File r35/xlog/scope.log artifact 00261330fe part of check-in 3af273af29



Codemist Standard Lisp 3.54 for DEC Alpha: May 23 1994
Dump file created: Mon May 23 10:39:11 1994
REDUCE 3.5, 15-Oct-93 ...
Memory allocation: 6023424 bytes

+++ About to read file ndotest.red


% Test SCOPE Package.

% NOTE:  The SCOPE, GHORNER, GSTRUCTR and GENTRAN packages must be loaded
% to run these tests.

on priall$


optimize z:=a^2*b^2+10*a^2*m^6+a^2*m^2+2*a*b*m^4+2*b^2*m^6+b^2*m^2
           iname s;


Sumscheme :

   || EC|Far
------------
  0||  1| z
------------



Productscheme :

   |  0  1  2| EC|Far
---------------------
  1|     2  2|  1| 0
  2|  6     2| 10| 0
  3|  2     2|  1| 0
  4|  4  1  1|  2| 0
  5|  6  2   |  2| 0
  6|  2  2   |  1| 0
---------------------
0  : m
1  : b
2  : a

Number of operations in the input is: 

Number of (+,-)-operations : 5
Number of (*)-operations : 10
Number of integer exponentiations : 11
Number of other operations : 0


s0 := b*a
s4 := m*m
s1 := s4*b*b
s2 := s4*a*a
s3 := s4*s4
z := s1 + s2 + s0*(2*s3 + s0) + s3*(2*s1 + 10*s2)



Number of operations after optimization is:

Number of (+,-)-operations : 5
Number of (*)-operations : 12
Number of integer exponentiations : 0
Number of other operations : 0



Sumscheme :

   |  0  3  4  5| EC|Far
------------------------
  0|        1  1|  1| z
 15|        2 10|  1| 14
 17|  2  1      |  1| 16
------------------------
0  : s3
3  : s0
4  : s1
5  : s2



Productscheme :

   |  8  9 10 11 17 18 19 20| EC|Far
------------------------------------
  7|                    1  1|  1| s0
  8|  1                 2   |  1| s1
  9|  1                    2|  1| s2
 10|  2                     |  1| s3
 11|                 2      |  1| s4
 14|     1                  |  1| 0
 16|              1         |  1| 0
------------------------------------
8  : s4
9  : s3
10 : s2
11 : s1
17 : s0
18 : m
19 : b
20 : a


off priall$


on primat,acinfo$


optimize
     ghorner <<z:=a^2*b^2+10*a^2*m^6+a^2*m^2+2*a*b*m^4+2*b^2*m^6+b^2*m^2>>
     vorder m
     iname s;


      2  2    2    2    2     2           2      2      2
z := a *b  + m *((a  + b ) + m *(2*a*b + m *(10*a  + 2*b )))

Sumscheme :

   || EC|Far
------------
  0||  1| z
  3||  1| 2
  7||  1| 6
 10||  1| 9
------------



Productscheme :

   |  0  1  2| EC|Far
---------------------
  1|     2  2|  1| 0
  2|  2      |  1| 0
  4|        2|  1| 3
  5|     2   |  1| 3
  6|  2      |  1| 3
  8|     1  1|  2| 7
  9|  2      |  1| 7
 11|        2| 10| 10
 12|     2   |  2| 10
---------------------
0  : m
1  : b
2  : a

Number of operations in the input is: 

Number of (+,-)-operations : 5
Number of (*)-operations : 8
Number of integer exponentiations : 9
Number of other operations : 0


s0 := b*a
s1 := b*b
s2 := a*a
s3 := m*m
z := s0*s0 + s3*(s1 + s2 + s3*(2*s0 + s3*(2*s1 + 10*s2)))



Number of operations after optimization is:

Number of (+,-)-operations : 5
Number of (*)-operations : 11
Number of integer exponentiations : 0
Number of other operations : 0



Sumscheme :

   |  0  1  2| EC|Far
---------------------
  0|         |  1| z
  3|     1  1|  1| 2
  7|  2      |  1| 6
 10|     2 10|  1| 9
---------------------
0  : s0
1  : s1
2  : s2



Productscheme :

   |  3  4  5  9 10 11 12| EC|Far
---------------------------------
  1|           2         |  1| 0
  2|  1                  |  1| 0
  6|  1                  |  1| 3
  9|  1                  |  1| 7
 13|                 1  1|  1| s0
 14|                 2   |  1| s1
 15|                    2|  1| s2
 16|              2      |  1| s3
---------------------------------
3  : s3
4  : s2
5  : s1
9  : s0
10 : m
11 : b
12 : a


operator a$


k:=j:=1$


u:=c*x+d$


v:=sin(u)$


optimize {a(k,j):=v*(v^2*cos(u)^2+u),
          a(k,j)::=:v*(v^2*cos(u)^2+u)} iname s;


              2       2
a(k,j) := v*(v *cos(u)  + u)

a(1,1) := 

            2             3
cos(c*x + d) *sin(c*x + d)  + sin(c*x + d)*c*x + sin(c*x + d)*d

Sumscheme :

   |  7  8| EC|Far
------------------
  1|  1   |  1| 0
  3|      |  1| s2
  5|     1|  1| s4
------------------
7  : u
8  : d



Productscheme :

   |  0  1  2  3  4  5  6| EC|Far
---------------------------------
  0|                    1|  1| s0
  2|                 2  2|  1| 1
  4|     3  2            |  1| 3
  6|           1  1      |  1| 5
  7|     1     1  1      |  1| 3
  8|  1  1               |  1| 3
---------------------------------
0  : d
1  : s5=sin(s4)
2  : s3=cos(s4)
3  : x
4  : c
5  : s1=cos(u)
6  : v

Number of operations in the input is: 

Number of (+,-)-operations : 7
Number of (*)-operations : 10
Number of integer exponentiations : 4
Number of other operations : 5


s8 := cos(u)*v
a(k,j) := v*(u + s8*s8)
s4 := x*c + d
s5 := sin(s4)
s9 := s5*cos(s4)
a(1,1) := s5*(s4 + s9*s9)



Number of operations after optimization is:

Number of (+,-)-operations : 3
Number of (*)-operations : 7
Number of integer exponentiations : 0
Number of other operations : 3



Sumscheme :

   |  2  3 12 13| EC|Far
------------------------
  1|        1   |  1| 0
  3|            |  1| s2
  5|     1     1|  1| s4
 11|  1         |  1| 10
------------------------
2  : s4
3  : s6
12 : u
13 : d



Productscheme :

   |  0  1  4  5  6  7  8  9 10 11| EC|Far
------------------------------------------
  0|                             1|  1| s0
  2|     2                        |  1| 1
  4|  2                           |  1| 11
  9|                    1  1      |  1| s6
 10|              1               |  1| 3
 13|                          1  1|  1| s8
 14|              1  1            |  1| s9
------------------------------------------
0  : s9
1  : s8
4  : s6
5  : d
6  : s5=sin(s4)
7  : s3=cos(s4)
8  : x
9  : c
10 : s1=cos(u)
11 : v


off exp$


optimize {a(k,j):=v*(v^2*cos(u)^2+u),
          a(k,j)::=:v*(v^2*cos(u)^2+u)} iname s;


              2       2
a(k,j) := v*(v *cos(u)  + u)

                       2             2
a(1,1) := (cos(c*x + d) *sin(c*x + d)  + c*x + d)*sin(c*x + d)

Sumscheme :

   |  6  7| EC|Far
------------------
  1|  1   |  1| 0
  4|     1|  1| 3
  6|     1|  1| s4
------------------
6  : u
7  : d



Productscheme :

   |  0  1  2  3  4  5| EC|Far
------------------------------
  0|                 1|  1| s0
  2|              2  2|  1| 1
  3|  1               |  1| s2
  5|  2  2            |  1| 4
  7|        1  1      |  1| 6
  8|        1  1      |  1| 4
------------------------------
0  : s5=sin(s4)
1  : s3=cos(s4)
2  : x
3  : c
4  : s1=cos(u)
5  : v

Number of operations in the input is: 

Number of (+,-)-operations : 6
Number of (*)-operations : 8
Number of integer exponentiations : 4
Number of other operations : 4


s8 := cos(u)*v
a(k,j) := v*(u + s8*s8)
s4 := x*c + d
s5 := sin(s4)
s9 := s5*cos(s4)
a(1,1) := s5*(s4 + s9*s9)



Number of operations after optimization is:

Number of (+,-)-operations : 3
Number of (*)-operations : 7
Number of integer exponentiations : 0
Number of other operations : 3



Sumscheme :

   |  2  3 11 12| EC|Far
------------------------
  1|        1   |  1| 0
  4|  1         |  1| 3
  6|     1     1|  1| s4
------------------------
2  : s4
3  : s6
11 : u
12 : d



Productscheme :

   |  0  1  4  5  6  7  8  9 10| EC|Far
---------------------------------------
  0|                          1|  1| s0
  2|     2                     |  1| 1
  3|           1               |  1| s2
  5|  2                        |  1| 4
  9|                 1  1      |  1| s6
 11|                       1  1|  1| s8
 12|           1  1            |  1| s9
---------------------------------------
0  : s9
1  : s8
4  : s6
5  : s5=sin(s4)
6  : s3=cos(s4)
7  : x
8  : c
9  : s1=cos(u)
10 : v


off primat,acinfo,period$


on fort$


optimize z:=(6*a+18*b+9*c+3*d+6*e+18*f+6*g+5*h+5*k+3)^13 iname s;



      s0=5.0*(h+k)+3.0*(3.0*c+d+1.0+6.0*(b+f)+2.0*(a+exp(1.0)+g))
      s3=s0*s0*s0
      s2=s3*s3
      z=s0*s2*s2

optimize {x:=3*a*p,y:=3*a*q,z:=6*a*r+2*b*p,u:=6*a*d+2*b*q,
v:=9*a*c+4*b*d,w:=4*b} iname s;



      s2=3.0*a
      x=s2*p
      y=s2*q
      s1=2.0*b
      s3=6.0*a
      z=s1*p+s3*r
      u=s1*q+s3*d
      s0=4.0*b
      v=s0*d+9.0*c*a
      w=s0

off fort$


clear a$


matrix a(2,2)$


a(1,1):=x+y+z$


a(1,2):=x*y$


a(2,1):=(x+y)*x*y$


a(2,2):=(x+2*y+3)^3-x$


on acinfo$


optimize gstructr<<a;
                   aa:=(x+y)^2;b:=(x+y)*(y+z);c:=(x+2*y)*(y+z)*(z+x)^2>>
name v iname s;


a(1,1) := x + y + z

a(1,2) := x*y

v2 := x + y

a(2,1) := v2*x*y

                       3
a(2,2) := (x + 2*y + 3)  - x

        2
aa := v2

v5 := y + z

b := v2*v5

                      2
c := (x + 2*y)*(x + z) *v5

Number of operations in the input is: 

Number of (+,-)-operations : 9
Number of (*)-operations : 8
Number of integer exponentiations : 3
Number of other operations : 0


s5 := x + z
a(1,1) := s5 + y
s8 := y*x
a(1,2) := s8
v2 := x + y
a(2,1) := s8*v2
s6 := x + 2*y
s4 := s6 + 3
a(2,2) := s4*s4*s4 - x
aa := v2*v2
v5 := y + z
b := v5*v2
c := s6*s5*s5*v5



Number of operations after optimization is:

Number of (+,-)-operations : 7
Number of (*)-operations : 10
Number of integer exponentiations : 0
Number of other operations : 0


clear a$


off fort;


on priall$


optimize z:=:for j:=2:6 sum a^(1/j) iname s;


         1/3               1/4     1/5     1/6
z := (((a    + sqrt(a)) + a   ) + a   ) + a

Sumscheme :

   || EC|Far
------------
  0||  1| z
------------



Productscheme :

   |  0| EC|Far
---------------
  1| 20|  1| 0
  2| 30|  1| 0
  3| 15|  1| 0
  4| 12|  1| 0
  5| 10|  1| 0
---------------
0  : a

Number of operations in the input is: 

Number of (+,-)-operations : 4
Number of (*)-operations : 0
Number of integer exponentiations : 0
Number of other operations : 5


      1/60
a := a
s7 := a*a
s6 := s7*a
s4 := s7*s6
s2 := s4*s4
s1 := s7*s2
s0 := s6*s1
s3 := s4*s0
z := s2 + s1 + s0 + s3 + s3*s2



Number of operations after optimization is:

Number of (+,-)-operations : 4
Number of (*)-operations : 8
Number of integer exponentiations : 0
Number of other operations : 1



Sumscheme :

   |  3  4  5  6| EC|Far
------------------------
  0|  1  1  1  1|  1| z
------------------------
3  : s2
4  : s1
5  : s0
6  : s3



Productscheme :

   |  9 10 12 13 14 15 16 22| EC|Far
------------------------------------
  2|           1  1         |  1| 0
  6|     1           1      |  1| s0
  7|  1           1         |  1| s1
  8|        2               |  1| s2
  9|        1           1   |  1| s3
 10|  1  1                  |  1| s4
 12|  1                    1|  1| s6
 13|                       2|  1| s7
------------------------------------
9  : s7
10 : s6
12 : s4
13 : s3
14 : s2
15 : s1
16 : s0
22 : a


off acinfo,priall$


on optdecs$


optlang!*:='fortran$


optimize {x(i+1,i-1):=a(i+1,i-1)+b(i),y(i-1):=a(i-1,i+1)-b(i)} iname s
         declare <<x(4),a(4,4),y(5):real;b(5):integer>>;



      integer b(5),i,s1,s2
      real a(4,4),s4,x(4),y(5)
      s1=i+1.0
      s2=i-1.0
      s4=b(i)
      x(s1,s2)=a(s1,s2)+s4
      y(s2)=a(s2,s1)-s4

optlang!*:='c$


optimize {x(i+1,i-1):=a(i+1,i-1)+b(i),y(i-1):=a(i-1,i+1)-b(i)} iname s
         declare <<x(4),a(4,4),y(5):real;b(5):integer>>;



int b[6],i,s1,s2;
float a[5][5],s4,x[5],y[6];
{
    s1=i+1.0;
    s2=i-1.0;
    s4=b[i];
    x[s1][s2]=a[s1][s2]+s4;
    y[s2]=a[s2][s1]-s4;
}

optlang!*:= 'pascal$


optimize {x(i+1,i-1):=a(i+1,i-1)+b(i),y(i-1):=a(i-1,i+1)-b(i)} iname s
         declare <<x(4),a(4,4),y(5):real;b(5):integer>>;



var
    s2,s1,i: integer;
    b: array[0..5] of integer;
    s4: real;
    y: array[0..5] of real;
    x: array[0..4] of real;
    a: array[0..4,0..4] of real;
begin
    s1:=i+1.0;
    s2:=i-1.0;
    s4:=b[i];
    x[s1,s2]:=a[s1,s2]+s4;
    y[s2]:=a[s2,s1]-s4
end;

optlang!*:='ratfor$


optimize {x(i+1,i-1):=a(i+1,i-1)+b(i),y(i-1):=a(i-1,i+1)-b(i)} iname s
         declare <<x(4),a(4,4),y(5):real;b(5):integer>>;



integer b(5),i,s1,s2
real a(4,4),s4,x(4),y(5)
{
    s1=i+1.0
    s2=i-1.0
    s4=b(i)
    x(s1,s2)=a(s1,s2)+s4
    y(s2)=a(s2,s1)-s4
}


end;
(TIME:  scope 1283 1333)


End of Lisp run after 1.31+0.91 seconds


REDUCE Historical
REDUCE Sourceforge Project | Historical SVN Repository | GitHub Mirror | SourceHut Mirror | NotABug Mirror | Chisel Mirror | Chisel RSS ]