File r38/packages/crack/crorder.red artifact 707fb21cfb part of check-in 3af273af29


%********************************************************************
module crackorder$
%********************************************************************
%
% Name:		crorder.red
% Description:	Multiple orderings support	
% Author:	Arrigo
%
% $Id: crorder.red,v 1.21 1998/06/08 14:38:18 arrigo Exp $
%
% !FIXME! codep is better substituted by getd as codep works only with
% compiled code, oops.
%
% !FIXME! apply is going to be used as follows:
% apply(caddr(getv(orderings_,[ordering_number])), {eq});
% to get the ordering function.

%
% make_orderings(fcts, vars) creates a vector containing all
% possibile orderings of the given fcts and vars
%
symbolic procedure make_orderings(fcts, vars)$
begin scalar fctsl, varsl, ordsl, fn, j$
   if print_ and tr_orderings then
      <<
	 terpri()$ write "make_orderings("$
	 write fcts, ",", vars$
   	 write ")"
      >>$
   if not pairp(vars) or not vars then
      <<
	 % Thomas has some situations in which there are no
	 % variables but only functions, we accordingly create
	 % a single ordering
	 ordsl := mkvect(1)$
      	 putv(ordsl,0,list(list(nil),fcts,'default_ordering_function))$
	 return ordsl$
      >>$
   if not pairp(fcts) then
      <<
	 terpri()$ write "confused! expected list of functions"$
	 % !FIXME! Same as above
	 return(nil)
      >>$
   %
   % OK, so we now actually create two lists and then turn them into
   % our "ordering" structure which is a vector
   % [ (perm v, perm f, ordering_function)
   % ...
   %   (perm v, perm f, ordering_function) nil ]
   %
   % Purpose of the various bits is:
   %
   %	v			ordered variables list
   %	f			ordered functions list
   %	ordering_function	a function which, given a list of
   %				derivs will order them for the current
   %				ordering
   %
   % !FIXME! Do we want the trailing nil?
   %
   if simple_orderings then <<
      ordsl := mkvect(1)$
      putv(ordsl,0,list(vars,fcts,'default_ordering_function))$
   >>
   else <<
      varsl := permu(vars)$
      fctsl := permu(fcts)$
      ordsl := mkvect(length(varsl)*length(fctsl))$
      j := 0$
      for each v in varsl do 
      	 for each fn in fctsl do <<
	    putv(ordsl,j,list(v, fn, 'default_ordering_function))$
	    j := add1 j$
      	 >>$
   >>$
   % Done
   if tr_orderings then
      <<
	 terpri()$
	 write "END - make_orderings(): "$
	 terpri()$ write ordsl$
      >>$
   return ordsl$
end$

%
% permu() is TW's list of permutations generator
%
symbolic procedure permu(li)$
% generates a list of permutations of the elements of li
if length(li)=1 then list(li)
                else for each x in li join
                     for each y in permu(delete(x,li)) collect cons(x,y)$


%
% default_ordering_function(p,i) is the default function which is placed
% in each of the entries of the orderings_ vector and acts as a
% default unless the user decides to place something different. This
% allows us to have all the standard orderings and to support
% user-defined ones via different ordering_functions.
%
% p	-	list of derivatives to be sorted in the format used by
%		the decoupling routines, i.e. ( (f_1 . power)
%		(f_2 . power) (f_3 . power) ),
% i	-	ordering w.r.t. which we want to work
%

symbolic procedure default_ordering_function(p,i)$
begin scalar ordered_p, fl_from_order, vl_from_order$
   if print_ and tr_orderings then
      <<
	 terpri()$ write "default_ordering_function("$
	 write p,",",i$
   	 write ")"
      >>$
   vl_from_order := car(getv(orderings_,i))$
   fl_from_order := cadr(getv(orderings_,i))$
   if tr_orderings then
      <<
	 terpri()$ write "variables list from ordering ",i," is :",
	    vl_from_order$
	 terpri()$ write "functions list from ordering ",i," is :",
	    fl_from_order
      >>$
   %
   % This one-liner should do the trick
   %
   ordered_p := sort_derivs(p, fl_from_order, vl_from_order);
   if tr_orderings then
      <<
	 terpri()$ write "ordered: ",ordered_p
      >>$
   return ordered_p$
end$

%
% orderings_prop_list_all() returns a list of all orderings in the
% format which we use for the property list of each equation, i.e.
%
% ( \omega_1 \omega_2 ... \omega_n )
%
% where each \omega_i is the index in the orderings_ vector
%

symbolic procedure orderings_prop_list_all()$
begin scalar i, l$
   if print_ and tr_orderings then
   <<
      terpri()$ write "orderings_prop_list_all()"$
   >>$
   for i:=0:sub1 upbv(orderings_) do <<
      l := append(l,list(i))$
   >>$
   if tr_orderings then
   <<
      terpri()$ write "list: ", l$
   >>$
   return l$   
end$

%
% orderings_add_function(f) adds the given function to all the
% orderings, it is assumed that this is a new function appearing from
% an integration.
% In theory we should add the function to all orderings somewhere and
% then add n! orderings with all the possible combinations (n is the
% length of the orderings vector). This is rather unfortunate.
%
% !FIXME! What we do at the moment is add it at the end of each
% function list.
%

symbolic procedure orderings_add_function(f)$
begin scalar i, vl, fl, ofn$
   if print_ and tr_orderings then
   <<
      terpri()$ write "orderings_add_function(",f,")"$
   >>$
   for i:=0:sub1 upbv(orderings_) do <<
      vl := car(getv(orderings_,i))$
      fl := cadr(getv(orderings_,i))$
      ofn := cddr(getv(orderings_,i))$
      putv(orderings_,i,append(list(vl,append(fl,list(f))),ofn))$
   >>$
   if tr_orderings then
   <<
      terpri()$ write "new orderings vector:"$
      terpri()$ write orderings_$
   >>$
end$

%
% orderings_delete_function(f) is symmetric to add_function() but of
% course the problem here would be to find out which orderings have
% become a duplicate (if any).
% !FIXME! Example of a problem: assume we have the following fn
% situation within a couple of orderings
%
% (f g h)
% (g f h)
%
% Now, orderings_delete_function(f) will give us
%
% (g h)
% (g h)
%
% Oops!
%

symbolic procedure orderings_delete_function(f)$
begin scalar i, vl, fl, ofn$
   if print_ and tr_orderings then
   <<
      terpri()$ write "orderings_delete_function(",f,")"$
   >>$
   for i:=0:sub1 upbv(orderings_) do <<
      vl := car(getv(orderings_,i))$
      fl := cadr(getv(orderings_,i))$
      ofn := cddr(getv(orderings_,i))$
      putv(orderings_,i,append(list(vl,delete(f,fl)),ofn))$
   >>$
   if tr_orderings then
   <<
      terpri()$ write "new orderings vector:"$
      terpri()$ write orderings_$
   >>$
end$

%
% End of module
%

endmodule$ 

end$



REDUCE Historical
REDUCE Sourceforge Project | Historical SVN Repository | GitHub Mirror | SourceHut Mirror | NotABug Mirror | Chisel Mirror | Chisel RSS ]