File r37/packages/groebner/groebman.red artifact ac9403f8c8 part of check-in 3af273af29


module groebman;  % Operators for manipulation of bases and 
                  % polynomials in Groebner style.
 
 
fluid '(!*factor !*complex !*exp); % standard REDUCE switch
fluid '(                           % switches from the user interface
        !*groebopt !*groebfac !*groebres !*trgroeb !*trgroebs !*groebrm
        !*trgroeb1 !*trgroebr !*groebprereduce groebrestriction!*
        !*fullreduction !*groebstat !*groebprot !*gltbasis
        !*groebsubs
 
        !*vdpinteger !*vdpmodular  % indicating type of algorithm
        vdpsortmode!*              % term ordering mode
        secondvalue!* thirdvalue!* % auxiliary: multiple return values
        fourthvalue!*
        factortime!*               % computing time spent in factoring
        factorlvevel!*              % bookkeeping of factor tree
        pairsdone!*                % list of pairs already calculated
        probcount!*                % counting subproblems
        vbccurrentmode!*            % current domain for base coeffs.
        vbcmodule!*            % for modular calculation: current prime
       );
 
global '(groebrestriction        % interface: name of function
         groebresmax            % maximum number of internal results
         gvarslast                 % output: variable list 
         groebprotfile
         gltb
        );
 
flag ('(groebrestriction groebresmax gvarslast groebprotfile
        gltb),'share);
 
% variables for counting and numbering
fluid '(hcount!* pcount!* mcount!* fcount!* bcount!* b4count!* 
        basecount!* hzerocount!*);
 
% control of the polynomial arithmetic actually loaded
fluid '(currentvdpmodule!*); 

symbolic procedure gsorteval pars;
% reformat a polynomial or a list of polynomials by a distributive
% ordering; a list will be sorted  and zeros are elimiated
   begin scalar vars,u,v,w,oldorder,nolist,!*factor,!*exp,!*gsugar;
         integer n,pcount!*; !*exp := t;
      n := length pars;
      u := reval car pars;
      v := if n>1 then reval cadr pars else nil;
      if not eqcar(u,'list) then
      <<nolist := t; u := list('list,u)>>;
      w := for each j in groerevlist u
              collect if eqexpr j then !*eqn2a j else j;
      vars :=vars := groebnervars(w,v);
      if not vars then vdperr 'gsort;
      oldorder := vdpinit vars;
      !*vdpinteger :=nil;
      w := for each j in w collect a2vdp j;
      w := vdplsort w;
      w := for each x in w collect vdp2a x;
      while member(0,w) do w := delete(0,w);
      setkorder oldorder;
      return if nolist and w then car w else 'list . w;
   end;
 
put('gsort,'psopfn,'gsorteval);
 
 
symbolic procedure gspliteval pars;
% split a polynomial into leading monomial and reductum;             
   begin scalar vars,x,u,v,w,oldorder,!*factor,!*exp,!*gsugar;
         integer n,pcount!*; !*exp := t;
      n := length pars;
      u := reval car pars;
      v := if n>1 then reval cadr pars else nil;
      u := list('list,u);
      w := for each j in groerevlist u
              collect if eqexpr j then !*eqn2a j else j;
      vars :=vars := groebnervars(w,v);
      if not vars then  vdperr 'gsplit;
      oldorder := vdpinit vars;
      !*vdpinteger :=nil;
      w := a2vdp car w;
      if vdpzero!? w then x := w else
      <<x := vdpfmon(vdplbc w,vdpevlmon w);
        w := vdpred w>>;
      w := list('list,vdp2a x,vdp2a w);
      setkorder oldorder;
      return w;
   end;

put('gsplit,'psopfn,'gspliteval);


symbolic procedure gspolyeval pars; 
% calculate the S Polynomial from two given polynomials
   begin scalar vars,u,u1,u2,v,w,oldorder,!*factor,
                   !*exp,!*gsugar;  
         integer n,pcount!*;  !*exp := t;
      n := length pars;    
      if n<2 or n#>3 then 
           rerror(groebnr2,1,"GSpoly, illegal number or parameters");
      u1:= car pars; u2:= cadr pars;
      u := list('list,u1,u2);
      v := if n>2 then groerevlist caddr pars else nil; 
      w := for each j in groerevlist u 
              collect if eqexpr j then !*eqn2a j else j; 
      vars := vars := groebnervars(w,v);
      if not vars then vdperr 'gspoly;
      groedomainmode();
      oldorder := vdpinit vars; 
      w := for each j in w collect f2vdp numr simp j; 
      w := vdp2a groebspolynom3 (car w,cadr w);
      setkorder oldorder; 
      return w;
   end; 
  
put('gspoly,'psopfn,'gspolyeval);



 
symbolic procedure gvarseval u;
% u is a list of polynomials; gvars extracts the variables from u
   begin integer n; scalar v,!*factor,!*exp,!*gsugar; !*exp := t;
      n := length u;
      v := for each j in groerevlist reval car u collect
                      if eqexpr j then !*eqn2a j else j;
      v := groebnervars(v,nil);
      v := if n= 2 then 
         intersection (v,groerevlist reval cadr u) else v;
      return 'list . v
   end;
 
put('gvars,'psopfn,'gvarseval);
 
 
symbolic procedure greduceeval pars;
%  Polynomial reduction modulo a Groebner basis driver. u is an
% expression and v a list of expressions.  Greduce calculates the
% polynomial u reduced wrt the list of expressions v reduced to a
% groebner basis modulo using the optional caddr argument as the
% order of variables.
%     1      expression to be reduced
%     2      polynomials or equations; base for reduction
%     3      optional: list of variables
  begin scalar vars,x,u,v,w,np,oldorder,!*factor,!*groebfac,!*exp;
       scalar !*gsugar;
       integer n,pcount!*; !*exp := t;
      if !*groebprot then groebprotfile := list 'list;
      n := length pars;
      x := reval car pars;
      u := reval cadr pars;
      v := if n>2 then reval caddr pars else nil;
      w := for each j in groerevlist u
              collect if eqexpr j then !*eqn2a j else j;
      if null w then rerror(groebnr2,2,"Empty list in Greduce");
      vars := groebnervars(w,v);
      if not vars then vdperr 'greduce;
      oldorder := vdpinit vars;
      groedomainmode();
                  % cancel common denominators
      w := for each j in w collect reorder numr simp j;
                  % optimize varable sequence if desired
      if !*groebopt then<< w:=vdpvordopt (w,vars); vars := cdr w;
                           w := car w; vdpinit vars>>;
      w := for each j in w collect f2vdp j;
      if !*groebprot then w := for each j in w collect vdpenumerate j;
      if not !*vdpinteger then
      <<np := t;
        for each p in w do
          np := if np then vdpcoeffcientsfromdomain!? p
                else nil;
        if not np then <<!*vdpmodular:= nil; !*vdpinteger := t>>;
      >>;

      w := groebner2(w,nil);
      x := a2vdp x;
      if !*groebprot then 
          <<w := for each j in w collect vdpenumerate j;
            groebprotsetq('candidate,vdp2a x); 
            for each j in w do groebprotsetq(mkid('poly,vdpnumber j), 
                                             vdp2a j)>>; 
      w := car w;
      !*vdpinteger := nil;
      w :=  groebnormalform(x , w, 'sort);
      w := vdp2a w;
      setkorder oldorder;
      gvarslast := 'list . vars;
      return if w then w else 0;
   end;
 
 
put('greduce,'psopfn,'greduceeval);
 
% preduceeval moved to groesolv.red

put('preduce,'psopfn,'preduceeval);
 
endmodule;

end;


REDUCE Historical
REDUCE Sourceforge Project | Historical SVN Repository | GitHub Mirror | SourceHut Mirror | NotABug Mirror | Chisel Mirror | Chisel RSS ]