<A NAME=INTERPOL>
<TITLE>INTERPOL</TITLE></A>
<b><a href=r37_idx.html>INDEX</a></b><p><p>
<B>INTERPOL</B> _ _ _ _ _ _ _ _ _ _ _ _ <B>operator</B><P>
<P>
<P>
<P>
<em>interpol</em>generates an interpolation polynomial.
<P> <H3>
syntax: </H3>
<P>
<P>
interpol(<values>,<variable>,<points>)
<P>
<P>
<P>
<values> and <points> are
<A HREF=r37_0053.html>list</A>s of equal length and
<variable> is an algebraic expression (preferably a
<A HREF=r37_0002.html>kernel</A>).
The interpolation polynomial is generated in the given variable of degree
length(<values>)-1. The unique polynomial <em>f</em> is defined by the
property that for corresponding elements <em>v</em> of <values> and
<em>p</em> of <points> the relation <em>f(p)=v</em> holds.
<P>
<P>
<P> <H3>
examples: </H3>
<P><PRE><TT>
f := for i:=1:4 collect(i**3-1);
F := 0,7,26,63
p := {1,2,3,4};
P := 1,2,3,4
interpol(f,x,p);
3
X - 1
</TT></PRE><P>The Aitken-Neville interpolation algorithm is used which guarantee
s a
stable result even with rounded numbers and an ill-conditioned problem.
<P>
<P>
<P>