
     [1  2  3  4]
r := [          ]
     [9  8  7  6]
\end{multilineoutput}\\

on rounded; \\
pseudo_inverse(R); &
\begin{multilineoutput}{6cm}
[ - 0.199999999996      0.100000000013   ]
[                                        ]
[ - 0.0499999999988    0.0500000000037   ]
[                                        ]
[ 0.0999999999982     - 5.57825497203e-12]
[                                        ]
[  0.249999999995      - 0.0500000000148 ]
\end{multilineoutput}

\end{Examples}


Related functions: \nameref{svd}.

\end{Operator}


\begin{Operator}{random_matrix}

\begin{Syntax}
\name{random\_matrix}(\meta{r},\meta{c},\meta{limit})
\end{Syntax}
 
\meta{r},\meta{c},\meta{limit} :- positive integers. 

\name{random\_matrix} creates an \meta{r} by \meta{c} matrix with random
entries in the range -limit < entry < limit.


Switches:

\name{imaginary}    :- if on then matrix entries are x+i*y where -limit < x,y
                 < \meta{limit}. 

\name{not\_negative} :- if on then 0 < entry < \meta{limit}. In the imaginary 
                 case we have 0 < x,y < \meta{limit}. 

\name{only\_integer} :- if on then each entry is an integer. In the imaginary 
		 case x and y are integers.

\name{symmetric}     :- if on then the matrix is symmetric. 

\name{upper\_matrix} :- if on then the matrix is upper triangular.

\name{lower\_matrix} :- if on then the matrix is lower triangular.



\begin{Examples}

on rounded; \\
random_matrix(3,3,10); &
\begin{multilineoutput}{6cm}
[ - 8.11911717343    - 5.71677292768   0.620580830035 ]
[                                                     ]
[ - 0.032596262422    7.1655452861     5.86742633837  ]
[                                                     ]
[ - 9.37155438255    - 7.55636708637   - 8.88618627557]
\end{multilineoutput}\\

on only_integer, not_negative, upper_matrix, imaginary; \\
random_matrix(4,4,10); &
\begin{multilineoutput}{6cm}
[70*i + 15  28*i + 8   2*i + 79   27*i + 44]
[                                          ]
[    0      46*i + 95  9*i + 63   95*i + 50]
[                                          ]
[    0          0      31*i + 75  14*i + 65]
[                                          ]
[    0          0          0      5*i + 52 ]
\end{multilineoutput}\\

\end{Examples}

\end{Operator}


\begin{Operator}{remove_columns}
Remove columns, remove rows:

\begin{Syntax}
\name{remove\_columns}(\meta{matrix},\meta{column\_list})
\end{Syntax}

\meta{matrix}       :- a \nameref{matrix}.
\meta{column\_list} :- either a positive integer or a list of positive 
                       integers.

\name{remove\_columns} removes the columns specified in 
\meta{column\_list} from \meta{matrix}. 

\name{remove\_rows} performs the same task on the rows of \meta{matrix}.

\begin{Examples} 

remove_columns(A,2); &
\begin{multilineoutput}{6cm}
[1  3]
[    ]
[4  6]
[    ]
[7  9]
\end{multilineoutput}\\

remove_rows(A,\{1,3\}); &
\begin{multilineoutput}{6cm}
[4  5  6]
\end{multilineoutput}\\


\end{Examples}

Related functions: \nameref{minor}.

\end{Operator}


\begin{Operator}{remove_rows}
see:  \nameref{remove\_columns}.
\end{Operator}


\begin{Operator}{row_dim}
see:  \nameref{column\_dim}.
\end{Operator}


\begin{Operator}{rows_pivot}

\begin{Syntax}
\name{rows\_pivot}(\meta{matrix},\meta{r},\meta{c},\{\meta{row\_list}\})
\end{Syntax}

\meta{matrix}     :- a nameref{matrix}.

\meta{r},\meta{c} :- positive integers such that \meta{matrix}(\meta{r},
                     \meta{c}) neq 0.

\meta{row\_list}  :- positive integer or a list of positive integers.

\name{rows\_pivot} performs the same task as  \name{pivot} but applies 
the pivot only to the rows specified in \meta{row\_list}.


\begin{Examples}

N := mat((1,2,3),(4,5,6),(7,8,9),(1,2,3),(4,5,6)); &
\begin{multilineoutput}{6cm}
     [1  2  3]
     [       ]
     [4  5  6]
     [       ]
n := [7  8  9]
     [       ]
     [1  2  3]
     [       ]
     [4  5  6]
\end{multilineoutput}\\

rows_pivot(N,2,3,{4,5}); &
\begin{multilineoutput}{6cm}
[1     2     3]
[             ]
[4     5     6]
[             ]
[7     8     9]
[             ]
[      - 1    ]
[-1  ------  0]
[      2      ]
[             ]
[0     0     0]
\end{multilineoutput}\\

\end{Examples}

Related functions: \nameref{pivot}.

\end{Operator}


\begin{Operator}{simplex}

\begin{Syntax}
\name{simplex}(\meta{max/min},\meta{objective function},
\{\meta{linear inequalities}\})
\end{Syntax}

\meta{max/min}             :- either max or min (signifying maximize and
			      minimize).

\meta{objective function}  :- the function you are maximizing or
			      minimizing.

\meta{linear inequalities} :- the constraint inequalities. Each one must
                              be of the form {\it sum of variables (
                              <=,=,>=) number}.

\name{simplex} applies the revised simplex algorithm to find the 
optimal(either maximum or minimum) value of the 
\meta{objective function} under the linear inequality constraints.

It returns \{optimal value,\{ values of variables at this optimal\}\}.

The algorithm implies that all the variables are non-negative.

\begin{Examples}

 simplex(max,x+y,\{x>=10,y>=20,x+y<=25\}); &

 ***** Error in simplex: Problem has no feasible solution\\

simplex(max,10x+5y+5.5z,\{5x+3z<=200,x+0.1y+0.5z<=12,
0.1x+0.2y+0.3z<=9, 30x+10y+50z<=1500\}); &

\{525.0,\{x=40.0,y=25.0,z=0\}\}\\

\end{Examples}

\end{Operator}


\begin{Operator}{squarep}

\begin{Syntax}
\name{squarep}(\meta{matrix})
\end{Syntax}
 
\meta{matrix} :- a \nameref{matrix}.

\name{squarep} is a predicate that returns t if the \meta{matrix} is 
square and nil otherwise.

\begin{Examples}

squarep(mat((1,3,5))); &
nil \\
squarep(A);
t\\

\end{Examples}

Related functions: \nameref{matrixp}, \nameref{symmetricp}.

\end{Operator}


\begin{Operator}{stack_rows}
see:  \nameref{augment\_columns}.
\end{Operator}


\begin{Operator}{sub_matrix}

\begin{Syntax}
\name{sub\_matrix}(\meta{matrix},\meta{row\_list},\meta{column\_list})
\end{Syntax}

\meta{matrix}                         :- a matrix. 
\meta{row\_list}, \meta{column\_list} :- either a positive integer or a
                                         list of positive integers.

name{sub\_matrix} produces the matrix consisting of the intersection of
the rows specified in \meta{row\_list} and the columns specified in 
\meta{column\_list}. 


\begin{Examples}

sub_matrix(A,\{1,3\},\{2,3\}); &
\begin{multilineoutput}{6cm}
[2  3]
[    ]
[8  9]
\end{multilineoutput}

\end{Examples}

Related functions:
\nameref{augment\_columns}, \nameref{stack\_rows}.

\end{Operator}


\begin{Operator}{svd}
\index{singular value decomposition}
Singular value decomposition:

\begin{Syntax}
\name{svd}(\meta{matrix})
\end{Syntax}

\meta{matrix} :- a \nameref{matrix} containing only numeric entries.


\name{svd} computes the singular value decomposition of \meta{matrix}. 

It returns 

\{U,P,V\} 

where A = $U*P*V^T$

and P = diag(sigma(1) ... sigma(n)). 

sigma(i) for i= 1 ... n are the singular values of 
\meta{matrix}.

n is the column dimension of \meta{matrix}.

The singular values of \meta{matrix} are the non-negative square roots 
of the eigenvalues of $A^T*A$.

U and V are such that $U*U^T = V*V^T = V^T*V$ = Id.
Id is the identity matrix.


\begin{Examples}

Q := mat((1,3),(-4,3)); &
\begin{multilineoutput}{6cm}
     [1   3]
q := [     ]
     [-4  3]
\end{multilineoutput}\\

on rounded; \\
svd(Q); &
\begin{multilineoutput}{6cm}
\{

 [ 0.289784137735    0.957092029805]
 [                                 ]
 [ - 0.957092029805  0.289784137735]

 ,


 [5.1491628629       0      ]
 [                          ]
 [     0        2.9130948854]

 ,


 [ - 0.687215403194   0.726453707825  ]
 [                                    ]
 [ - 0.726453707825   - 0.687215403194]

\}
\end{multilineoutput}\\

\end{Examples}

\end{Operator}


\begin{Operator}{swap_columns}
Swap columns, swap rows:

\begin{Syntax}
\name{swap\_columns} (\meta{matrix},\meta{c1},\meta{c2})
\end{Syntax}

\meta{matrix}       :- a \nameref{matrix}.

\meta{c1},\meta{c1} :- positive integers. 
 
\name{swap\_columns} swaps column \meta{c1} of \meta{matrix} with 
column \meta{c2}. 

\name{swap\_rows} performs the same task on two rows of \meta{matrix}.

\begin{Examples}

swap_columns(A,2,3); &
\begin{multilineoutput}{6cm}
[1  3  2]
[       ]
[4  6  5]
[       ]
[7  9  8]
\end{multilineoutput}\\

swap_rows(A,1,3); &
\begin{multilineoutput}{6cm}
[7  8  9]
[       ]
[4  5  6]
[       ]
[1  2  3]
\end{multilineoutput}

\end{Examples}

Related functions: \nameref{swap\_entries}.

\end{Operator}


\begin{Operator}{swap_entries}

\begin{Syntax}
\name{swap\_entries}(\meta{matrix},\{\meta{r1},\meta{c1}\},\{\meta{r2},
\meta{c2}\})
\end{Syntax}

\meta{matrix}  :- a \nameref{matrix}. 

\meta{r1},\meta{c1},\meta{r2},\meta{c2} :- positive integers.

\name{swap\_entries} swaps \meta{matrix}(\meta{r1},\meta{c1}) with 
\meta{matrix}(\meta{r2},\meta{c2}).

\begin{Examples}

swap_entries(A,\{1,1\},\{3,3\}); &
\begin{multilineoutput}{6cm}
[9  2  3]
[       ]
[4  5  6]
[       ]
[7  8  1]
\end{multilineoutput}

\end{Examples}

Related functions: \nameref{swap\_columns}, \nameref{swap\_rows}.

\end{Operator}


\begin{Operator}{swap_rows}
see:  \nameref{swap\_columns}.
\end{Operator}


\begin{Operator}{symmetricp}

\begin{Syntax}
\name{symmetricp}(\meta{matrix})
\end{Syntax}
 
\meta{matrix} :- a \nameref{matrix}.

\name{symmetricp} is a predicate that returns t if the matrix is symmetric 
and nil otherwise.


\begin{Examples}

symmetricp(make_identity(11)); &
t \\
symmetricp(A); &
nil\\

\end{Examples}

Related functions: \nameref{matrixp}, \nameref{squarep}.

\end{Operator}


\begin{Operator}{toeplitz}

\begin{Syntax}
\name{toeplitz}(\meta{expr\_list}) 
\end{Syntax}
(If you are feeling lazy then the braces can be omitted.)

\meta{expr\_list} :- list of algebraic expressions.

\name{toeplitz} creates the toeplitz matrix from the \meta{expr\_list}. 

This is a square symmetric matrix in which the first expression is 
placed on the diagonal and the i'th expression is placed on the (i-1)'th
sub and super diagonals.

It has dimension n where n is the number of expressions.


\begin{Examples}

toeplitz({w,x,y,z}); &
\begin{multilineoutput}{6cm}
[w  x  y  z]
[          ]
[x  w  x  y]
[          ]
[y  x  w  x]
[          ]
[z  y  x  w]
\end{multilineoutput}

\end{Examples}

\end{Operator}


\begin{Operator}{vandermonde}

\begin{Syntax}  
\name{vandermonde}(\{\meta{expr\_list}\})  
\end{Syntax}
(If you are feeling lazy then the braces can be omitted.)

\meta{expr\_list} :- list of algebraic expressions.

\name{vandermonde} creates the vandermonde matrix from the 
\meta{expr\_list}.

This is the square matrix in which the (i,j)'th entry is 
\meta{expr\_list}$(i)^(j-1)$.

It has dimension n where n is the number of expressions.

         
\begin{Examples}             
vandermonde({x,2*y,3*z}); &
\begin{multilineoutput}{6cm}
[          2 ]
[1   x    x  ]
[            ]
[           2]
[1  2*y  4*y ]
[            ]
[           2]
[1  3*z  9*z ]
\end{multilineoutput}

\end{Examples}

\end{Operator}



REDUCE Historical
REDUCE Sourceforge Project | Historical SVN Repository | GitHub Mirror | SourceHut Mirror | NotABug Mirror | Chisel Mirror | Chisel RSS ]