SVD _ _ _ _ _ _ _ _ _ _ _ _ operator
Singular value decomposition:
<matrix> :- a matrix containing only numeric entries.
svdcomputes the singular value decomposition of <matrix>.
It returns
{U,P,V}
where A = U*P*V^T
and P = diag(sigma(1) ... sigma(n)).
sigma(i) for i= 1 ... n are the singular values of <matrix>.
n is the column dimension of <matrix>.
The singular values of <matrix> are the non-negative square roots of the eigenvalues of A^T*A.
U and V are such that U*U^T = V*V^T = V^T*V = Id. Id is the identity matrix.
Q := mat((1,3),(-4,3)); [1 3] q := [ ] [-4 3] on rounded; svd(Q); { [ 0.289784137735 0.957092029805] [ ] [ - 0.957092029805 0.289784137735] , [5.1491628629 0 ] [ ] [ 0 2.9130948854] , [ - 0.687215403194 0.726453707825 ] [ ] [ - 0.726453707825 - 0.687215403194] }