| TR-10 March 1981

| The Portable Standard LISP Users Manual

Part 1: Language Specification

The Utah Symbolic Computation Group

Department of Computer Science
University of Utah
Salt Lake City, Utah 84112

Version 3.2: 16 March 1984

Abstract

This manual describes the primitive data structures, facilities and functions present in the
Portable Standard Lisp (PSL) system. It describes the implementation details and
functions of interest to a PSL programmer. Except for a small number of hand-coded
routines for I/O and efficient function calling, PSL is written entirely in itself, using a
machine-oriented mode of PSL, called SYSLisp, to perform word, byte, and efficient
integer and string operations. PSL is compiied by an enhanced version of the Portable
Lisp Compiler, and currently runs on the DEC-20, VAX, and MC68000.

Copyright (c) 1982 W. Galway, M. L. Griss, B. Morrison, and B. Othmer

Work supported in part by the Hewlett Packard Company, the International Business
Machines Corporation and the National Science Foundation under Grant Numbers
MCS80-07034 and MCS82-04247.

PSL MANUAL 23 SEPTEMBER 1983

PREFACE

This Portable LISP implementation would not have been started without the effort and
inspiration of the original STANDARD LISP reporters (A. C. Hearn, J. Marti, M. L. Griss and
C. Griss) and the many people who gave freely of their advice (often unsolicited!). We

especially appreciate the comments of A. Norman, M. Rothstein, H. Stoyan and T. Ager.

It would not have been completed without the efforts of the many people who have
worked arduously on SYSLISP and PSL at various levels: Eric Benson, Will Galway, Ellen
Gibson, Martin Griss, Bob Kessler, Steve Lowder, Chip Maguire, Beryl Morrison, Don

Morrison, Bobbie Othmer, Bob Pendleton, John Peterson, and John W. Peterson.

We are also grateful for the many comments and significant contributions by the LISP

users at the Hewilett~Packard Computer Research Center in Palo Alto.

This document has been worked on by most members of the current Utah Symbolic
Computation Group. The primary editorial function has been in the hands of B. Morrison,
M. L. Griss, B. Othmer, and W. Galway,; major sections have been contributed by
E. Benson, W. Galway, and D. Morrison. There have also been significant contributions to

the manual from Hewlett—-Packard.

We have reorganized the manual for this version, following the Common Lisp idea of
having four parts for language definition, utilities, system-dependent information, and

implementation information. Most of this reorganization was done at Hewlett-Packard.

This is a preliminary version of the manual, and so may suffer from a number of errors

and omissions. Please let us know of problems you may detect.

We have also made some stylistic decisions regarding font to indicate semantic
classification and case to make symbols more readable. Based on feedback from users of
the earlier 3.0 PSL release and manual, we have decided to use LISP syntax as the primary
description language; where appropriate RLISP syntax also appears. We would appreciate

comments on these and other decisions.

Report bugs, errors and mis—features by sending MAIL to PSL-BUGS@Utah-20.

PSL Manual 23 September 1983

Permission is given to copy this manual for internal use with the PSL system.

PSL Manual 23 September 1983
Table of Contents

1.1.
1.2.

2.1

2.2.

2.3.

3.1
3.2.
3.3.
3.4.
3.5.
3.6.

4.1.
4.2.
43.

4.4.

4.5.
4.6.

TABLE OF CONTENTS

CHAPTER 1. INTRODUCTION

Opening Remarks .

Scope of the Manual

1.2.1. Typographic Conventlons wnthm the Manual
1.2.2. The Organization of the Manual

CHAPTER 2. DATA TYPES

Data Types and Structures Supported in PSL .
2.1.1. Data Types .

2.1.2. Other Notational Conventlons

2.1.3. Structures .

Predicates Useful with Data Types .

2.2.1. Functions for Testing Equality .

2.2.2. Predicates for Testing the Type of an Ob;ect
2.2.3. Boolean Functions.

Converting Data Types

CHAPTER 3. NUMBERS AND ARITHMETIC FUNCTIONS

Big Integers

Conversion Between lntegers and Floats
Arithmetic Functions .
Functions for Numeric Companson

Bit Operations .

Various Mathematical Functlons

CHAPTER 4. IDENTIFIERS

Introduction

Fields of Ids .
Identifiers and the Id hash table .

4.3.1. ldentifier Functions .

43.2. Find . .

Property List Functlons .

4.4.1. Functions for Flagging lds . .
4.4.2. Direct Access to the Property Cell .
Value Cell Functions.

System Global Variables, SW|tches and Other ”Hooks
4.6.1. Introduction

4.6.2. Setting Switches .

4.6.3. Special Global Variables .

4.6.4. Special Put Indicators .

page i

1.1
1.2
1.2
1.3

2.1
2.1
23
2.4
25
2.5
2.6
2.8
2.9

3.1
3.1
3.2
3.5
3.7
3.8

4.1
4.1
4.2
43
43
44
4.5
4.6
4.6
49
49
4.10
4.11
4.11

PSL Manual 23 September 1983
Table of Contents

5.1.
5.2.
5.3.

5.4.
5.5.

6.1.
6.2.
6.3.
6.4.
6.5.
6.6.
6.7.

7.1.

7.2.
7.3.

7.4.

8.1.
8.2.

4.6.5. Special Flag Indicators.
4.6.6. Displaying Information About Globals

CHAPTER 5. LIST STRUCTURE

Introduction to Lists and Pairs .

Basic Functions on Pairs. .
Functions for Manipulating Lists .

5.3.1. Selecting List Elements . ..
5.3.2. Membership and Length of Lists .

5.3.3. Constructing, Appending, and Concatenatmg L:sts .

5.3.4. Lists as Sets . .

5.3.5. Deleting Elements of LlStS .

5.3.6. List Reversal .

5.3.7. Functions for Sorting . .
Functions for Building and Searching A Lnsts .
Substitutions .

CHAPTER 6. STRINGS AND VECTORS

Vector—-Like Objects .

Strings .

Vectors. .

Word Vectors .
General X-Vector Operat:ons
Arrays . .
Common LISP Strmg Functlons

CHAPTER 7. FLOW OF CONTROL

Conditionals .

7.1.1. Conds and Ifs.

7.1.2. Case and Selectq Statements
Sequencing Evaluation.

Iteration .

7.3.1. For.

7.3.2. Mapping Functnons

7.3.3. Do.

Non-Local Exits.

CHAPTER 8. FUNCTION DEFINITION AND BINDING

Function Definition in PSL .

Function Types . .

8.2.1. Notes on Code Pomters . .
8.2.2. Functions Useful in Function Defmmon .
8.2.3. Function Definition in LISP Syntax

8.2.4. BackQuote .

8.2.5. MacroExpand .

page ii

4.12
4.12

5.1
5.2
54
54
5.6
5.7
5.8
5.9
5.10
5.10
5.12
5.14

6.1
6.1
6.3
6.5
6.6
6.7
6.7

7.1
7.1
7.3
7.4
7.6
7.7
7.12
7.14
7.16

8.1
8.1
8.2
8.2
8.5
8.7
8.8

PSL Manual

Table of Contents

8.2.6. Low Level Function Definition Primitives

23 September 1983

8.2.7. Function Type Predicates
8.3. Variables and Bindings.

8.3.1. Binding Type Declaratlon

8.3.2. Binding Type Predicates .
8.4. User Binding Functions

CHAPTER 9. THE INTERPRETER

9.1. Evaluator Functions Eval and Apply.
9.2. Support Functions for Eval and Apply.

9.3. Special Evaluator Functions, Quote, and Func’uon

9.4. Support Functions for Macro Evaluation.

CHAPTER 10. INPUT AND OUTPUT

10.1. Introduction . .
10.1.1. Organization of thls Chapter
10.2. Printed Representation of LISP Objects
10.3. Functions for Printing
10.3.1. Basic Printing . ..
10.3.2. Whitespace Printing Functlons
10.3.3. Formatted Printing . -
10.3.4. The Fundamental Printing Func‘uon
10.3.5. Additional Printing Functions .
10.3.6. Printing Status and Mode.
10.4. Functions for Reading .
10.4.1. Reading S-Expressions .
10.4.2. Reading Single Characters
10.4.3. Reading Tokens .
10.4.4. Reading Entire Lines .
10.4.5. Read Macros.
10.4.6. Terminal Interaction
10.4.7. Input Status and Mode . .
10.5. File System Interface: Open and Close.
10.6. Loading Modules.
10.7. Reading Files into PSL . . .
10.7.1. RLISP File Reading Functlons .
10.8. About I/0 Channels .
10.9. I/0 to and from Lists and Strmgs .
10.10. Generalized Input/Output Streams . .
10.10.1. Using the “Special” Form of Open
10.11. Scan Table Internals
10.12. Scan Table Utility Functions .

CHAPTER 11. TOP LEVEL LOOP

11.1. Introduction .

. page iii

8.9
8.10
8.10
8.11
8.12
8.12

9.1
9.5
9.7
9.7

10.1
10.2
10.3
10.6
10.6
10.6
10.7
10.8
10.9
10.10
10.11
10.11
10.13
10.13
10.14
10.15
10.16
10.16
10.17
10.19
10.22
10.23
10.24
10.26
10.28
10.29
10.29
10.33

PSL Manual 23 September 1983 . page iv
Table of Contents

11.2. The General Purpose Top Loop Function. 1.1
11.3. Changing the Defauit Top Level Function 11.4
114. The Break Loopo s 114

CHAPTER 12. ERROR HANDLING

12.1lntroduct|on.... 12.1
12.2. The Basic Error Functlons e e e e e e e e e 12.1
12.3. Basic Error Handlerso 000 12.3
12.4. Break Loopo s e s e e s e 12.5
125. Interrupt Keys L L Lo s e 12.9
12.6. Details on the Break Loopo 12.9
12.7. Some Convenient Error Calls 12.10

CHAPTER 13. DEBUGGING TOOLS

13.1. Introduction e e e e e e e e e e 13.1
13.1.1. Brief Summary of Fuil Debug Package e e e e e e e 13.1
13.1.2. Redefining of User Functions by Debug 13.2
13.1.3. A Few Known Deficiencies 13.3

13.2. Step 13.3

13.3. Tracing Function Execut:on‘ e e e e e e 13.4
13.3.1. Tracing Functions 134
13.3.2. Saving Trace Output e e s s e e 13.6
13.3.3. Making Tracing More Selectlve e e e e 13.7
13.3.4. Turning Off Tracing .. 13.9

13.4. A Break Facility e 13.10

13.5. Enabling Debug Facilities and Automatlc Tracmg and Breakmg e 13.11

13.6. A Heavy Handed Backtrace Facility 13.12

13.7. Embedded Functions e e e e e e 13.12

13.8. Counting Function Invocatlons C e e e e 13.13

13.9. Stubs e e e e e e e 13.14

13.10. Functions for Prmtmg Useful Informatlon e e e e 13.14

13.11. Printing Circular and Shared Structures. 13.15

13.12. Internails and Customization .. 13.16
13.12.1. User Hooks. . . . e e e e e e 13.16
13.12.2. Functions Used for Prmtmg/Readmg S 13.17

13.13. Example L s e e e e e e 13.18

CHAPTER 14. MISCELLANEOUS USEFUL FEATURES

14.1. The HELP Mechanism. 14.1
14.2. Exiting PSL 14.1
14.3. Saving an Executable PSL e e e e e 14.2
14.4. Init Files. 14.3
14.5. Miscellaneous Functnons e e e e e e e e e e e e 14.4
14.6. Garbage Collection. 14.4

O

PSL MANUAL 23 SEPTEMBER 1983 PAGE V
TABLE OF CONTENTS

CHAPTER 15. COMPILER

15.1. Introduction L L Lo e e e 15.1
15.2. The Compiler oo 15.1
15.2.1. Compiling Files e e e e 15.1
15.2.2. Compiling Functions into FASL Flles e e 15.2
15.2.3. Compiling Functions into Memory 15.3
15.2.4. Fluid and Global Declarations 15.3
15.2.5. Conditional Compilation . . . e 15.4
15.2.6. Functions to Control the Time When Somethmg is Done e 15.5
15.2.7. Order of Functions for Compilation 15.5
15.2.8. Switches Controlling Compiler e 15.6
15.2.9. Differences between Compiled and Interpreted Code e e 15.7
15.2.10. Compiler Errors. Lo 15.8

CHAPTER 16. BIBLIOGRAPHY
CHAPTER 17. INDEX OF CONCEPTS
CHAPTER 18. INDEX OF FUNCTIONS
CHAPTER 19. INDEX OF GLOBALS AND SWITCHES

PSL MANUAL 23 SEPTEMBER 1983 INTRODUCTION

SECTION 1.0 ’ PAGE 1.1
CHAPTER 1
INTRODUCTION
1.1. Opening Remarkso 1.1
1.2. Scope of the Manual 1.2
1.2.1. Typographic Conventions within the Manual. 1.2
1.2.2. The Organization of the Manual 1.3

1.1. Opening Remarks

This document describes PSL (PORTABLE STANDARD LISP1), a portable, “modern” LISP
developed at the University of Utah for a variety of machines. PSL is upward-compatible
with STANDARD LISP [Marti 79]. In most cases, STANDARD LISP did not commit itseif to
specific implementation details (since it was to be compatible with a portion of “most”
LISPs). PSL is more specific and provides many more functions than described in that

report.

The goals of PSL include:

* Providing implementation tools for LISP that can be used to implement a
variety of LISP-like systems, including mini-LISPs embedded in other language
systems (such as existing PASCAL or ADA applications).

* Effectively supporting the REDUCE algebra system on a number of machines,
and providing algebra modules extracted from (or modeled upon) REDUCE to
be included in a_pplications such as CAl and CAGD.

* Providing a uniform, modern LISP programming environment on all of the
machines that we use (DEC-20, VAX, and 68000 based personal machines)--of
the power of FRANZ LISP, UC! LISP or MACLISP.

* Studying the utility of a LISP-based systems language for other applications
(such as CAGD or VLS| design) in which SYSLISP code provides efficiency
comparable to that of C or BCPL vyet enjoys the interactive program
development and debugging environment of LISP.

14LspP” backwards!

Introduction 23 September 1983 PSL Manual
page 1.2 section 1.2
1.2. Scope of the Manual

This manual is intended to describe the syntax, semantics, and implementation of PSL.
While we have attempted to make it comprehensive, it is not intended for use as a
primer. Some prior exposure to LISP will prove very helpful. A selection of LISP primers
is listed in the bibliography in Chapter 16; see for example [Allen 79, Charniak
80, Weissman 67, Winston 811.

The PSL documentation is divided into four parts following the Common LISP practice.
Part 1, the “white pages” (this document), is a language specification. Part 2, the "yellow
pages”, is a program library document. Part 3, the “red pages”, is implementation-

dependent documentation. Part 4, the "bilue pages”, is an implementation guide.

1.2.1. Typographic Conventions within the Manual
A large proportion of this manual is deyoted to descriptions of the functions that make

up PSL. Each function is provided with a prototypical header line. Each argument is

given a name and followed by its allowed type. If an argument type is not commonly

used, it may be a specific set enclosed in brackets {..}. For example, this header shows
that PutD (which defines other functions) takes three arguments:

(PutD FNAME:id TYPE:ftype BODY:{lambda, code-pointer}): FNAME:id expr

1. FNAME, which is an id (identifier).
2. TYPE, which is the "function type” of the function being defined.

3. BODY, which is a lambda expression or a code-pointer.

and returns FNAME, the name of the function being defined. Some functions are

compiled open; these have a note saying “open—-compiled” next to the function type.

Some functions accept an arbitrary number of arguments. The header for these
functions shows a single argument enclosed in square brackets——indicating that zero or
more occurrences of that argument are allowed. For example:

(And [U:form]): extra-boolean

And is a function which accepts zero or more arguments each of which may be any

form.

In some cases, LISP or RLISP code is given in the function documentation as the

PSL Manual 23 September 1983 Introduction
section 1.2 page 1.3

function’s definition. As far as possible, the code is extracted from the the current PSL
sources (perhaps converted from one syntax to the other), however, this code is not
always necessarily used in PSL, and may be given only to clarify the semantics of the

function. Please check carefully if you depend on the exact definition.

Some features of PSL are anticipated but not yet fully implemented. When these are

documented in this manual they are indicated with the words: [not implemented yet].

1.2.2. The Organization of the Manual
This manual is arranged in separate chapters, which are meant to be self-contained
units. Each begins with a small table of contents serving as a summary of constructs

and as an aid in skimming. Here is a brief overview of the following chapters:

Chapter 2 describes the data types used in PSL. It includes functions useful for testing

equality and for changing data types, and predicates useful with data types.
The next seven chapters describe in detail the basic functions provided by PSL.

Chapters 3, 4, 5, and 6 describe functions for manipulating the basic data structures of
LISP: numbers, ids, lists, and strings and vectors. As virtually every LISP program uses

integers, identifiers, and lists extensively, these three chapters (3, 4 and 5) should be

included in an overview. As vectors and strings are used less extensively, Chapter 6 may

be skipped on a first reading.

Chapter 7 and, to some extent, Chapter 2 describe the basic functions used to drive a

computation. The reader wanting an overview of PSL should certainly read these two.

Chapter 8 describes functions useful in function definition and the idea of variable
binding. The novice LISP user should definitely read this information before proceeding to

the rest of the manual.

Chapter 9 describes functions associated with the interpreter. It includes functions

having to do with evaluation (Eval and Apply.)

Chapter 10 describes the 1/0 facilities. Most LISP programs do not require sophisticated

Introduction 23 September 1983 PSL Manual
page 14 section 1.2

I/0, so this may be skimmed on a first reading. The section dealing with input deals
extensively with customizing the scanner and reader, which is only of interest to the

sophisticated user.

Chapter 11 presents information about the user interface for PSL. It includes some

generally useful information on running the system.

Chapter 12 discusses error handling. Much of the information is of interest primarily to
the sophisticated user. However, LISP provides a convenient interactive facility for
correcting certain errors which may be of interest to all, so a first reading should include

parts of this chapter.

Chapter 13 discusses some tools for debugging and statistics gathering based on the

concept of embedding function definitions.
Chapter 14 describes some miscellaneous useful facilities.
Chapter 15 describes functions associated with the compiler.
Chapter 16 contains the bibliography.

Chapter 17 is an alphabetical index of concepts. Chapter 18 is an alphabetical index of
all functions defined in the manual. Chapter 19 contains an alphabetical index of all

global variables and switches defined in the manual.

PSL MANUAL 23 SEPTEMBER 1983 DATA TYPES

SECTION 2.0 , PAGE 2.1
CHAPTER 2
DATA TYPES
2.1. Data Types and Structures Supported in PSL 2.1
2.1.1. Data Types 2.1
2.1.2. Other Notational Conventlons e e e e 2.3
2.1.3. Structures 2.4
2.2. Predicates Useful with Data Types. e e e s 2.5
2.2.1. Functions for Testing Equality e e 2.5
2.2.2. Predicates for Testing the Type of an Oblect e e e 2.6
2.2.3. Boolean Functions. oo 2.8
2.3. Converting Data Types 2.9

2.1. Data Types and Structures Supported in PSL

2.1.1. Data Types

Data objects in PSL are tagged with their type. This fneans that the type declarations
required in many programming languages are not needed. Some functions are “generic”
in that the result they return depends on the types of the arguments. A tagged PSL
object is called an item, and has a tag field (9 bits on the DEC-20, 5 bits on the VAX), an
info field (18 bits on the DEC-20, 27 bits on the VAX), and possibly some bits for garbage
collection. The info field is either immediate data or an index or address into some other
structure (such as the heap or id space). For the purposes of input and output of items,
an appropriate notation is used (see Chapter 10 for full details on syntax, restrictions,

etc.). More explicit implementation details can be found in Part 4 of the manual.

The basic data types supported in PSL and a brief indication of their representations are

described below.

integer The integers are also called "“fixed” numbers. The magnitude of integers
is essentially unrestricted if the “big number” module, BIG, is loaded
(LOAD BIG). The notation for integers is a sequence of digits in an
appropriate radix (radix 10 is the default, which can be overridden by a
radix prefix, such as 2#, 8#, 16# etc). There are three internal
representations of integers, chosen to suit the implementation:

inum A signed number fitting into info. Inums do not require
dynamic storage and are represented in the same form as
machine integers. (19 bit [-2718 .. 2718 - 1] on the DEC-20,

Data Types
page 2.2

pair

vector

string

23 September 1983 PSL Manual
‘ section 2.1

28 bit on the VAX)
fixnum A full-word signed integer, allocated in the heap. (36 bit on
the DEC-20, fitting into a register; 32 bit on the VAX.)

[??? Do we need fixnums, and if yes how large ?7?]

bignum A signed integer of arbitrary precision, allocated as a vector
of integers. Bignums are currently not installed by default; to
use them load the module BIG.

A floating point number, allocated in the heap. The precision of floats is
determined solely by the implementation, and is 72-bit double precision
on the DEC-20, 64-bit on the VAX. The notation for a float is a sequence
of digits with the addition of a single floating point (.) and optional
exponent (E <integer>). (No spaces may occur between the point and
the digits). Radix 10 is used for representing the mantissa and the
exponent of floating point numbers.

An identifier (or id) is an item whose info field points to a five—item
structure containing the print name, property cell, vaiue cell, function cell,
and package cell. This structure is contained in the id space. The
notation for an id is its print name, an alphanumeric character sequence
starting with a letter. One always refers to a particular id by giving its”
print name. When presented with an appropriate print name, the PSL
reader will find a unique id to associate with it. See Chapters 4 and
10 for more information on ids and their syntax. NIL and T are treated as
special ids in PSL.

A primitive two-item structure which has a left and right part. A notation
called dot-notation is used, with the form: (<left-part> . <right-part>).
The <left-part> is known as the Car portion and the <right-part> as
the Cdr portion. The parts may be any item. (Spaces are used to resolve
ambiguity with floats; see Chapter 10).

A primitive uniform structure of jtems; an integer index is used to access
random values in the structure. The individual elements of a vector may
be any item. Access to vectors is by means of functions for indexing,
sub-vector extraction and concatenation, defined in Section 6.3. In the
notation for vectors, the elements of a vector are surrounded by square
brackets: [item-0 item-1 ... item-n].

A packed vector (or byte vector) of characters; the elements are small
integers representing the ASCIl codes for the characters (usually inums).
The elements may be accessed by indexing, substring and concatenation
functions, defined in Chapter 6. String notation consists of a series of
characters enclosed in double quotes, as in "THIS IS A STRING". A quote
is included by doubling it, as in "HE SAID, ""LISP“"". (Input strings may
cross the end-of-line boundary, but a warning is given.) See

PSL Manual 23 September 1983 Data Types
section 2.1 page 2.3

!*¥EOLInStringOK in chapter 10.
word-vector A vector of machine-sized words, used to implement such things as

fixnums, bignums, etc. The elements are not considered to be items, and
are not examined by the garbage collector.

[??? The word-vector could be used to implement machine-code
blocks on some machines. ???]

Byte-Vector A vector of bytes. Internally a byte-vector is the same as a string, but it
is printed differently as a vector of integers instead of characters.

Halfword-VectorA vector of machine-sized halfwords.

code-pointer This item is used to refer to the entry point of compiled functions (exprs,
fexprs, macros, etc.), permitting compiled functions to be renamed,
passed around anonymously, etc. New code-pointers are created by the
loader (Lap,Fasl) and associated functions. They can be printed; the
printing function prints the number of arguménts expected as well as the
entry point. The value appears in the convention of the implementation
(#<Code a nnnn> on the DEC-20 and VAX, where a is the number of
arguments and nnnn is the entry point).

env-pointer A data type used to support a funarg capability. [not implemented yet]

2.1.2. Other Notational Conventions

Certain functional arguments can be any of a number of types. For convenience, we
give these commonly used sets a name. We refer to these sets as “classes” of primitive
data types. In addition to the types described above and the names for classes of types
given below, we use the following conventions in the manual. {XXX, YYY} indicates that
e‘ither data type XXX or data type YYY will do. {XXX}-{YVYY} indicates that any object of
type XXX can be used except those of type YYY; in this case, YYY is a subset of XXX.

For example, {integer, float} indicates that either an integer or a float is acceptable;

{any}-{vector} means any type except a vector.

any Any of the types given above. S—expression is another term for any. All
PSL entities have some value unless an error occurs during evaluation.

atom The class {any}-{pair}.

boolean The class of global variables {T, NIL}, or their respective values, {T,
NIL}. (See Chapter 4.6).

character Integers in the range of 0 to 127 representing ASCIl character codes.

These are distinct from single—-character ids.
constant The class of {integer, float, string, vector, code-pointer}. A constant

Data Types 23 September 1983 PSL Manual
page 2.4 section 2.1

evaluates to itself (see the definition of Eval in Chapter 9).
extra—boolean Any value in the system. Anything that is not NIL has the boolean
interpretation T. '

ftype The class of definable function types. The set of ids {expr, fexpr, macro,
nexpr}.

The ftype is ONLY an attribute of identifiers, and is not associated with
either executable code (code-pointers) or lambda expressions.

io—channel A small integer representing an I/O channel.

number The class of {integer, float}.

x-vector Any kind of vector; i.e., a string, vector, word-vector, or word.

Undefined An implementation-dependent value returned by some low-level

functions; i.e., the user should not depend on this value.

None Returned A notational convenience used to indicate control functions that do not
return directly to the calling point, and hence do not return a value.
{e.g., Go)

2.1.3. Structures

Structures are entities created using pairs. Lists are structures very commonly required
as parameters to functions. |If a list of homogeneous entities is required by a function,
this class is denoted by xxx-list, in which xxx is the name of a class of primitives or

structures. Thus a list of ids is an id-list, a list of integers is an integer-list, and so on.

list A list is recursively defined as NIL or the pair (any . list). A special notation
called list-notation is used to represent lists. List-notation eliminates the
extra parentheses and dots required by dot-notation, as illustrated below.
List-notation and dot-notation may be mixed, as shown in the second and
third examples.

dot-notation list-notation
(a. (. (c.NIL))) (abe)
(a. (b.c)) (ab.c)

(a.(.c).(d.NIL))) (a(b.c)d)
Note: () is an alternate input representation of NIL.

a—list An a-list, or association list, is a list in which each element is a pair, the Car
part being a key associated with the value in the Cdr part.

form A form is an S—expression (any) which is legally acceptable to Eval; that is, it
is syntactically and semantically accepted by the interpreter or the compiler.
(See Chapter 9 for more details.)

lambda A lambda expression must have the form (in list-notation): (lambda parameters
body). “Parameters” is an id-list of formal parameters for “body”, which is a
form to be evaluated (note the implicit ProgN). The semantics of the

PSL Manual 23 September 1983 Data Types
section 2.1 : page 2.5

evaluation are defined by the Eval function (see Chapter 9).

function A lambda, or a code—-pointer. A function is always evaluated as Eval, Spread.

2.2. Predicates Useful with Data Types
Most functions in this Section return T if the condition defined is met and NIL if it is
not. Exceptions are noted. Defined are type-checking functions and elementary

comparisons.

2.2.1. Functions for Testing Equality
Functions for testing equality are listed below. For other functions comparing arithmetic

values see Chapter 3.

(Eq Utany V:any): boolean open-compiled, expr

Returns T if U points to the same object as V, i.e. if they are identical
items. Eq is not a reliable comparison between numeric arguments. This
function should only be used in special circumstances. Normally, equality

should be tested with Equal, described below.

(EgN U:any V:any): boolean expr
Returns T if U and V are Eq or if U and V are numbers and have the same
value and type.

[??? Shouid numbers of different type be EqQN? e.g., 0 vs. 0.0 ?7?]

(Equal U:any V:any): boolean expr
Returns T if U and V are the same. Pairs are compared recursively to the
bottom levels of their trees. Vectors must have identical dimensions and
Equal values in all positions. Strings must have identical characters, i.e. all
characters must be of the same case. Code-pointers must have Eq values.

O_ther atoms must be EqN equal. A usually valid heuristic is that if two
objects look the same if printed with the function Print, they are Equal. If

one argument is known to be an atom, Equal is open-compiled as Eq.

Data Types 23 September 1983 PSL Manual
page 2.6 section 2.2

For example, if
(Setq X '(A B C)) and (Setq Y X) have been executed, then
(EQ X Y) is T
(EQ X '(A BC)) is NIL
(EQUAL X '"(ABC))is T
(EQ11)is T
(EQ 1.0 1.0) is NIL
(EQN 1.0 1.0) is T
(EQN 1 1.0) is NIL
(EQUAL 0 0.0) is NIL

(Neq Utany V:any): boolean macro

(Not (Equal U V)).

(Ne U:any V:any): boolean open-compiled, expr

(Not (Eq U V)).

(EqStr U:any V:any): boolean expr

Compare two strings, for exéct (Case sensitive) equality. For case-
INsensitive equality one must load the STRINGS module (see Section 6.7).

EqStr returns T if U and V are Eq or if U and V are equal strings.

{EqCar U:any V:any): boolean ' expr

Tests whether (Eq (Car U) V)). If the first argument is not a pair, EqCar

returns NIL.

2.2.2. Predicates for Testing the Type of an Object

(Atom U:any): boolean open—-compiled, expr

Returns T if U is not a pair.

(CodeP U:any): boolean open-compiled, expr

Returns T if U is a code—pointer.

o

PSL Manual 23 September 1983 Data Types
section 2.2 page 2.7
(ConstantP U:any): boolean expr

Returns T if U is a constant (that is, neither a pair nor an id). Note that

vectors are considered constants. -

[??? Should Eval U Eq U if U is a constant? ???]

(FixP U:any): boolean open-compiled, expr

Returns T if U is an integer. If BIG is loaded, this function also returns T for

bignums.

(FloatP U:any): boolean open-compiled, expr

Returns T if U is a float.

(IdP U:any): boolean open-compiled, expr

Returns T if U is an id.

(Null U:any): boolean open—-compiled, expr

Returns T if U is NIL. This is exactly the same function as Not, defined in

Section 2.2.3. Both are available solely to increase readability.

(NumberP U:any): boolean open—-compiled, expr

Returns T if U is a number (integer or float).

(PairP U:any): boolean open—-compiled, expr

Returns T if U is a pair.

(StringP U:any): boolean open-compiled, expr

Returns T if U is a string. -

(VectorP U:any): boolean open-compiled, expr

Returns T if U is a vector.

Data Types 23 September 1983 . PSL Manual
page 2.8 section 2.2

2.2.3. Boolean Functions

Boolean functions return NIL for “false”; anything non—-NIL is taken to be true, although a

conventional way of representing truth is as T. Note that T always evaluates to itself.

may also be represented as (). The Boolean functions And, Or, and Not can be applied to

any LISP type, and are not bitwise functions. And and Or are frequently used in LISP as

control structures as well as Boolean connectives (see Section 7.1). For example, the

following two constructs will give the same result:
(COND ((AND A B C) D))

(AND A B C D)

Since there is no specific Boolean type in LISP and since every LISP expression has a

value which may be used freely in conditionals, there is no hard and fast distinction

between an arbitrary function and a Boolean function. However, the three functions

presented here are by far the most useful in constructing more complex tests from

simple predicates.

(Not U:any): boolean open-compiled, expr

| Returns T if U is NIL. This is exactly the same function as Null, defined in

Section 2.2.2. Both are available solely to increase readability.

| ‘(And [U:form]): extra-boolean - open-compiled, fexpr

And evaluates each U until a value of NIL is found or the end of the list is
encountered. If a non-NIL value is the last value, it is returned; otherwise

NIL is returned. Note that And called with zero arguments returns T.

(Or [U:form]): extra-boolean open-compiled, fexpr

U is any number of expressions which are evaluated in order of their
appearance. If one is found to be non-NIL, it is returned as the value of Or.
If all are NIL, NIL is returned. Note that if Or is called with zero arguments,

it returns NIL.

PSL Manual 23 September 1983 A Data Types
section 2.3 page 2.9

2.3. Converting Data Types
The following functions are used in converting data items from one type to another.
They are grouped according to the type returned. Numeric types may be converted using

functions such as Fix and Float, described in Section 3.2.

(Intern U:{id,string}): id expr
Gets an id on the id-hash-table. The argument may be an id. Intern
searches the id—hash-table (or current id—hash-table if the package system
is loaded) for an id with the same print name as U and returns the id on
the id-hash-table if a match is found. (See Chapter 4 for a discussion of

the id—hash-table. Any properties and GLOBAL values associated with the

uninterned U are lost. If U does not match any entry, a new one is created
and returned. The argument may also be a string in which case an
identifier in the id-hash-table is looked up, created if necessary, and
returned. Note carefully: The id returned from Interning a string has
exactly the same print name as the string. Most identifiers have uppercase
print names (even if you type in lower case!), but interning “abc” yields an

id with a lower case print name.
(EQ (INTERN "abec") 'abc) = NIL
[?7? Rewrite for package system; include search path, global, local,
intern, etc. 72?1

The maximum number of characters in any token is 5000.

(NewId S:string): id expr
Allocates a new uninterned id, and sets its print-name to the string S. The

string is not copied.
(Setq New (NewId "NEWONE")) returns NEWONE

Note that if one refers directly to the id NEWONE, it will become interned
and a new position in the id space will be allocated to it. One has to refer

to the new id indirectly through the id New.

Data Types 23 September 1983 PSL Manual

page 2.10 section 2.3
(Int2Id I:integer): id expr

Converts an integer to an id; this refers to the I'th id in the id space. Since
0 .. 127 correspond to ASCIl characters, Int2Id with an argument in this

range converts an ASCIl code to the corresponding single character id.

(Int2Id 250) returns QUOTIENT

(Id2Int D:id): integer expr

Returns the id space position of D as a LISP integer.

(Id2Int 'String) returns 182

(Id2String D:id): string expr

Get name from id space. Id2String returns the Print name of its
argument as a string. This is not a copy, so destructive operations should

not be performed on the result. See CopyString in Chapter 6.

[??? Should it be a copy? ?7?]

(Id2string 'String) returns "STRING"

{String2List S:string): inum-list ' expr

Creates a list of Length (Add1 (Size S)), converting the ASCIl characters
into small integers.

[??? What of 0/1 base for length vs length -1. What of the NUL char
added ?7?]

(String2List "STRING") returns (83 84 82 73 78 71)

(List2String L:inum-list): string expr

Allocates a string of the same Size as L, and converts inums to characters

according to their ASCIl code. The inums must be in the range 0 ... 127.

[??? Check if 0 ... 127, and signal error ???]

(List2String '(83 84 82 73 78 71)) returns "STRING"

PSL Manual A 23 September 1983 Data Types
section 2.3 page 2.11
(String [I:inum]): string nexpr

Creates and returns a string containing all the inums given.
(String 83 84 82 73 78 71) returns "STRING"
(Vector [U:any]): vector nexpr
Creates and returns a vector containing all the Us given.

(Setq X (Vector 83 84 82 73 78 71)) returns
[83 84 82 73 78 711

(Vector2String V:vector): string expr

Pack the small integers in the vector into a string of the same Size, using

the integers as ASCII values.

[7?? check for integer in range 0 ... 127 ?7?]

(Vector2String X) where X is defined as above returns
"STRING"

(String2Vector S:string): vector expr

Unpack the string into a vector of the same Size. The elements of the
vector are small integers, representing the ASCIl values of the characters in

S.

(String2Vector "VECTOR") returns [V E C T O R]

(Vector2List V:vector): list expr

Create a list of the same Size as V (i.e. of Length Upbv(V)+1), copying the

elements in order 0, 1, ..., Upbv(V).

(Vector2List [L I S T]) returns (LI ST)

(List2Vector L:1list): vector expr

Copy the elements of the list into a vector of the same Size.

(List2Vector '(VEC T O R)) returns [VEC T O R]

Data Types 23 September 1983 PSL Manual
page 2.12 section 2.3

(Int2Sys I:integer): UntaggedSystemWord

Converts an integer to an untagged system dependent word.

(Int2Sys 250) returns 250

(Sys2Int W:UntaggedSystemWord): Inum or FixNum

If the untagged system dependent word will fit into an inum, it will be
converted into an inum, otherwise it will be converted into a fixnum.

depending on the size.

(Sys2Int (GetMem XX)) returns tagged item at memory location XX

(Lisp2Char X:{Integer or ID or String}): CharacterNumber

If argument is an integer in the 0 to 127 range, then the integer is returned,
otherwise if the argument is an identifier then the character value of the
first character is returned, otherwise if the argument is a string, the
character value of the first character is returned, otherwise a Non Character

|
| Error is signalled.
|
|
|

(Lisp2Char 32) returns 32

(Lisp2Char 'AA) returns 65

(Lisp2Char "hello") returns 104

(Lisp2Char 500) produces the error:

¥%%%% An attempt was made to do a 'LISP2CHAR' on '400',
which 1s not a character.

(Int2Code I:Integer): CodePointer

Converts the argument integer into a code-pointer.

(Int2Code 3456) returns #<Code 6600>

expr

PSL MANUAL 23 SEPTEMBER 1983 ARITHMETIC FUNCTIONS
SECTION 3.0 PAGE 3.1

CHAPTER 3
NUMBERS AND ARITHMETIC FUNCTIONS

3.1. Big Integers . . . 3.1
3.2. Conversion Between lntegers and Floats e e e e o 3.1
3.3. Arithmetic Functions e e e e e e e e e 3.2
3.4. Functions for Numeric Companson e e e e e e 3.5
3.5. Bit Operations 3.6
3.6. Various Mathematical Functlons e e s e e e 3.8

Most of the arithmetic functions in PSL expect numbers as arguments. In ail cases an

error occurs if the parameter to an arithmetic function is not a number:
*ER¥® Non—-numeric argument in arithmetic

Exceptions to the rule are noted.

The underlying machine arithmetic requires parameters to be either all integers or all
floats. If a function receives mixed types of arguments, integers are converted to floats
before arithmetic operations are performed. The range of numbers which can be
represented by an integer is different than that represented by a float. Because of this
difference, a conversion is not always possible; an unsuccessful attempt to convert may

cause an error to be signalled.

The MATHLIB package contains some useful mathematical functions. See Section 3.6 for

documentation for these functions.

3.1. Big Integers
Loading the BIG module redefines the basic arithmetic operations, including the logical

operations, to permit arbitrary precision (or "bignum”) integer operations.

Note that fixnums which are present before loading BIG can cause problems, because

loading BIG restricts the legal range of fixnums.

3.2. Conversion Between Integers and Floats
The conversions mentioned above can be done explicitly by the following functions.

Other functions which alter types can be found in Section 2.3.

Arithmetic Functions 23 September 1983 PSL Manual

page 3.2 section 3.2
(Fix U:number): integer expr

Returns the integer which corresponds to the truncated value of U. The
result of conversion must retain all significant portions of U. If U is an
integer it is returned unchanged.
[??7? Note that unless big is loaded, a float with value larger than
2**365~-1 on the DEC-20 is converted into something strange but
without any error message. Note how truncation works on negative

numbers (always towards zero). ???]
(Fix 2.1) % returns 2

(Fix -2.1) % returns -2

(Float U:number): float expr
The float corresponding to the value of the argument U is returned. Some
of the least significant digits of an integer may be lost due to the
implementation of Float. Float of a float returns the number unchanged.

If U is too large to represent in float, an error occurs:
=xex Argument to FLOAT is too large

[??? Only if big is loaded can one make an integer of value greater than
2%*%35-1, so without big you won’t get this error message. The largest

representable float is (2%*62-1)*(2%*65) on the DEC-20. ???]

3.3. Arithmetic Functions
The functions described below handle arithmetic operations. Please note the remarks at

the beginning of this Chapter regarding the mixing of argument types.

(Abs U:number): number expr

Returns the absolute value of its argument.

(Add1 U:number): number expr

Returns the value of U plus 1; the returned value is of the same type as U

(integer or float).

|+1

PSL Manual 23 September 1983 Arithmetic Functions
section 3.3 ’ page 3.3
(Decr U:form [Xi:number]): number macro

Part of the USEFUL package (LOAD USEFUL). With only one argument, this

is equivalent to
(SETF U (SUB1 U))
With multiple arguments, it is equivalent to
(SETF U (DIFFERENCE U (PLUS X1 ... Xn)))

1 lisp> (Load Useful)

NIL

2 lisp> (Setq Y '(1 5 7))
(157)

3 lisp> (Decr (Car Y))

0

4 1lisp> Y

(05 7)

5 lisp> (Decr (Cadr Y) 3 4)
-2

6 lisp> Y

(0-217)

(Difference U:number V:number): number expr

The value of U - V is returned.

(Divide U:number V:number): pair expr

The pair (quotient . remainder) is returned, as if the quotient part was

computed by the Quotient function and the remainder by the Remainder

function. An error occurs if division by zero is attempted:

FHwE¥ Attempt to divide by 0 in Divide

(Expt Usnumber V:integer): number expr

Returns U raised to the V power. A float U to an integer power V does not

have V changed to a float before exponentiation.

Arithmetic Functions 23 September 1983 PSL Manual
page 3.4 " section 3.3

(Incr U:form [Xi:number]): number macro
Part of the USEFUL package (LOAD USEFUL). With only one argument, this

is equivalent to
(SETF U (ADD1 U))
With multiple arguments it is equivalent to

(SETF U (PLUS U X1 ... Xn))

(Minus U:number): number expr
Returns -U.
(Plus [U:numberl): number macro

Forms the sum of all its arguments. Plus may be called with only one
argument. In this case it returns its argument. If Plus is called with no

arguments, it returns zero.

(Plus2 U:number V:number): number expr

Returns the sum of U and V.

(Quotient U:number V:number): number expr
The Quotient of U divided by V is returned. Division of two positive or two
negative integers is conventional. If both U and V are integers and exactly
one of them is negative, the value returned is truncated toward 0. If either
argument is a float, a float is returned which is exact within the
implemented precision of floats. An error occurs if division by zero is

attempted:
=xERE Attempt to divide by 0 in QUOTIENT

(Recip U:number): float expr

Recip converts U to a float if necessary, and then finds the inverse using

the function Quotient.

PSL Manual ‘ 23 September 1983 Arithmetic Functions

section 3.3 page 3.5
(Remainder U:integer V:integer): integer expr

If both U and V are integers the result is the integer remainder of U divided
by V. The sign of the result is the same as the sign of the dividend (U). If
U and V are not both integers, the result is currently undefined. An error

occurs if V is zero:

w5 Attempt to divide by 0 in REMAINDER

Note that the Remainder function differs from the Mod function in that

Remainder returns a negative number when U is negative and V is positive.

(Sub1 U:number): number expr

Returns the value of U minus 1. If U is a float, the value returned is U

minus 1.0.

(Times [U:numberl): number macro

Returns the product of all its arguments. Times may be called with only
one argument. In this case it returns the value of its argument. If Times is

called with no arguments, it returns 1.

{(Times2 U:number V:number): number expr

Returns the product of U and V.

3.4. Functions for Numeric Comparison
The following functions compare the values of their arguments. For functions testing

equality (or non-equality) see Section 2.2.1.

(Geq U:any V:any): boolean expr

Returns T if U >= V, otherwise returns NIL. In RLISP, the symbol “>=" can

be used.

(GreaterP U:number V:number): boolean expr

Returns T if U is strictly greater than V, otherwise returns NIL. In RLISP, the

symbol “>" can be used.

Arithmetic Functions 23 September 1983 PSL Manual

page 3.6 section 3.4
(Leq U:number V:number): booclean expr

Returns T if U <=V, otherwise returns NIL. In RLISP, the symbol "<=" can

be used.

(LessP U:number V:number): boolean expr

Returns T if U is strictly less than V, otherwise returns NIL. In RLISP, the

symbol "<” can be used.

(Max [U:number]): number macro

Returns the largest of the values in U (numeric maximum). If two or more

values are the same, the first is returned.

(Max2 U:number V:number): number expr
Returns the larger of U and V. If U and V are of the same value U is

returned (U and V might be of different types).

(Min [U:number]): number macro
Returns the smallest (numeric minimum) of the values in U. If two or more

values are the same, the first of these is returned.

(Min2 U:number V:number): number expr
Returns the smaller of its arguments. If U and V are the same value, U is

returned (U and V might be of different types).

(MinusP U:any): boolean expr
Returns T if U is a number and less than 0. If U is not a number or is a

positive number, NIL is returned.

(OneP U:any): boolean expr
Returns T if U is a number and has the value 1 or 1.0. Returns NIL

otherwise.

|

PSL Manual 23 September 1983 Arithmetic Functions
section 3.4 ‘ page 3.7
(ZeroP U:any): boolean expr

Returns T if U is a number and has the value 0 or 0.0. Returns NIL

otherwise.

3.5. Bit Operations
The functions described in this section operate on the binary representation of the

integers given as arguments. The returned value is an integer.

(LAnd U:integer V:integer): integer expr

Bitwise or logical And. Each bit of the result is independently determined
from the corresponding bits of the operands according to the following

table.

< IC
o o
- o
o —
- =

Returned Value 0 0 0 1

(LOr U:integer V:integer): integer expr

Bitwise or logical Or. Each bit of the result is independently determined

from corresponding bits of the operands according to the following table.

u 0 0 1 1
v 0 1 0 : 1
Returned Value 0 1 1 1
(LNot U:integer): integer expr

Logical Not. Defined as (-U + 1) so that it works for bignums as if they

were 2's complement.

[?7?? need to clarify a bit more ??7]

(LXOr U:integer V:integer): integer expr

Bitwise or logical exclusivé Or. Each bit of the result is independently
determined from the corresponding bits of the operands according to the

following table.

Arithmetic Functions 23 September 1983 PSL Manual

page 3.8 ’ section 3.5
U 0 0 1 1
v 0 1 0 1
Returned Value 0 1 1 0

(LShift N:integer K:integer): integer expr

Shifts N to the left by K bits. The effect is similar to multiplying by 2 to the
K power. Negative values are acceptable for K, and cause a right shift (in
the usual manner). Lshift is a logical shift, so right shifts do not resemble

division by a power of 2.

"~ 3.6. Various Mathematical Functions
The optionally loadable MATHLIB module defines several commonly used mathematical
functions. Some effort has been made to be compatible with Common Lisp, but this
implementation tends to support fewer features. The examples used here should be
taken with a grain of salt, since the precision of the results will depend on the machine

being used, and may change in later implementations of the module.

(Ceiling X:number): integer expr

Returns the smallest integer greater than or equal to X. For example:

1 lisp> (ceiling 2.1)

3
2 lisp> (ceiling -2.1)
-2
(Floor X:number): integer expr

Returns the largest integer less than or equal to X. (Note that this differs

from the Fix function.)

1 lisp> (floor 2.1)

2

2 lisp> (floor -2.1)
-3

3 lisp> (fix -2.1)
-2

PSL Manual 23 September 1983 Arithmetic Functions
section 3.6 page 3.9

(Round X:number): integer expr

Returns the nearest integer to 1.1

(TransferSign S:number Val:number): number expr

Transfers the sign of S to VAL by returning abs(VAL) if S >= 0, and
-abs(VAL) otherwise. (The same as FORTRANs sign function.)

(Mod M:integer N:integer): integer expr

Returns M modulo N. Unlike the remainder function, it returns a positive

number in the range 0.N-1 when N is positive, even if M is negative.

1 lisp> (mod -7 5)
3

2 lisp> (remainder -7 5)
-2
[??? Allow to "number” arguments instead of just “integers”? ???]
(DegreesToRadians X:number): number expr

Returns an angle in radians given an angie in degrees.

1 lisp> (DegreesToRadians 180)
3.1415926

(RadiansToDegrees X:number): number ‘ expr
Returns an angle in degrees given an angle in radians.

1 lisp> (RadiansToDegrees 3.1415926)
180.0

TThe behavior of Round is ambiguous when its argument ends in ".5"-—-needs more
work.

Arithmetic Functions 23 September 1983 PSL Manual
page 3.10 section 3.6

(RadiansToDMS X:number): 1list expr
Given an angle X in radians, returns a list of three integers giving the angle

in

(Degrees Minutes Seconds)

1 lisp> (RadiansToDMS 1.0)
(57 17 45)

(DMStoRadians Degs:number Mins:number Secs:number): number ' expr

Returns an angle in radians, given three arguments representing an angle in

degrees minutes and seconds.

1 lisp> (DMStoRadians 57 17 45)
1.0000009
2 lisp> (DMStoRadians 180 0 0)
3.1415926

(DegreesToDMS X:number): 1ist expr

Given an angle X in degrees, returns a list of three integers giving the angle

in (Degrees Minutes Seconds).

{DMStoDegrees Degs:number Mins:number Secs:number): number expr

Returns an angle in degrees, given three arguments representing an angle

in degrees minutes and seconds.

(Sin X:number): number expr

Returns the sine of X, an angle in radians.

(SinD X:number): number expr

Returns the sine of X, an angle in degrees.

PSL Manual 23 September 1983
section 3.6

(Cos X:number): number

Returns the cosine of X, an angle in radians.

(CosD X:number): number

Returns the cosine of X, an angle in degrees.

(Tan X:number): number

Returns the tangent of X, an angle in radians.

(TanD X:number): number

Returns the tangent of X, an angle in degrees.

{Cot X:number): number

Returns the cotangent of X, an angle in radians.

(CotD X:number): number

Returns the cotangent of X, an angle in degrees.

(Sec X:number): number

Returns the secant of X, an angle in radians.

secant(X) = 1/cos(X)

(SecD X:number): number

Returns the secant of X, an angle in degrees.

(Csc X:number): number

Returns the cosecant of X, an angle in radians.

secant(X) = 1/sin(X)

(CscD X:number): number

Returns the cosecant of X, an angle in degrees.

Arithmetic Functions
page 3.11

expr

Arithmetic Functions 23 September 1983 PSL Manual
page 3.12 section 3.6

(Asin X:number): number ‘ expr

Returns the arc sine, as an angle in radians, of X.
sin{asin(X)) = X

(AsinD X:number): number expr

Returns the arc sine, as an angle in degrees, of X.

(Acos X:number): number expr

Returns the arc cosine, as an angle in radians, of X.
cos(acos(X)) = X

(AcosD X:number): number expr

Returns the arc cosine, as an angle in degrees, of X.

{Atan X:number): number expr

Returns the arc tangent, as an angle in radians, of X.

tan(atan(X)) = X

(AtanD X:number): number expr

Returns the arc tangent, as an angle in degrees, of X.

(Atan2 Y:number X:number): number expr

Returns an angle in radians corresponding to the angle between the X axis

and the vector (XY). (Note that Y is the first argument.)

| 1 lisp> (atan2 0 -1)
| 3.1415927

(Atan2D Y:number X:number): number expr

Returns an angle in degrees corresponding to the angle between the X axis

and the vector (X.Y).

1 lisp> (atan2D -1 1)
315.0

PSL Manual 23 September 1983 Arithmetic Functions
section 3.6 page 3.13

(Acot X:number). number expr

Returns the arc cotangent, as an angle in radians, of X.
cot(acot(X)) = X

(AcotD X:number): number v expr

Returns the arc cotangent, as an angle in degrees, of X.
(Asec X:number): number expr
Returns the arc secant, as an angle in radians, of X.
sec(asec{X)) = X

(AsecD X:number): number expr

Returns the arc secant, as an angle in degrees, of X.
{Acsc X:number): number expr
Returns the arc cosecant, as an angle in radians, of X.
csc(acsc(X)) = X

(AcscD X:number): number expr ‘

Returns the arc cosecant, as an angle in degrees, of X.

(Sqrt X:number): number expr

Returns the square root of X.

(Exp X:number): number expr

Returns the exponential of X, i.e. e_>f.

(Log X:number): number expr

Returns the natural (base ¢) logarithm of X.

log(exp(X)) = X

Arithmetic Functions 23 September 1983 PSL Manual
page 3.14 section 3.6

(Log2 X:number): number expr

Returns the base two logarithm of X.

(Log10 X:number): number expr

Returns the base ten logarithm of X.

(Random N:integer): integer expr

Returns a pseudo-random number uniformly selected from the range 0.N-1.

The random number generator uses a linear congruential method. To get a
reproducible sequence of random numbers you should assign one (or some

other small number) to the FLUID variable RandomSeed.

RandomSeed [Initially: set from timel global
(Factorial N:integer): integer expr

Returns the factorial of N.
factorial(0) = 1

factorial(N) = N*factorial(N-1)

PSL MANUAL 23 SEPTEMBER 1983 IDENTIFIERS
SECTION 4.0 PAGE 4.1
CHAPTER 4
IDENTIFIERS
4.1. Introduction L L L L L L e e e 4.1
4.2. Fields of Ids e e o 4.1
4.3. Identifiers and the Id hash table e e e e e e e s 4.2

4.3.1. Identifier Functions 4.3
432 Find L o s s e 4.3
4.4. Property List Functlons S e e e s 4.4
4.4.1. Functions for Flagging lds. e e e 4.5
4.4.2. Direct Access to the Property Cell 4.6
4.5. Value Cell Functions. . . . e e 4.6
4.6. System Global Variables, Swntches and Other Hooks e e e 4.9
4.6.1. Introduction L L L L Lo o 4.9
4.6.2. Setting Switches L . 4.10
4.6.3. Special Global Variables 4.11
4.6.4. Special Put Indicators L. 4.11
4.6.5. Special Flag Indicators. . . . e e e s 4.12
4.6.6. Displaying Information About Globals e e e e e 4.12

4.1. Introduction

In PSL variables are called identifiers or ids. An identifier is implemented as a tagged
data object (described in Chapter 2) containing a pointer or offset into a four item
structure - the id space. One item in this structure is called the print name, which is the

external representation of the id.

The interpreter uses an id hash table to get from the print name of an identifier to its

entry in the id space. The id space and the id hash table are described below.

4.2. Fields of Ids
An id is an item with an info field; the info field is an offset into a special id space

consisting of structures of four fields. The fields (items) are:

print-name The print name points at a string of characters which is the external
representation of the identifier. The syntax for identifiers is described in
Section 10.4 on reading functions.

value-cell The value of the identifier or a pointer to the value in the heap is stored
in this field. If no value exists, this cell contains an unbound identifier
indicator. These cells can be accessed by functions defined in this
chapter.

function-cell An id may have a function or macro associated with it. Access is by

Identifiers 23 September 1983 PSL Manual
page 4.2 section 4.2

means of the PutD, GetD, and RemD functions defined in Section 8.2.2.

package-cell PSL permits the use of a muitiple package facility (multiple id hash

table). The package cell refers to the appropriate id hash table.

4.3. ldentifiers and the Id hash table
The method used by PSL to retrieve information about an identifier makes use of the id
hash table (corresponding to the Oblist, or Object list, in some versions of LISP). A hash

function is applied to the identifier name giving a position in the id hash table. The

contents of the hash table at that point contain an offset into the id space. For a new
identifier, the next free position in the id space is found and a pointer to it is placed in

the hash table entry.

The process of putting an id into the hash table is called interning. This is done
automatically by the LISP reader, so any id typed in at the terminal is interned. Interning
can also be done by the programmer using the function Intern to convert a string to an
id. An id may have an entry in the id space without being interned. In fact it is possible

to have several ids with the same print name, one interned and the others not.

Note that when one starts PSL, the id space already contains approximately 2000 ids.

These include all of the ASCIl characters, the functions and globals described in this

‘manual, plus system functions and globals. If a user uses any of these names for his

own functions or globals, there can be a conflict. A warning message appears if a user

tries to redefine a system function.
? Do you really want to redefine the system function 'name? (Y or N)

If the user answers “Y”, his definition replaces the current definition. (See Chapter 8 for a

description of the switch *"USERMODE which controls the printing of this message.)

Information on converting ids to other types can be found in Chapter 10 and Section

2.3.

PSL Manual 23 September 1983 Identifiers
section 4.3 v page 4.3

4.3.1. Identifier Functions

The following functions deal with identifiers and the id hash table.

(GenSym). id expr
Creates an identifier which is not interned on the id hash table and
consequently not Eq to anything else. The id is derived from a string of the

form “G0000”, which is incremented upon each call to GenSym.
[?7? Is this interned or recorded on the NiL package ?7?7]

[??? Can we change the GenSym string ???]

(Inter 3enSym): id expr

Similar to GenSym but returns an interned id.

(StringGenSym): string expr

Similar to GenSym but returns a string of the form “L0000” instead of an id.

(RemOb U:id): U:id ‘ expr
If U is present on the current package search path it is removed. This does

not affect U having properties, flags, functions and the like. U is returned.

(InternP U:{id,string}): boolean : expr

Returns T if U is interned in the current search path.

(MapObl FNAME:function): Undefined expr

MapObl applies function FNAME to each id interned in the current hash
table.

4.3.2. Find

These functions take a string or id as an argument, and scan the id hash table to collect
a list of ids with prefix or suffix matching the argument. This is a loadable option (LOAD
FIND). ’

identifiers 23 September 1983 PSL Manual

page 44 section 4.3
(FindPrefix KEY:{id, string}): id-list expr

Scans current id hash table for all ids whose prefix matches KEY. Returns

all the identifiers found as an alphabetically sorted list.

(FindSuffix KEY:{id, string}): id-1list expr

Scans current id hash table for all ids whose suffix matches KEY. Returns

all the identifiers found as an alphabetically sorted list.
(Setq X (FindPrefix '!¥) % Finds all identifiers starting with ¥

(Setq Y (FindSuffix "STRING")) % Finds all identifiers ending with STRING

4.4. Property List Functions

The property cell of an identifier points to a “property list”. The list is used to quickly
associate an id name with a set of entities; those entities are called “flags” if their use
gives the id a boolean value, and “properties” if the id is to have an arbitrary attribute {(an

indicator with a property).

(Put U:id IND:id PROP:any): any expr
The indicator IND with the property PROP is placed on the property list of
the id U. If the action of Put occurs, the value of PROP is returned. If
either of U and IND are not ids the type mismatch error occurs and no

property is placed.
(Put 'Jim 'Height 68)

The above returns 68 and places (Height . 68) on the property list of the id

Jim.

(Get U:id IND:id): any expr
Returns the property associated with indicator IND from the property list of

U. If U does not have indicator IND, NIL is returned. (In older LISPs, Get

(
could access functions.) Get returns NIL if U is not an id.

(Get 'Jim 'Height) returns 68

PSL Manual 23 September 1983 Identifiers
section 4.4 page 4.5
(DefList U:1list IND:id): list expr

U is a list in which each element is a two-element list: (ID:ID PROP:ANY).

Each id in U has the indicator IND with property PROP placed on its
property list by the Put function. The value of DefList is a list of the first
elements of each two-element list. Like Put, DefList may not be used to

define functions.

(DE DEFLIST (U IND)
(COND ((NULL U) NIL)
(T (CONS(PROGN(PUT (CAAR U) IND (CADAR U))
(CAAR U))
(DEFLIST (CDR U) IND)))))

(RemProp U:id IND:id): any expr
Removes the property with indicator IND from the property list of U.
Returns the removed property or NIL if there was no such indicator.

(RemPropL U:id-1list IND:id): NIL expr

Remove property IND from all ids in U.

4.4.1. Functions for Flagging lds
In some LISPs, flags and indicators may clash. In PSL, flags are ids and properties are

pairs on the prop-list, so no clash occurs.

(Flag U:id-1ist V:id): NIL expr
Flag flags each id in U with V; that is, the effect of Flag is that for each id
X in U, FlagP(X, V) has the value T. Both V and all the elements of U must
be identifiers or the type mismat—ch error occurs. After Flagging, the id V
appears on the property list of each id X in U. However, flags cannot be
accessed, placed on, or removed from property lists using normal property
list functions Get, Put, and RemProp. Note that if an error occurs during
execution of Flag, then some of the ids on U may be flagged with V, and
others may not be. The statement below causes the flag “Lose” to be

placed on the property lists of the ids X and Y.

(Flag '(X Y) 'Lose)

Identifiers 23 September 1983 PSL Manual

page 4.6 section 4.4
(FlagP U:id V:id): boolean expr

Returns T if U has been flagged with V; otherwise returns NIL. Returns NIL

if either U or V is not an id.

(RemFlag U:id-list V:id): NIL expr
Removes the flag V from the property list of each member of the list U.
Both V and all the elements of U must be ids or the type mismatch error

occurs.

(Flag1 U:id V:any): Undefined expr

Puts flag V on the property list of id U.

(RemFlag1 U:id V:any): Undefined expr
Removes the flag V from the property list of id U.

[??? Make Flag1 and RemFlag1 return single value. ???]

4.4.2. Direct Access to the Property Cell
Use of the following functions can destroy the integrity of the property list. Since PSL

uses properties at a low level, care should be taken in the use of these functions.

(Prop U:id): any expr

Returns the property list of U.

(SetProp U:id L:any): L:any expr

Store item L as the property list of U.

4.5. Value Cell Functions
The contents of the value cell are usually accessed by Eval (Chapter 9) or ValueCell

(below) and changed by SetQ or sometimes Set.

(SetQ VARIABLE:id VALUE:any): any fexpr
The value of the current binding of VARIABLE is replaced by the value of
VALUE.

(SETQ X 1)

|
PSL Manual 23 September 1983 Identifiers 1
section 4.5 page 4.7

is equivalent to
(SET 'X 1)

SetQ now conforms to the Common LISP standard, allowing sequential

assignment:

(SETQ A 1 B 2)

==> (SETQ A 1)
(SETQ B 2)
(Set EXP:id VALUE:any): any expr
EXP must be an identifier or a type mismatch error occurs. The effect of
Set is replacement of the item bound to the identifier by VALUE. If the
identifier is not a LOCAL variable or has not been declared GLOBAL, it is
automatically declared FLUID with the resulting warning message:
=#% EXP declared FLUID
EXP must not evaluate to T or NIL or an error occurs:
w#k%% Cannot change T or NIL
(DeSetQ U:any V:any): V:any) macro
This is a function in the USEFUL package. DeSetQ is a destructuring SetQ.
That is, the first argument is a piece of list structure whose atoms are all
ids. Each is SetQd to the corresponding part of the second argument. For
instance
(DeSetQ (a (b) . c) '((1) (2) (3) 4))
SetQ's a to (1), b to 2, and ¢ to ((3) 4).
(PSetQ [VARIABLE:id VALUE:anyl): Undefined macro

Part of the USEFUL package (LOAD USEFUL).
(PSETQ VAR1 VAL1 VAR2 VAL2 ... VARn VALn)

SetQ’s the VAR's to the corresponding VAL’s. The VAL's are all evaluated

before any assignments are made. That is, this is a parallel SetQ.

ldentifiers 23 September 1983 PSL Manual
page 4.8 section 4.5

(SetF [LHS:form RHS:anyl): RHS:any macro

There are two versions of SetF. SetF is redefined on loading USEFUL. The
description below is for the resident SetF. SetF provides a method for

assigning values to expressions more general than simple ids. For example:

(SETF (CAR X) 2)
==> CAR X := 2;

is equivalent to
(RPLACA X 2)

In general, SetF has the form
(SetF LHS RHS)

in which LHS is the “left hand side” to be assigned to and RHS is evaluated

to the value to be assigned. LHS can be one of the following:

id SetQ is used to assign a value to the id.

(Eval expression) Set is used instead of SetQ. In effect, the
“Eval” cancels out the "Quote” which would
normally be used.

(Value expression) Is treated the same as Eval.

(Car pair) RplacA is used to store into the Car “field”.

(Cdr pair) RplacD is used to store into the Cdr “field”.

(GetV vector) PutV is used to store into the appropriate
location.

(Indx “indexable object”) SetIndx is used to store into the object.

(Sub vector) SetSub is used to store into the appropriate
' subrange of the vector.

Note that if the LHS is (Car pair) or (Cdr pair), SetF returns the modified
pair instead of the RHS, because SetF uses RplacA and RplacD in these

cases.

Loading USEFUL brings in declarations to SetF about Caar, Cadr, .. Cddddr.
This is rather handy with constructor/selector macros. For instance, if FOO

is a selector which maps to Cadadr,

(SETF (FOO X) Y)

PSL Manual 23 September 1983 Identifiers
section 4.5 page 4.9

works; that is, it maps to something which does a
(RPLACA (CDADR X) Y)

and then returns X.

(PSetF [LHS:form RHS:anyl): Undefined macro
Part of the USEFUL package (LOAD USEFUL). PSetF does a SetF in parallel:

i.e., it evaluates all the right hand sides (RHS) before assigning any to the
left hand sides (LHS).

(MakeUnBound U:id): Undefined ; expr

Make U an unbound id by storing a “magic” number in the value cell.

(ValueCell U:id): any ' expr

Safe access to the value cell of an id. If U is not an id a type mismatch
error is signalled; if U is an unbound id, an unbound id error is signalled.
Otherwise the current value of U is returned. [See also the Value and

LispVar functions, described in [], for more direct access].

(UnBoundP U:id): boolean expr
Tests whether U has no value.

[??? Define and describe General Property LISTs or hash-tables. See Hcons. ???]

4.6. System Global Variables, Switches and Other "Hooks”

4.6.1. Introduction

A number of global variables provide global control of the LISP system, or implement
values which are constant throughout execution. Certain options are controlled by
switches, with T or NIL properties (e.g, ECHOing as a file is read in); others require a
value, such as an integer for the current output base. PSL has the convention (following
the REDUCE/RLISP convention) of using a "I*" in the name of the variable: !%xxxxx for
GLOBAL variables expecting a T/NIL value (called “switches”), and xxxxx!* for other

GLOBALs. Chapter 19 is an index of switches and global variables used in PSL.

ldentifiers 23 September 1983 PSL Manual
page 4.10 section 4.6

[?7? These should all be FLUIDs, so that ANY one of these variables may be rebound,

as appropriate ???]

4.6.2. Setting Switches
Strictly speaking, xxxx is a switch and !*xxxx is a corresponding global variable that
assumes the T/NIL value; both are loosely referred to as switches elsewhere in the

manual.

The On and Off functions are used to change the values of the variables associated with
switches. Some switches contain an s-expression on their property lists under the

indicator ’SIMPFG]. The s—expression has the form of a Cond list:
((T (action—-for-ON)) (NIL (action-for-OFF)))

If the 'SIMPFG indicator is present, then the On and Off functions also evaluate the

appropriate action in the s—-expression.

(On [U:id]): None macro

For each U, the associated !¥*U variable is set to T. If a “(T (action-for-

ON))” clause is found by (GET U '‘SIMPFG), the “action” is EVALed.

(Off [U:id]): None macro

For each U, the associated !¥U variable is set to NIL. If a “(NIL (action-for-
OFF)” clause is found by (GET U 'SIMPFG), the “action” is EVAL’ed.

(On Comp Ord Usermode)

will set *Comp, !¥Ord, and !*Usermode to T.

Note that
(Get 'Cref 'Simpfg)

returns

1The name SIMPFG comes from its introduction in the REDUCE algebra system, where
it was used as a “simp flag” to specify various simplifications to be performed as various
switches were turned on or off.

PSL Manual 23 September 1983 Identifiers
section 4.6 page 4.11

((T (Crefon)) (Nil (Crefoff)))

Setting CREF on will result in [*CREF being set to T and the function Crefon being

evaluated.

4.6.3. Special Global Variables

NIL [Initially: NiL] global

NIL is a special GLOBAL variable. It is protected from being modified by

Set or SetQ.
T‘[Initially: T] global

T is a special GLOBAL variable. It is protected from being modified by Set
or SetQ.

4.6.4. Special Put Indicators

Some actions search the property list of relevant ids for these indicators:

'HELPFUNCTION An id, a function to be executed to give help about the topic; ideally for
a complex topic, a clever function is used.

'HELPSTRING A heip string, kept in core for important or short topics.

'HELPFILE The most common case, the name of a file to print; later we hope to
load this file into an EMODE buffer for perusal in a window.

' SWITCHINFO A string describing the purpose of the SWITCH, see ShowSwitches
below.

'GLOBALINFO A string describing the purpose of the GLOBAL, see ShowGlobals below.

'BREAKFUNCTION Associates a function to be run with an Id typed at Break Loop, see
Chapter 12.

'TYPE PSL uses the property TYPE to indicate whether a function is a fexpr,
macro, or nexpr; if no property is present, expr is assumed.

'VARTYPE PSL uses the property VARTYPE to indicate whether an identifier is of
type GLOBAL or FLUID.

'TRACE Used by the debug facility to record information about the debug

ldentifiers 23 September 1983 PSL Manual
page 4.12 section 4.6

facilities being used and the original function definition.

" 1*LAMBDALINK The interpreter also looks under "*LAMBDALINK for a Lambda expression,
if a procedure is not compiled.

The. compiler and loader use the following indicators: MC, CONST, EXTVAR, MEMMOD,
NOSIDEEFFECT, REG, TERMINAL, TRANSFER, VAR, ANYREG, CFNTYPE, DESTROYS, DOFN,
EMITFN, EXITING, FLIPTST, GROUPOPS, MATCHFN, NEGJMP, ONE, PATTERN, SUBSTFN,
ZERO. This are described in more detail with the documentation of compiler and loader

implementation.

4.6.5. Special Flag Indicators

*EVAL If the id is flagged EVAL, the RLISP top-loop evaluates and outputs any
expression (id ...} in On Defn (!*¥DEFN := T) mode.

'"IGNORE If the id is flagged IGNORE, the RLISP top-icop evaluates but does NOT output
any expression (id ...) in On Defn (!¥DEFN := T) mode.

'LOSE If an id has the 'LOSE flag, it will not be defined by PutD when it is read in.

'USER 'USER is put on all functions defined when in *USERMODE, to distinguish
them from "“system” functions. See Chapter 8.

See also the functions LoadTime and CompileTime in Chapter 15,

[??? Mention Parser properties ?7?]

4.6.6. Displaying Information About Globals

The Help function has two options, (HELP SWITCHES) and (HELP GLOBALS), which should
display the current state of a variety of switches and globals respectively. These calis
have the same effect as using the functions below, using an initial table of Switches and

Globals.

The function (ShowSwitches switch-list) may be used to print names, current settings
and purpose of some switches. Use NIL as the switch-list to get information on ALL
switches of interest; ShowSwitches in this case does a MapObl (Section 4.3.1) looking for

‘Switchinfo property.

Similarly, (ShowGlobals global-list) may be used to print names, values and purposes of

PSL Manual 23 September 1983 Identifiers
section 4.6 ' page 4.13

important GLOBALs. Again, NIL used as the global-list causes ShowGlobals to do a
MapObl looking for a ‘Globalinfo property; the result is some information about all globals

of interest.

PSL MANUAL 23 SEPTEMBER 1983 LIST STRUCTURE
SECTION 5.0 PAGE 5.1

CHAPTER 5
LIST STRUCTURE

5.1. Introduction to Lists and Pairs .. 5.1
5.2. Basic Functions on Pairs. 5.2
5.3. Functions for Manipulating Lists 5.4
5.3.1. Selecting List Elements .. 5.4
5.3.2. Membership and Length of Lists e 5.6
5.3.3. Constructing, Appending, and Concatenatmg Lnsts e e e 5.7
5.3.4. Lists as Sets e 5.8
5.3.5. Deleting Elements of Llsts. e e s, 5.9
53.6. List Reversal, 5.10
5.3.7. Functions for Sorting C e e e 5.10
5.4. Functions for Building and Searching A LlStS e e 5.12
5.5. Substitutions L L L L L 5.14

5.1. Introduction to Lists and Pairs

The pair is a fundamental PSL data type, and is one of the major attractions of LISP
programming. A pair consists of a two-item structure. In PSL the first element is called
the Car and the second the Cdr; in other LISPs, the physical relationship of the parts may
be different. An illustration of the tree structure is given below as a box diagram; the Car

and the Cdr are each represented as a portion of the box.

Il Car | Cdr ||

As an example, a tree written as ((A . B) . (C . D)) in dot-notation is drawn below as a

box diagram.

The box diagrams are tedious to draw, so dot-notation is normally used. Note that a
space is left on each side of the . to ensure that pairs are not confused with floats. Note

also that in RLISP a dot may be used as the infix operator for the function Cons, as in the

List Structure 23 September 1983 PSL Manual
page 5.2 section 5.1

expression x := 'y . ‘z;, or as part of the notation for pairs, as in the expression x = (y . 2).

An important special case occurs frequently enough that it has a special notation. This
is a list of items, terminated by convention with the id NIL. The dot and surrounding

parentheses are omitted, as well as the trailing NIL. Thus
(A . (B. (C.NIL)))

" can be represented in list-notation as
(ABC)

5.2. Basic Functions on Pairs

The following are elementary functions on pairs. All functions in this Chapter which

require pairs as parameters signal a type mismatch error if the parameter given is not a

pair.

(Cons U:any V:any): pair expr
Returns a pair which is not Eq to anything eise and has U as its Car part
and V as its Cdr part. In RLISP syntax the dot, “.“, is an infix operator
meaning Cons. Thus (A.(B.fnC).D) is equivalent to
Cons (A, Cons (Cons (B, fn C), D)).

(Car U:pair): any , open-compiled, expr
The left part of U is returned. A type mismatch error occurs if U is not a
pair, except when U is NIL. Then NIL is returned. (Car (Cons a b)) ==> a.

(Cdr U:pair): any _ open-compiled, expr

The right part of U is returned. A type mismatch error occurs if U is not a

pair, except when U is NIL. Then NIL is returned. (Cdr (Cons a b)) ==> b.

The composites of Car and Cdr are supported up to four levels.

PSL Manual 23 September 1983 List Structure

section 5.2 page 5.3
Car Cdr
Caar Cdar Cadr Cddr ‘
Caaar Cdaar Cadar Cddar Caadr Cdadr Caddr Cdddr |
Caaaar Cadaar Caadar Caddar Caaadr Cadadr Caaddr Cadddr
Cdaaar Cddaar Cdadar Cdddar Cdaadr Cddadr Cdaddr Cddddr

These are all exprs of one argument. They may return any type and are
generally open-compiled. An example of their use is that Cddar p is
equivalent to Cdr Cdr Car p. As with Car and Cdr, a type mismatch error

occurs if the argument does not possess the specified component.

As an alternative to employing chains of CxxxxR to obscure depths, particularly in
extracting elements of a list, consider the use of the functions First, Second, Third,
Fourth, or Nth (Section 5.3.1), or possibly even the Defstruct package (See Part 2 of the

manual).

(NCons U:any): pair expr

Equivalent to Cons (U, NIL).

(XCons U:any V:any): pair expr

Equivalent to Cons (V, U).

(Copy X:any): any expr

Copies all pairs in X, but does not make copies of atoms (including vectors
and strings). For example, if A is
([2 5] "aTOM")

and B is the result of (Copy A), then

(Eq A B) is NIL
but (Eq (Car A) (Car B)) is T
and (Eq (Cadr A) (Cadr B)) is T

See TotalCopy in Section 6.5. Note that Copy is recursive and will not

terminate if its argument is a circular list.

See Chapter 6 for other relevant functions.

List Structure : 23 September 1983 PSL Manual
page 5.4 section 5.2

The following functions are known as “destructive” functions, because they change the
structure of the pair given as their argument, and consequently change the structure of
the object containing the pair. They are most frequently used for various “efficient”
functions (e.g. the non-copying ReverselP and NConc functions, and destructive
‘DeletelP) and to build structures that have deliberately shared sub-structure. They are
also capable of creating circular structures, which create havoc with normal printing and

list traversal functions. Be careful using them.

(RplacA U:pair V:any): pair open-compiled, expr

The Car of the pair U is replaced by V, and the modified U is returned. (If
U is (a . b) then (V .b) is returned). A type mismatch error occurs if U is

not a pair.

(RplacD U:pair V:any): pair ope'n-compiled, expr

The Cdr of the pair U is replaced by V, and the modified U is returned. (If
U is (a . b) then (a . V) is returned). A type mismatch error occurs if U is

not a pair.

(RplacW A:pair B:pair): pair expr
Replaces the whole pair: the Car of A is replaced with the Car of B, and
the Cdr of A with the Cdr of B. The modified A is returned.

[??? Should we add some more functions here someday? Probably the RLISP guys

that do arbitrary depth member type stuff. ???]

5.3. Functions for Manipulating Lists
The following functions are meant for the special pairs which are lists, as described in

Section 5.1. Note that the functions described in Chapter 6 can also be used on lists.

[??? Make some mention of mapping with FOR..COLLECT and such like. ???]

5.3.1. Selecting List Elements

PSL Manual 23 September 1983 List Structure
section 5.3 page 5.5

(First L:pair): any macro

A synonym for Car L.

(Second L:pair): any : macro

A synonym for Cadr L.

(Third L:pair): any macro

A synonym for Caddr L.

(Fourth L:pair): any macro

A synonym for Cadddr L.

(Rest L:pair): any macro

A synonym for Cdr L.

(LastPair L:pair): any expr

Last pair of a list. It is often useful to think of this as a pointer to the last

element for use with destructive functions such as RplacA. Note that if L is

atomic a type mismatch error occurs.

(De LastPair (L)
(Cond ((Null (Rest L)) L)
(T (LastPair (Rest L)))))

(LastCar L:any): any expr
Returns the last element of the list L. A type mismatch error results if L is

not a list. Equivalent to First LastPair L.

(Nth L:pair N:integer): any expr
Returns the Nth element of the list L. If L is atomic or contains fewer than

N elements, an out of range error occurs. Equivalent to (First (PNth L N)).

List Structure 23 September 1983 PSL Manual

page 5.6 section 5.3 -
(PNth L:1ist N:integer): any expr

Returns list starting with the Nth element of a list L. Note that it is often
useful to view this as a pointer to the Nth element of L for use with
destructive functions such as RplacA. If L is atomic or contains fewer than

N elements, an out of range error occurs.

(De PNth (L N) ,
(Cond ((Leq N 1) L)
(T (PNth (Cdr L) (Subl N)))))

- 5.3.2. Membership and Length of Lists

(Member A:any L:1ist): extra-boolean expr

Returns NIL if A is not Equal to some top level element of list L; otherwise

it returns the remainder of L whose first element is A.

(De Member (A L)
(Cond((Null L) Nil)
((Equal A (First L)) L)
(T (Member A (Rest L)))))

(MemQ A:any B:list): extra-boolean expr
Same as Member, but an Eq check is used for comparison.
(De Memq (A L)
(Cond((Null L) Nil)

((Eq A (First L)) L)
(T (Memg A (Rest L)))))

(Length X:any): integer expr
The top level length of the list X is returned.
(De Length (X)

(Cond((Atom X) 0)
(T (Plus (Length (Rest X)) 1))))

PSL Manual 23 September 1983 List Structure
section 5.3 ' page 5.7

5.3.3. Constructing, Appending, and Concatenating Lists

(List [U:anyl): list ' fexpr |
Construct a list of the evaluated arguments. A list of the evaluation of each

element of U is returned.

(Append U:list V:1ist): 1list expr
Returns a constructed list in which the last element of U is followed by the

first element of V. The list U is copied, but V is not.

(De Append (U V)
(Cond ((Null U) V)
(T (Cons (Car U) (Append (Cdr U) V)))))

(NConc U:list V:list): list expr

Destructive version of Append. Concatenates V to U without copying U.
The last Cdr of U is modified to point to V. See the warning on page

5.3 about the use of destructive functions.

(De Nconc (U V)
(Cond ((Null U) V)
(T (Rplacd (Lastedr U V)))))

(AConc U:list V:any): list expr

Destructively adds element V to the tail of list U.

(LConc PTR:1ist ELEM:1list): list expr

Effectively NConc, but avoids scanning from the front to the end of PTR for
the RPLACD(PTR, ELEM) by maintaining a pointer to end of the list PTR. PTR
is (list . LastPair list). Returns updated PTR. PTR should be initialized to
NIL . NiL before calling the first time. Used to build lists from left to right.

(TConc PTR:1list ELEM:any): list expr

Effectively AConc, but avoids scanning from the front to the end of PTR for
the RPLACD(PTR, List(ELEM)) by maintaining a pointer to end of the list PTR.

PTR is (list . LastPair list). Returns updated PTR. PTR should be initialized

List Structure 23 September 1983 PSL Manual
page 5.8 section 5.3

to NIL . NIL before calling the first time. Used to build lists from left to

right.

5.3.4. Lists as Sets
A set is a list in which each element occurs only once. Order of elements does not

matter, so these functions may not preserve order.

(Adjoin ELEMENT:any SET:1list): list expr

Add ELEMENT to SET if it is not already on the top level. Equal is used to

test for equality.

(AdjoinQ ELEMENT:any SET:list): list expr

Adjoin using Eq for the test whether ELEMENT is already in SET.

(Union X:1list Y:1list): list expr
Set union.
(UnionQ X:1list Y:1list): list expr

Eq version of Union.

(InterSection U:list V:list): 1list expr

Set intersection.

(InterSectionQ U:1list V:1list): list expr

Eq version of InterSection.

(List2Set SET:1ist): 1list expr

Remove redundant elements from the top level of SET using Equal.

(List2SetQ SET:1list): 1list : expr

Remove redundant elements from the top level of SET using Eq.

PSL Manual 23 September 1983 List Structure
section 5.3 page 5.9

5.3.5. Deleting Elements of Lists

Note that functions with names of the form xxxIP indicate that xxx is done InPlace.

(Delete U:any V:list): list expr

Returns V with the first top level occurrence of U removed from it. That

portion of V before the first occurrence of U is copied.

(De Delete (U V)
(Cond((Null V) Nil)
((Equal (First V) U) (Rest V))
(T (Cons (First V) (Delete U (Rest V))))))

(Del F:function U:any V:1ist): list expr

Generalized Delete function with F as the comparison function.

(DeletIP U:any V:list): list expr

Destructive Delete; modifies V using RplacD. Do not depend on V itseif

correctly referring to list.

(DelQ U:any V:1list): list expr

Delete U from V, using Eq for comparison.

(DelQIP U:any V:list): list expr

Destructive version of DelQ; see DeletIP.

(DelAsc U:any V:a-list): a-list expr

Remove first (U . xxx) from V.

(DelAscIP U:any V:a-list): a-list expr

Destructive DelAsec.

(DelatQ U:any V:a-list): a-list expr

Delete first (U . xxx) from V, using Eq to check equality with U.

List Structure 23 September 1983 PSL Manual

page 5.10 section 5.3
(DelatQIP U:any V:a-list): a-list expr

Destructive DelatQ.

-5.3.6. List Reversal

(Reverse U:1list): list expr

Returns a copy of the top level of U in reverse order.

(De Reverse (U)
(Prog (W)
(While U
(ProgN :
(Setq W (Cons (Car U) W))
(Setq U (Cdr U))))
(Return W)))

(ReversIP U:list): list ’ expr

Destructive Reverse.

5.3.7. Functions for Sorting
The Gsort module (LOAD GSORT) provides functions for sorting lists and vectors. Some

of the functions take a comparison function as an argument. The comparison function

takes two arguments and returns NIL if they are out of order, i.e. if the second argument
should come before the first in the sorted result. Lambda expressions are acceptable as

comparison functions.

(Gsort TABLE:1list leg-fn:{id,function}): list expr

Returns a sorted list or vector. LEQ-FN is the comparison function used to

determine the sorting order. The original TABLE is unchanged. Gsort uses
a stable sorting algorithm. In other words, if X appears before Y in the
original table then X will appear before Y in the final table unless X and Y

are out of order. (An unstable sort, on the other hand, might swap X and Y

even if they're in order. This could happen when X and Y have the same
“key field”, so either one could come first without making a difference to

the comparison function.)

_—1

PSL Manual 23 September 1983 List Structure
section 5.3 page 5.11
(GmergeSort table:list leq-fn:{id,function}): list expr

The same as Gsort, but destructively modifies the TABLE argument.

GmergeSort has the advantage of being somewhat faster than Gsort.

Note that you should use the value returned by the function--don‘'t depend

on the modified argument to give the right answer.

(IdSort TABLE:1list): list expr

Returns a table of ids sorted into alphabetical order. The original table is
| unchanged. Case is not significant in determining the aiphabetical order.

The table may contain strings as well as ids.

The following example illustrates the use of Gsort.

List Structure 23 September 1983 PSL Manual
page 5.12 ‘ section 5.3

1 1lisp> (load gsort)

NIL

2 lisp> (setq X '(38 -T2 15))

(38-7215)

3 lisp> % Sort from smallest to largest.

3 lisp> (Gsort X 'leq)

(-1 12358)

4 1isp> % Sort from largest to smallest.

4 lisp> (GmergeSort X 'geq)

(8532 1-7)

5 lisp> % Note that X was "destroyed" by GmergeSort.

5 lisp> X

(321-7)

6 lisp>

6 lisp> % Here's IdSort, taking a vector as its argument.

6 lisp> (IdSort '[the quick brown fox jumped over the lazy dogl)
[BROWN DOG FOX JUMPED LAZY OVER QUICK THE THE]

T lisp>

T 1lisp> % Some examples of user defined comparison functions...
T lisp> (setq X '(("Joe" . 20000) ("Moe" . 21000) ("Larry" . T7000)))
(("Joe" . 20000) ("Moe" . 21000) ("Larry" . T000))

8 lisp>

8 lisp> % First, sort the list alphabetically according to name,
8 lisp> % using a lambda expression as the comparison function.
8 lisp> (Gsort X

8 lisp> '(lambda (X Y) (string-not-greaterp (car X) (car Y))))
(("Joe" . 20000) ("Larry" . 7000) ("Moe" . 21000))
9 lisp>

9 lisp> % Now, define a comparison function that compares cdrs of
9 lisp> % pairs, and returns T if the first is less than or equal
9 lisp> % to the second.

9 lisp> (de cdr_leq (pair1 pair2)

9 lisp> (leq (cdr pair1) (cdr pair2)))

CDR_LEQ '

10 lisp>

10 lisp> % Use the cdr_leq function to sort X.

10 lisp> (Gsort X 'cdr_leq)

(("Larry" . TO00) ("Joe" . 20000) ("Moe" . 21000))

5.4. Functions for Building and Searching A-Lists

S

PSL Manual 23 September 1983 List Structure
section 5.4 page 5.13
(Assoc U:any V:a-list): {pair, NIL} expr

If U occurs as the Car portion of an element of the a-list V, the pair in
which U occurred is returned, else NIL is returned. Assoc might not detect
a poorly formed a-list so an invalid construction may be detected by Car or
Cdr.

(De Assoc (U V)
(Cond ((Null V) Nil)
((Atom (Car V))
(Error 000 (List V "is a poorly formed alist")))
((Equal U (Caar V)) (Car V))
(T (Assoc U (Cdr V)))))

(Atsoc R1:any R2:any): any expr

Scan R2 for pair with Car Eq R1. Eq version of Assoc.

(Ass F:function U:any V:a-list): {pair, NIL} expr

Ass is a generalized Assoc function. F is the comparison function.

(SAssoc U:any V:a-list FN:function): any expr

Searches the a-list V for an occurrence of U. If U is not in the a-list, the

evaluation of function EN is returned.

(De SAssoc (U V FN) -
(Cond ((Null V) (FN))
((Equal U (Caar V)) (Car V))
(T (SAssoc U (Cdr V) FN))))

(Pair U:list V:1list): a-list expr
U and V are lists which must have an identical number of elements. If not,
an error occurs. Returned is a list in which each element is a pair, the Car

of the pair being from U and the Cdr being the corresponding element from
V.

(De Pair (U V)
(Cond ((And U V)(Cons (Cons (Car U)(Car V))
(Pair (Cdr U)(Cdr V))))
((Or U V)(Error 000 "Different length lists in PAIR"))
(T Nil)))

List Structure 23 September 1983 PSL Manual
page 5.14

section 5.5
5.5. Substitutions
(Subst U:any V:any W:any): any expr

Returns the result of substituting U for all occurrences of V in W. Copies

all of W which is not replaced by U. The test used is Equal.

(De Subst (U V W)
(Cond ((Null W) Nil)
((Equal V W) U)
((Atom W) W)
(T (Cons (Subst U V (Car W))(Subst U V (Cdr W))))))

(SubstIP U:any V:any W:any): any

expr
Destructive Subst.
(SubLis X:a-list Y:any): any expr

This pekﬂnTns a series of Substs in paraliel. The value returned is the

result of substituting the Cdr of each element of the a-list X for every

occurrence of the Car part of that element in Y.

(De SubLis (X Y)
(Cond
((Null X) Y)
(T
(Prog (U)
(Setq U (Assoc Y X))
(Return
(Cond
(U (Cdr U))
((Atom Y) Y)

(T (Cons (SubLis X (Car Y)) (SubLis X (Cdr Y))))))))))

(SublA U:a-list V:any): any . \ expr

Eq version of SubLis; replaces atoms only.

PSL MANUAL 23 SEPTEMBER 1983 STRINGS AND VECTORS
SECTION 6.0 PAGE 6.1

CHAPTER 6
STRINGS AND VECTORS

6.1. Vector-Like Objectso 6.1
6.2. Strings. L s, 6.1
6.3. Vectors. L L L L s e 6.3
6.4. Word Vectors. L. 6.5
6.5. General X-Vector Operations. 6.6
6.6. Arrays L L L L s s, 6.7
6.7. Common LISP String Functions. 6.7

6.1. Vector-Like Objects

In this chapter, LISP strings, vectors, word-vectors, haifword-vectors, and byte-vectors

are described. Each may have several elements, accessed by an integer index. For

convenience, members of this set are referred to as x—vectors. X-vector functions also

apply to lists. Currently, the index for x-vectors ranges from 0 to an upper limit, called
the Size or UpB (upper bound). Thus an x-vector X has 1 + Size(X) elements. Strings
index from 0 because they are considered to be packed vectors of bytes. Bytes are 7 bits

on the DEC-20 and 8 bits on the VAX.

[?7? Note that with new integer tagging, strings are “packed” words, which are special
cases of vectors. Should we add byte-vectors too, so that strings are different print

mode of byte vector ?7?]

[??? Size should probably be replaced by UPLIM or UPB. ?7?7]

6.2. Strings

A string is currently thought of as a Byte vector, or a packed integer vector, with
elements that are ASCIl characters. A string has a header containing its length and
perhaps a tag. The next M words contain the 0..Size characters, packed as appropriate,
terminated with at least 1 NULL. On the DEC-20, this means that strings have an ASCIZ
string starting in the second word. (ASCIZ strings are NULL terminated.)

Strings and Vectors 23 September 1983 PSL Manual
page 6.2 section 6.2

(MkString UPLIM:integer INITVAL:integer): string expr

Returns a string of characters all initialized to INITVAL, with upper bound

UPLIM. So, the returned string contains a total of UPLIM + 1 characters.

(String [ARGS:integer]): string nexpr
Create string of elements from a list of ARGS.
[??? Should we check each arg in 0..127. What about 128 - 255 with 8

bit vectors? ?7?]

(String 65 66 67) returns “ABC”

(CopyStringToFrom NEW:string OLD:string): NEW:string expr

Copy all characters from QLD into NEW. This function is destructive.

(CopyString S:string): string expr
Copy to new string, allocating heap space.
[??? Should we add GetS, PutS, UpbS, etc ???]

When processing strings it is frequently necessary to be able to specify a particular
character. In PSL a character is just its ASCIl code representation, but it is difficult to

remember the code, and the use of codes does not add to the readability of programs.

(Char U:id): integer ' macro
The Char macro returns the ASCIl code corresponding to its single character-id

argument. CHAR also can handle alias’s for special characters, remove QUOTE marks that

may be needed to pass special characters through the parser, and can accept prefixes to

compute lower case, <Ctrl> characters, and <Meta> characters. For example:

(Char A) returns 65

(Char !a) returns 97

(Char (lower a)) returns 97

(Char (control a)) returns 1

(Char (meta (control a))) returns 129, but
(Char (control (meta a))) returns 1

“Control” forces the character code into the range 0-31. “Meta” turns on the "meta bit".
“Lower” is only well-defined for alphabetic characters. To get lower-case a one may

precede the a by “!”. See also the sharp-sign macros in Chapter 10.

PSL Manual 23 September 1983 Strings and Vectors
section 6.2 page 6.3

The following Aliases are defined by PUTing the association under the indicator

‘CharConst:

DefList('((NULL 8#0)
(BELL 8#7)
(BACKSPACE 8#10)
(TAB 8#11) '
(LF 8#12)
(EOL 8#12)
(FF 8#14)
(CR 8#15)
(EOF 26)
(ESC 27)
(ESCAPE 27)
(BLANK 32)
(SPACE 32)
(RUB 8#177)
(RUBOUT 8#177)
(DEL 8#177)
(DELETE 8#177)), 'CharConst);

Users can add new “modifiers” such as META or CONTROL: just hang the appropriate

function (from integers to integers) off the char-prefix-function property of the modifier.

6.3. Vectors

A vector is a structured entity in which random item elements may be accessed with an
integer index. A vector has a single dimension. Its maximum size is determined by the
implementation and available space. A suggested input/output “vector notation” is

defined (see Chapter 10).

(GetV V:vector INDEX:integer): any expr

Returns the value stored at position INDEX of the vector V. The type
. mismatch error may occur. An error occurs if the INDEX does not lie within
0..(UPBV V) inclusive:

**%%* INDEX subscript is out of range

A similar effect may be obtained in RLISP by using V[INDEX],.

" Strings and Vectors 23 September 1983 PSL Manual

page 6.4 section 6.3
(MkVect UPLIM:integer): vector expr

Defines and allocates space for a vector with UPLIM + 1 elements accessed
as 0..UPLIM. Each element is initialized to NIL. If UPLIM is -1, an empty
vector is returned. An error occurs if UPLIM is < -1 or if there is not

enough space for a vector of this size:

Rt A vector of size UPLIM cannot be allocated

(Make!-Vector UPLIM:integer INITVAL:any): vector expr

Like MkVect but each element is initialized to INITVAL.

(PutV V:vector INDEX:integer VALUE:any): any expr

Stores VALUE in the vector V at position INDEX. VALUE is returned. The

type mismatch error may occur. If INDEX does not lie in 0..UPBV(V), an

error occurs:
=@ INDEX subscript is out of range

:=VALUE;. It is important to use square brackets, i.e. “[1".]

(UpbV U:any): {NIL, integer} expr

Returns the upper limit of U if U is a vector, or NIL if it is not.

(Vector [ARGS:anyl): vector ' nexpr

Create vector of elements from list of ARGS. The vector has N elements,

ji.,e. Size =N - 1, in which N is the number of ARGS.

(CopyVectorToFrom NEW:vector OLD:vector): NEW:vector expr
Move elements, don’t recurse.

[722Check size compatibility?]

(CopyVector V:vector): vector expr
Copy to new vector in heap.

The following functions can be used after the FAST!I-VECTOR module has been loaded
(LOAD FAST!-VECTOR).

PSL Manual 23 September 1983 Strings and Vectors
section 6.3 page 6.5
(IGetV V:vector INDEX:integer): any open-compiled, expr

Used the same way as GetV.

(IPutV V:vector INDEX:integer VALUE:any): any open-compiled, expr

Fast version of PutV.

(ISizeV U:any): {NIL,integer} open-compiled, expr

Fast version of UpbV.

(ISizeS X:x-vector): integer open-compiled, expr

Fast version of Size.

(IGetS X:x-vector I:integer): any open-compiled, expr

Fast version of Indx.

(IPutS X:x-vector I:integer A:any): any open—-compiled, expr

Fast version of SetIndx.

6.4. Word Vectors

Word-vectors or w-vectors are vector-like structures, in which each element is a

“word” sized, untagged entity. This can be thought of as a special case of fixnum vector,

in which the tags have been removed.

(Make!-Words UPLIM:integer INITVAL:integer): Word-Vector expr

Defines and allocates space for a Word-Vector with UPLIM + 1 elements,

each initialized to INITVAL.

(Make!-Halfwords UPLIM:integer INITVAL:integer): Halfword-Vector expr

Defines and allocates space for a Halfword-vector with UPLIM + 1 elements,

each initialized to INITVAL.

Strings and Vectors 23 September 1983 PSL Manual
page 6.6 section 6.4

(Make!-Bytes UPLIM:integer INITVAL:integer): Byte-vector expr

Defines and allocates space for a Byte-Vector with UPLIM + 1 elements,
each initialized to INITVAL.

[??? Should we convert elements to true integers when accessing ???]

[??? Should we add GetW, PutW, UpbW, etc ??7?]

6.5. General X-Vector Operations

(Size X:x-vector): integer expr

Size (upper bound) of x-vector.

(Indx X:x-vector I:integer): any expr
Access the I'th element of an x-vector.
[??? Rename to Getindex, or some such ???]
Generates a range error if | is outside the range 0 .. Size(X):

##%%% Index is out of range

(SetIndx X:x-vector I:integer A:any): any expr

Store an appropriate value, A, as the I'th element of an x~vector. Generates

a range error if | is outside the range 0..Size(X):

**%%* Index is out of range

(Sub X:x-vector Il:integer S:integer). x-vector expr

Extract a subrange of an x-vector, starting at |1, producing a new x-vector

of Size S. Note that an x-vector of Size 0 has one entry.

(SetSub X:x-vector I1:integer S:integer Y:x-vector): x-vector expr

Store subrange of Y of size S into X starting at 11. Returns Y.

(SubSeq X:x-vector LO:integer HI:integer): x-vector expr

Returns an x-vector of Size HI-LO-1, beginning with the element of X with
index LO. In other words, returns the subsequence of X starting at LO and

ending just before HI. For example,

PSL Manual 23 September 1983 Strings and Vectors
section 6.5 page 6.7

(Setq A '[0 123 456])
(SubSeq A U 6)

returns [4 5].

(SetSubSeq X:x-vector LO:integer HI:integer Y:x-vector): Y:x-vector expr

Y must be of Size HI-LO-1; it must also be of the same type of x-vector
as X. Elements LO through HI-1 in X are replaced by elements 0 through
Size(Y) of Y. Y is returned and X is changed destructively. If Ais
“0123456” and B is "abcd”, then

(SetSubSeq A 3 7 B)

returns "abcd”. A is "012abcd” and B is unchanged.

{(Concat X:x-vector Y:x-vector): x-vector expr
Concatenate two x-vectors. Currently they must be of same type.

[??? Shouid we do conversion to common type ???]

(TotalCopy S:any): any : expr
Returns a unique copy of entire structure, i.e., it copies everything for which
storage is allocated - everything but inums and ids. Like Copy (Chapter 5)

TotalCopy will not terminate when applied to circular structures.

6.6. Arrays
Arrays do not exist in PSL as distinct data-types; rather an array macro package is

anticipated for declaring and managing multi-dimensional arrays of items, characters and

words, by mapping them onto one dimensional vectors.

[??? What operations, how to map, and what sort of checking ???]

6.7. Common LISP String Functions

A Common LISP compatible package of string and character functions has been
implemented in PSL, obtained by LOADing the STRINGS module. The following functions
are defined from Chapters 13 and 14 of the Common LISP manual [Steele 81]. Char and

String are not defined because of PSL functions with the same name.

Strings and Vectors 23 September 1983 PSL Manual
page 6.8 section 6.7

Common LISP provides a character data type in which every character object has three
attributes: code, bits, and font. The bits attribute allows extra flags to be associated with
a character. The font attribute permits a specification of the style of the glyphs (such as
italics). PSL does not-support nonzero bit and font attributes. Because of this some of
the Common LISP character functions described below have no affect or are not very

useful as implemented in PSL. They are present for compatibility.

Recall that in PSL a character is represented as its code, a number in the range 0..127.
For an argument to the following character functions give the code or use the Char

function or the sharp-sign macros in Chapter 10.

(Standard!-CharP C:character): boolean expr

Returns T if the argument is a “standard character”, that is, one of the

ninety-five ASCII printing characters or <return>.

(Standard-CharP (Char A)) returns T
(Standard-CharP {(Char !"“A)) returns Nil

(GraphicP C:character): boolean expr

Returns T if C is a printable character and Nil if it is a non-printable
(formatting or control) character. The space character is assumed to be

graphic.

(String!-CharP C:character): boolean expr

Returns T if C is a character that can be an element of a string. Any
character that satisfies Standard-Charp and Graphicp also satisfies String-

Charp.

(AlphaP C:character): boolean expr

Returns T if C is an alphabetic character.

(UpperCaseP C:character): boolean expr

Returns T if C is an upper case letter.

PSL Manual 23 September 1983 Strings and Vectors
section 6.7 page 6.9

(LowerCaseP C:character): boolean

Returns T if C is a lower case letter.

(BothCaseP C:character): boolean

In PSL this function is the same as AlphaP.

(DigitP C:character): boolean

Returns T if C is a digit character (optional radix not supported).

(AlphaNumericP C:character): boolean

Returns T if C is a digit or an alphabetic.

(Char!= Cl:character C2:character): boolean

Returns T if C1 and C2 are the same in all three attributes.

(Char!-Equal C1:character C2:character): boolean

Returns T if C1 and C2 are similar. Differences in case, bits, or font are

ignored by this function.

(Char!< C1l:character C2:character): boolean

Returns T if C1 is strictly less than C2.

(Char!> C1:character C2:character): boolean

Returns T if C1 is strictly greater than C2.

(Char!-LessP C1l:character C2:character): boolean

Like Char!< but ignores differences in case, fonts, and bits.

(Char!-GreaterP C1:character C2:character): boolean

Like Char!> but ignores differences in case, fonts, and bits.

expr

Strings and Vectors 23 September 1983 PSL Manual
page 6.10 section 6.7

(Char!-Code C:character): character expr

Returns the code attribute of C. In PSL this function is an identity function.

(Char!-Bits C:character): integer expr

Returns the bits attribute of C, which is always 0 in PSL.

(Char!-Font C:character): integer expr

Returns the font attribute of C, which is always 0 in PSL.

(Code!-Char I:integer): {character,nil} expr

The purpose of this function is to be able to construct a character by
specifying the code, bits, and font. Because bits and font attributes are not

used in PSL, Code!-Char is an identity function.

(Character C:{character, string, id}): character expr

Attempts to coerce C to be a character. If C is a character, C is returned.
If C is a string, then the first character of the string is returned. If C is a
symbol, the first character of the symbol is returned. Otherwise an error

occurs.

(Char!-UpCase C:character): character expr

If LowerCaseP(C) is true, then Char-UpCase returns the code of the upper

case of C. Otherwise it returns the code of C.

(Char!-DownCase C:character): character expr

If UpperCaseP(C) is true, then Char-DownCase returns the code of the lower

case of C. Otherwise it returns the code of C.

(Digit!-Char C:character): integer expr
Converts character to its code if C is a one-digit number. If C is larger
than one digit, Nil is returned. If C is not numeric, an error message is

caused.

PSL Manual 23 September 1983 Strings and Vectors

section 6.7 page 6.11
(Char!-Int C:character): integer expr

Converts character to integer. This is the identity operation in PSL.

(Int!-Char I:integer): character expr
Converts integer to character. This is the identity operation in PSL.

The string functions follow.

(RplaChar S:string I:integer C:character): character expr

Store a character C in a string S at position |.

(String!= S1:string S2:string): boolean expr
Compares two strings S1 and S2, case sensitive. (Substring options not

implemented).

(String!-Equal S1:string S2:string): boolean expr
Compare two strings S1 and S2, ignoring case, bits and font.

The following string comparison functions are extra—boolean. If the comparison results

in a value of T, the first position of inequality in the strings is returned.

(String!< S1:string S2:string): extra-boolean expr

Lexicographic comparison of strings. Case sensitive.

(String!> S1:string S2:string): extra-boolean expr

Lexicographic comparison of strings. Case sensitive.

(String!<!= S1:string S2:string). extra-boolean expr

Lexicographic comparison of strings. Case sensitive.

(String!>!= S1:string S2:string): extra-boolean expr

Lexicographic comparison of strings. Case sensitive.

Strings and Vectors 23 September 1983 PSL Manual

page 6.12 section 6.7
(String!<!> S1:string S2:string): extra-boolean expr

Lexicographic comparison of strings. Case sensitive.

- {String!-LessP S1:string S2:string): extra-boolean expr

Lexicographic comparison of strings. Case differences are ignored.

(String!-GreaterP S1:string S2:string): extra-boolean expr

Lexicographic comparison of strings. Case differences are ignored.

(String!-Not!-GreaterP S1:string S2:string): extra-boolean expr

Lexicographic comparison of strings. Case differences are ignored.

(String!-Not!-LessP S1:string S2:string): extra-boolean expr

Lexicographic comparison of strings. Case differences are ignored.

(String!-Not!-Equal S1 :str‘i'ng S2:string): extra-boolean expr

Lexicographic comparison of strings. Case differences are ignored.

(String!-Repeat S:string I:integer): string expr

Appends copy of S to itself total of [-1 times.

(Make!-String I:integer C:character): string expr

Constructs a string with | characters all initialized to C.

(String!-Trim BAG:{list, string} S:string): string expr

Remove leading and trailing characters in BAG from a string S.

(String-Trim "ABC" "AABAXYZCB") returns "XYZ"

(String-Trim (List (Char A) (Char B) (Char C))
"AABAXYZCB")

returns "XYyz"

(String-Trim '(65 66 67) "ABCBAVXZCC") returns "VXZ"

PSL Manual 23 September 1983 Strings and Vectors
section 6.7 ’ page 6.13

(String!-Left!-Trim BAG:{list, string} S:string): string

Remove leading characters from string.

(String!-Right!-Trim BAG:{list, string} S:string): string

Remove trailing characters from string.

(String!-UpCase S:string): string

Copy and raise all alphabetic characters in string.

(NString!-UpCase S:string): string

Destructively raise all alphabetic characters in string.

(String!-DownCase S:string): string

Copy and lower all alphabetic characters in string.

(NString!-DownCase S:string): string

Destructively lower ail alphabetic characters in string.

(String!-Capitalize S:string): string

Copy and raise first letter of all words in string; other letters in lower case.

(NString!-Capitalize S:string): string

Destructively raise first letter of all words; other letters in lower case.

(String!-to!-List S:string): list

Unpack string characters into a. list.

(String!-to!-Vector S:string): vector

Unpack string characters into a vector.

(SubString S:string LO:integer HI:integer): string
Same as SubSeq, but the first a::gument must be a string. Returns a

substring of S of Size Hl - LO - 1, beginning with the element with index
LO.

expr

Strings and Vectors 23 September 1983 PSL Manual

page 6.14 section 6.7

(String!-Length S:string): integer expr

Last index of a string, plus one.

PSL MANUAL 23 SEPTEMBER 1983 FLOW OF CONTROL
SECTION 7.0 - PAGE 7.1

CHAPTER 7
FLOW OF CONTROL

7.1. Conditionals L. L L 7.1
711. Conds and Ifs. Lo 0L oL 7.1
7.1.2. Case and Selectq Statements 7.3

7.2. Sequencing Evaluation.o oL Lo 7.4

7.3. Iteration L L L e 7.6
730 F0r. . . e s s 7.7
7.3.2. Mapping Functionso 7.12
733.D0. . . . s e 7.14

7.4. Non-Local Exits.o 7.16

7.1. Conditionals

7.1.1. Conds and Ifs

(Cond [U:form-1listl): any open-compiled, fexpr

The LISP function Cond corresponds to the If statement of most

programming languages.

The arguments to Cond have the form:

(COND (predicate action action ...)
(predicate action action ...)

(predicate action action ...))

The predicates are evaluated in the order of their appearance until a
non-NIL value is encountered. The corresponding actions are evaluated
and the value of the last becomes the value of the Cond. If there are no

corresponding actions, the value of the predicate is returned.

The actions may also contain the special functions Go, Return, Exit, and
Next, subject to the constraints on placement of these functions given in
Section 7.2. In these cases, Cond does not have a defined value, but rather

an effect. If no predicate is non-NIL, the value of Cond is NIL.

The following Macros are defined in the USEFUL module for convenience.

Flow Of Control 23 September 1983 PSL Manual
page 7.2 : section 7.1

(If E:form SO:form [S:form]): any macro

If is a macro to simplify the writing of a common form of Cond in which

there are only two clauses and the antecedent of the second is T.
(IF E SO S1...Sn)

The then-clause S0 is evaluated if and only if the test E is non-NIL,
otherwise the else-clauses Si are evaluated, and the last returned. The else

clauses are optionally present.

Related macros for common COND forms are WHEN and UNLESS.

(When E:form [S:form]): any macro
(WHEN E S1 S2 ... Sn)

evaluates the Si and returns the value of Sn if and only if the test E is non-

NIL. Otherwise When returns NIL.

(Unless E:form [U:forml): any macro
(UNLESS E S1 S2 ... Sn)
Evaluatés the Si if and only if the test E is NIL. It is equivalent to
(WHEN (NOT E) S1 S2 ... Sn)

While And and Or are primarily of interest as Boolean connectives, they are often used

in LISP as conditionals. For example,
(AND (FOO) (BAR) (BAZ))
has the same result as
(COND ((FOO) (COND ((BAR) (BAZ)))))

See Section 2.2.3.

PSL Manual 23 September 1983 Flow Of Control
section 7.1 page 7.3

7.1.2. Case and Selectq Statements

PSL provides a numeric case statement, that is compiled quite efficiently; some effort is
made to examine special cases (compact vs. non-compact sets of cases, short vs. long
sets. of cases, etc.). It has. mostly been used in SYSLISP mode, but can also be used from
LISP mode provided that case-tags are numeric. There is also an FEXPR, Case, for the

interpreter.

(Case I:form [U:case-clausel): any open-compiled, fexpr

| is meant to evaluate to an integer, and is used as a selector amongst the
various Us. Each case-clause has the form (case—expr form) where case-

expr has the form:

NIL -> default case
(I1 12 ... In) -> where each Ik is an integer or
(RANGE low high)

For example:

(CASE i ((1) (Print "First"))
((2 3) (Print "Second"))
(((Range 4 10)) (Print "Third"))
(NIL (Print "Fourth")))

(Selectq I:form [U:selectg-clausel): any macro

This function selects an action based on the value of the form |, the "key”.
Each selectg-clause has the form (key-part action action ..). Each key-part
is a list of keys, or T, or OTHERWISE. If there is only one key in a key-part
it may be written in place of a list containing it, provided that the key is not

a list, NIL, T, or OTHERWISE, which would be ambiguous.

After | is evaluated, it is compared against the members of each of the key—~
part lists in turn. If the key is Eq to any member of a key list, then each of
the forms in that selectq-clause are evaluated, and the value of the last
form of the list is the value of the Selectq. If a selectq-clause with key-
part T or OTHERWISE is reached, its forms are evaluated without further
testing. Clearly a T or OTHERWISE clause should be the last of the clauses.

If no clause is satisfied Selectq returns NIL.

Flow Of Control 23 September 1983 PSL Manual
page 7.4 section 7.1

For example:

(SELECTQ (CAR W)
((NIL) NIL)
(END (PRINT 'DONE) 'END)
((0123456789) 'DIGIT)
(OTHERWISE 'OTHER))

[??? Perhaps we should move SELECTQ (and define a SELECT) from the COMMON

module to the basic system ???]

7.2. Sequencing Evaluation
These functions provide for explicit control sequencing, and the definition of blocks

altering the scope of local variables.

(ProgN [U:form]): any open-compiled, fexpr

U is a set of expressions which are executed sequentially. The value

returned is the value of the last expression.

(Prog2 A:form B:form): any open-compiled, expr

Returns the value of B (the second argument).

[??? Redefine prog2 to take N arguments, return second. ???]

(Prog1 [U:forml): any macro

Prog1 is a function defined in the'USEFUL package. Prog1l evaluates its

arguments in order, as ProgN does, but returns the value of the first.

(Prog VARS:id-1list [PROGRAM:{id,form}]): any open-compiled, fexpr

VARS is a list of ids which are considered FLUID if the Prog is interpreted
and LOCAL if compiled (see the "Variables and Bindings” Section, 8.3). The
Prog's variables are allocated space if the Prog form is applied, and are
deallocated if the Prog is exited. Prog variables are initialized to NIL. The
PROGRAM is a set of expressions to be evaluated in order of their
appearance in the Prog function. identifiers appearing in the top level of

the PROGRAM are labels which can be referred to by Go. The value

PSL Manual 23 September 1983 Flow Of Control
section 7.2 ' page 7.5

returned by the Prog function is determined by a Return function or NIL if

the Prog “falls through”.

There are restrictions as to where a number of control functions, such as Go and
Return, may be placed.- This is. so that they may-have only locally determinable effects.
Unlike most LISPs, which- make this restriction only in- compiled code, PSL enforces this
restriction uniformly in both compiled and interpreted code. Not only does this help keep
the semantics of compiled and interpreted code the same, but we believe it leads to more
readable programs. For cases in which a non-local exit is truly required, there are the

functions Catch and Throw, described in Section 7.4.

The functions so restricted are Go, Return, Exit, and Next. They must be placed at
top-level within the surrounding control structure to which they refer (e.g., the Prog
which Return causes to be terminated), or nested within only selected functions. The

functions in which they may be nested (to arbitrary depth) are:
* ProgN (compound statement)
* actions of Conds (if then else)
* actions in Cases

(Go LABEL:id): None Returned open-compiled, fexpr

Go alters the normal flow of control within a Prog function. The next
statement of a Prog function to be evaluated is immediately preceded by

LABEL. A Go may appear only in the following situations:

a. At the top level of a Prog referring to a LABEL that also appears at the
top level of the same Prog.
b. As the action of a Cond item

i. appearing on the top level of a Prog.
ii. which appears as the action of a Cond item to any level.

c. As the last statement of a ProgN

i. which appears at the top level of a Prog or in a ProgN appearing
in the action of a Cond to any level subject to the restrictions of
b.i, or b.ii.

ii. within a ProgN or as the action of a Cond in a ProgN to any level
subject to the restrictions of b.i, b.ii, and c.i.

If LABEL does not appear at the top level of the Prog in which the Go

Flow Of Control 23 September 1983 PSL Manual
page 7.6 section 7.2

appears, an error occurs:
wexi | ABEL is not a label within the current scope

If the Go has been placed in a position not defined by rules a-c, another

error is detected:

**=%% |llegal use of GO To LABEL

(Return U:form): None Returned open—-compiled, expr

Within a Prog, Return terminates the evaluation of a Prog and returns U as
the value of the Prog. The restrictions on the placement of Return are

exactly those of Go. Improper placement of Return resuits in the error:

==w%E% |llegal use of RETURN

7.3. Iteration

(While E:form [S:form]): NIL macro
This is the most commonly used éonstruct for indefinite iteration in LISP. E
is evaluated; if non-NIL, the S's are evaluated from left to right and then
the process is repeated. If E evaluates to NIL the While returns NIL. Exit
may be used to terminate the While from within the body and to return a

value. Next may be used to terminate the current iteration.

(Repeat [S:form E:form]): NIL macro

The S’s are evaluated left to right, and then E is evaluated. This is repeated
until the value of E is non-NIL, at which point Repeat returns NIL. Next
and Exit may be used in the S’s branch to the next iteration of a Repeat or
to terminate one and possibly return a value. Go, and Return may appear in

the S's.

(Next): None Returned open—-compiled, restricted, macro

This terminates the current iteration of the most closely surrounding While
or Repeat, and causes the next to commence. See the note in Section
7.2 about the lexical restrictions on placement of this construct, which is

essentially a GO to a special label placed at the front of a loop construct.

PSL Manual 23 September 1983 Flow Of Control
section 7.3 page 7.7

(Exit [U:form]): None Returned open-compiled,restricted, macro

The U’s are evaluated left to right, the most closely surrounding While or
Repeat is terminated, and the value of the last U is returned. With no
arguments, NIL is returned. See the note in Section 7.2 about the lexical

restrictions on placement of this construct, which is essentially a Return.

While and Repeat each macro expand into a Prog; Next and Exit are macro expanded
into a Go and a Return respectively to this Prog. Thus using a Next or an Exit within a

Prog within a While or Repeat will result only in an exit of the internal Prog.

7.3.1. For

A simple For construct is available in the basic PSL system; an extended form can be
obtained by loading USEFUL. It is planned to make the extended form the version
available in the basic system, combining all the features of FOR and ForEach. The basic
PSL For provides only the (FROM .) iterator, and (DO ..) action clause, and uses the
ForEach construct for some of the (IN ..) and (ON ..) iterators. Most users should use the

full For construct.

(For [S:form]): any macro

The arguments to For are clauses; each clause is itself a list of a keyword
and one or more arguments. The clauses may introduce local variables,
specify return values and when the iteration should cease, have side-
effects, and so on. Before going further, it is probably best to give some

examples.

(FOR (FROM I 1 10 2) (DO (PRINT I)))
Prints the numbers 1 35 7 9

(FOR (IN U '(A B C)) (DO (PRINT U)))
Prints the letters A B C

(FOR (ON U '(A B C)) (DO (PRINT U)))
Prints the lists (A B C) (B C) and (C)

Finally, the function
(DE ZIP (X Y)
(FOR (IN U X) (IN V Y)
(COLLECT (LIST U V))))

page 7.8

Flow Of Control 23 September 1983 . PSL Manual

produces a list of 2 element lists, each consisting of the the corresponding

elements of the three lists X, Y and Z. For example,
(zIP '(1 23 4) '(AaBC))
produces

((1 a)(2 b)(3 ¢c))

The iteration terminates as soon as one of the (IN ..) clauses is exhausted.

Note that the (IN ...), (ON ...) and (FROM ..) clauses introduce local variables

U, V or |, that are referred to in the action clause.

All the possible clauses are described below. The first few introduce
iteration variables. Most of these also give some means of indicating when
iteration should cease. For example, if a list being mapped over by an In
clause is exhausted, iteration must cease. If several such clauses are given
in a For expression, iteration ceases when one of the clauses indicates it

should, whether or not the other clauses indicate that it should cease.
(IN V1 V2) assigns the variable V1 successive elements of the list V2.

This may take an additional, optional argument: a function to be
applied to the extracted element or sublist before it is assigned
to the variable. The following returns the sum of the lengths of
all the elements of L.

[??? Rather a kludge -- not sure why this is here. Perhaps
it should come out again. ???]

(DE LENGTHS. (L)
(FOR (IN N L LENGTH)
(COLLECT (LIST N N)))

is the same as

(DE LENGTHS (L)
(FOR (IN N L)
(COLLECT
(LIST (LENGTH N) (LENGTH N))))

section 7.3

section 7.3

PSL Manual 23 September 1983 Flow Of Control

but only calls LENGTH once. Using the (WITH .) form to
introduce a local LN may be clearer.

For example,

(SUMLENGTHS
"({(12345)(abe)xy)))
is

((535) (33) (22))
(ON V1 V2) assigns the variable V1 successive Cdrs of the list V2.

(FROM VAR INIT FINAL STEP)

is a numeric iteration clause. The variable is first assigned INIT,
and then incremented by step until it is larger than FINAL. INIT,
FINAL, and STEP are optional. INIT and STEP both default to 1,
and if FINAL is omitted the iteration continues until stopped by
some other means. To. specify a STEP with INIT or FINAL
omitted, or a FINAL with INIT omitted, place NIL (the constant
-- it cannot be an expression) in the appropriate slot to be
omitted. FINAL and STEP are only evaluated once.

(FOR VAR INIT NEXT)
assigns the variable INIT first, and subsequently the value of the
expression NEXT. INIT and NEXT may be omitted. Note that this
is identical to the behavior of iterators in a Do.

(WITH V1 V2 ... Vn) ‘
introduces N locals, initialized to NIL. In addition, each Vi may
also be of the form (VAR INIT), in which case it is initialized to
INIT.

(DO S1 S2 ... Sn)
causes the Si's to be evaluated at each iteration.

There are two clauses which allow arbitrary code to be executed before the

first iteration, and after the last.

(INITIALLY S1 S2 .. Sn)
causes the Si's to be evaluated in the new environment (i.e. with
the iteration variables bound to their initial values) before the
first iteration.

(FINALLY S1 S2 .. Sn)
causes the Si's to be evaluated just before the function returns.

page 7.9

Flow Of Control 23 September 1983 : PSL Manual
page 7.10 section 7.3
The next few clauses build up return types. Except for the

RETURNS/RETURNING clause, they may each take an additional argument
which specifies that instead of returning the appropriate value, it is

accumulated in the specified variable. For example, an unzipper might be .

defined as

(DE UNZIP (L)

(FOR (IN U L) (WITH X Y)
(COLLECT (FIRST U) X)
(COLLECT (SECOND U) Y)
(RETURNS (LIST X Y))))

This is essentially the opposite of Zip. Given a list of 2 element lists, it
unzips them into 2 lists, and returns a list of those 2 lists. For example,
(unzip ‘({1 a)(2 b}(3 c))) returns is ((1 2 3){(a b c)).

(RETURNS EXP)
causes the given expression to be the value of the For.
Returning is synonymous with returns. It may be given
additional arguments, in which case they are evaluated in order
and the value of the last is returned (implicit ProgN).

(COLLECT EXP)
causes the successive values of the expression to be collected
into a list. Each value is Appended to the end of the list.

{ADJOIN EXP), (ADJOINQ EXP)
are similar to COLLECT, but a value.is added to the result only if
it is not already in the list. ADJOIN tests with EQUAL, ADJOINQ
tests with EQ.

(CONC EXP)
causes the successive values to be NConc'd together.

(JOIN EXP) causes them to be appended.

(UNION EXP), (UNIONQ EXP)
are similar to JOIN, but only add an element to the list if it is
not already there. UNION tests with EQUAL, UNIONQ tests with
EQ

(INTERSECTION EXP), (INTERSECTIONQ EXP)
compute the set of elements that are in all the sets iterated
over. With INTERSECTION, elements are the same if EQUAL,

PSL Manual : 23 September 1983 Flow Of Control
section 7.3 page 7.11

with INTERSECTIONQ they are the same if EQ.

(COUNT EXP)
returns the number of times EXP was non-NiL.

(SUM EXP), (PRODUCT EXP), (MAXIMIZE EXP), and (MINIMIZE EXP)
do the obvious. Synonyms are summing, maximizing, and
minimizing.

(MAXIMAL EXP1 EXP2), (MINIMAL EXP1 EXP2)

are more general than maximize and minimize. MAXIMAL
determines the greatest value for EXP2 over the iteration,
returning the value of EXP1 rather than the value of EXP2. As a
particular case it is possible to return the value of an iteration
variable for which some function attains a maximum (or
minimum) value, e.g. (MAXIMAL x (f x)). As with other kinds of
clauses, the user may “accumulate” the value of EXP1 into a
variable by supplying a third expression which is the name of a
variable.

(ALWAYS EXP)
returns T if EXP is non—-NIL on each iteration. If EXP is ever NIL,
the loop terminates immediately, no epilogue code, such as that
introduced by finally is run, and NIL is returned.

(NEVER EXP)
is equivalent to (ALWAYS (NOT EXP)).

(WHILE EXP) and (UNTIL EXP)

Explicit tests for the end of the loop may be given using
(WHILE EXP). The loop terminates if EXP becomes NIL at the
beginning of an iteration. (UNTIL EXP) is equivalent to
(WHILE (NOT EXP)). Both While and Until may be given
additional arguments; (WHILE E1 E2 .. En) is equivalent to
(WHILE (AND E1 E2 .. En)) and (UNTIL E1 E2 ... En) is equivalent
to (UNTIL (OR E1 E2 ... En)).

(WHEN EXP)
causes a jump to the next iteration if EXP is NIL.

(UNLESS EXP)
is equivalent to (WHEN {NOT EXP)).
For is a general iteration construct similar in many ways to the LISP Machine and
MACLISP Loop construct, and the earlier Interlisp CLISP iteration construct. For, however,

is considerably simpler, far more “lispy”, and somewhat less powerful.

Flow Of Control . 23 September 1983 PSL Manual
page 7.12 section 7.3

All variable binding/updating still precedes any tests or other code. Also note that all
When or Unless clauses apply to all action clauses, not just subsequent ones. This fixed
order of evaluation makes For less powerful than Loop, but also keeps it considerably

simpler. The basic order of evaluation is

a. bind variables to initial values (computed in the outer environment)
b. execute prologue (i.e., Initially clauses)

c. while none of the termination conditions are satisfied:

i. check conditionalization clauses (When and Unless), and start next
iteration if all are not satisfied.

ii. perform body, collecting into variables as necessary
iii. next iteration

d. (after a termination condition is satisfied} execute the epilogue (i.e, Finally
clauses)

For does all variable binding/updating in parallel. There is a similar macro, For¥*, which

does it sequentially.

(For!* [S:fornm]): any macro

7.3.2. Mapping Functions

The mapping functions long farhiliar to LISP programmers are present in PSL. However,.
we believe that the For construct described above or the simpler ForEach described
below is generally more useful, since it obviates the usual necessity of constructing a
lambda expression, and is often more transparent. Mapping functions with more than two
arguments are not currently supported. Note however that several lists may be iterated

along with For, and with considerably more generality. For example:

(Prog (I)
(Setq I 0)
(Return
(Mapcar L
(Function (Lambda (X)
(Progn

(Setq I (Plus I 1))
(Cons I X)))))))

PSL Manual
section 7.3

23 September 1983 Flow Of Control

page 7.13

may be expressed more transparently as

(For (IN X L) (FROM I 1) (COLLECT (CONS I X)))

To-augment the simpler For loop present in basic PSL, the following list iterator has

been provided:

(ForEach U:any): any macro
This macro is essentially equivalent to the the map functions as follows:

Possible forms are:

Setting X to successive elements (CARs) of U:
(FOREACH X IN U DO (FOO X)) --> (MAPC U 'FO0)
(FOREACH X IN U COLLECT (FOO X))--> (MAPCAR U 'FO0)
(FOREACH X IN U CONC (FOO X)) =--> (MAPCAN U 'FOO)
(FOREACH X IN U JOIN (FOO X)) --> (MAPCAN U 'FOO)
Setting X to successive CDRs of U:

(FOREACH X ON U DO (FOO X)) --> (MAP U 'FOO)
(FOREACH X ON U COLLECT (FOO X))--> (MAPLIST U 'FO0)
(FOREACH X ON U CONC (F0OO X)) --> (MAPCON U 'FO0)
(FOREACH X ON U JOIN (FOO X)) --> (MAPCON U 'FOOQ)

(Map X:1ist FN:function): NIL expr
Applies FN to successive Cdr segments of X. NIL is returned. This is
equivalent to:

(FOREACH u ON x DO (FN u))

(MapC X:1ist FN:function): NIL expr
FN is applied to successive Car segments of list X. NIL is returned. This is
equivalent to:

(FOREACH u IN x DO (FN u))
(MapCan X:1ist FN:function): list expr

A concatenated list of FN applied to successive Car elements of X is

returned. This is equivalent to:

(FOREACH u IN x CONC (FN u))

Flow Of Control 23 September 1983 ' PSL Manual
page 7.14 section 7.3

(MapCar X:1list FN:function): list expr
Returned is a constructed list, the elements of which are FN applied to each

Car of list X. This is equivalent to:

(FOREACH u IN x COLLECT (FN u))

(MapCon X:1ist FN:function): list expr
Returned is a concatenated list of FN applied to successive Cdr segments

of X. This is equivalent to:

(FOREACH u ON x CONC (FN u))

(MapList X:1list FN:function): 1list expr
Returns a constructed list, the elements of which are FN applied to

successive Cdr segments of X. This is equivalent to:

(FOREACH u ON x COLLECT (FN u))

7.3.3. Do
The MACLISP style Do and Let are now partially implemented in the USEFUL module.

{Do A:list B:list [S:forml): any macro
The Do macro is a general iteration construct similar to that of LISPM and
friends. However, it does differ in some details; in particular it is not
compatible with the “old style Do” of MACLISP, nor does it support the “no

end test means once oniy” convention. Do has the form

(DO (I1 I2 ... In)
(TEST R1 R2 ... Rk)
S1
S2

Sm)

in which there may be zero or more I's, R’s, and S’s. In general the I's have

the form

(var init step)

PSL Manual 23 September 1983 Flow Of Control
section 7.3 page 7.15

On entry to the Do form, all the inits are evaluated, then the variables are
bound to their respective inits. The test is evaluated, and if non—-NIL the
form evaluates the R’s and returns the value of the last one. If none are
--supplied it returns NIL. |If the test evaluates to NIL the S’s are evaluated,
the variables are assigned the values of their respective steps in parallel,
and the test evaluated again. This iteration continues until test evaluates to
a non-NIiL vaiue. Note that the inits are evaluated in the surrounding
environment, while the steps are evaluated in the new environment. The
body of the Do (the S’s) is a Prog, and may contain labels and Go's, though
use of this is discouraged. This may be changed at a later date. Return
used within a Do returns immediately without evaluating the test or exit

forms (R’s).

There are alternative forms for the I's: If the step is omitted, the variable’s
value is left unchanged. If both the init and step are omitted or if the | is
an id, it is initialized to NIL and left unchanged. This is particularly useful

for introducing dummy variables which are SetQ'd inside the body.

(Do!* A:list B:list [C:form]): any macro

Do!* is like Do, except the variable bindings and updatings are done

sequentially instead of in parallel.

(Do-Loop A:1list B:list C:list [S:forml): any macro

Do-Loop is like Do, except that it takes an additional argument, a prologue.

The general form is

(DO-LOOP (I1 I2 ... In)
(P1 P2 ... Pj)
(TEST R1 R2 ... Rk)
S1
s2

Sm)

This is executed just like the corresponding Do, except that after the
bindings are established and initial values assigned, but before the test is

first executed the P’s are evaluated, in order. Note that the P’s are all

Flow Of Control 23 September 1983 PSL Manual
page 7.16 » © section 7.3

evaluated exactly once {(assuming that none of the P's errs out, or otherwise

throws to a surrounding context).

(Do-Loop!* A:1list B:list C:list [S:form_]): any macro
Do-Loop!#* does the variable bindings and updates sequentially instead of in

parallel.

(Let A:1ist [B:forml): any macro

Let is a macro giving a more perspicuous form for writing lambda

expressions. The basic form is
(LET ((V1 11) (V2 12) ..(Vn In)) ST S2 ... Sn)

The I's are evaluated (in an unspecified order), and then the V's are bound
to these values, the S’s evaluated, and the value of the last is returned.
Note that the I's are evaluated in the odter environment before the V's are

bound.
Note: the id LET conflicts with a similar construct in RLISP and REDUCE

.(Let!*® A:1ist [B:form]): any macro

Let!* is just like Let except that it makes the assignments sequentially.
That is, the first binding is made before the value for the second one is

computed.

7.4. Non-Local Exits

One occasionally wishes to discontinue a computation in which the lexical restrictions
on placement of Return are too restrictive. The non-local exit constructs Catch and
Throw exist for these cases. They should not, however, be used indiscriminately. The
lexical restrictions on their more local counterparts ensure that the flbw of control can be
ascertained by looking at a single piece of code. With Catch and Throw, control may be
passed to and from totally unrelated pieces of code. Under some conditions, these

functions are invaluable. Under others, they can wreak havoc.

PSL Manual 23 September 1983 Flow Of Control
section 7.4 page 7.17

(Catch TAG:id [FORM:form]): any Open-Compiled, fexpr

Catch evaluates the TAG and then calls Eval on the FQORMs in a protected
environment. If during this evaluation (Throw TAG VAL) occurs, Catch
immediately returns VAL If no Throw occurs, the value of the last FORM is
returned. Note that in general only Throws with the same TAG are caught.
Throws whose TAG is not Eq to that of Catch are passed on out to
surrounding Catches. A TAG of NIL, however, is special. (Catch NIL FORM)

catches any Throw. The tag of NIL serves to match any tag specified to

Throw.
ThrowSignal!#¥* [Initially: NiL] globai
ThrowTag!* [Initiaily: NIL] global

The FLUID variables ThrowSignal!¥* and ThrowTag!¥ may be interrogated to
find out if the most recently evaluated Catch was Thrown to, and what tag
was passed to the Throw. ThrowSignal!#¥* is Set to NIL upon normal exit
from a Catch, and to T upon normal exit from Throw. ThrowTag!¥ is Set to
the first argument passed to the Throw. (Mark a place to Throw to, Eval
FORM.)

(Throw TAG:id VAL:any): None Returned expr

This passes control to the closest surrounding Catch with an Eq or nuil

TAG. If there is no such surrounding Catch it is an error in_the context of

the Throw. That is, control is not Thrown to the top level before the call on

Error. (Non-local Goto.)

Some examples:

Flow Of Control 23 September 1983 PSL Manual
page 7.18 section 7.4

With
(DE DOIT (x)
(COND ((EQN x 1) 100)
(T (THROW 'FOO 200))))

(CATCH 'FOO (DOIT 1) (PRINT "NOPE") 0)
will continue and execute the PRINT statement
and return 0

while

(CATCH 'FOO (DOIT 2) (PRINT "NOPE") 0)

will of course THROW, returning 200 and not executing
the last forms.

A common problem people encounter is how to pass arguments and/or computed
functions or tags into CATCH for protected evaluation. The following examples should

ilustrate. Note that TAG is quoted, since it is evaluated before use in CATCH and THROW.

(DE PASS-ARGS(X1 X2)
(CATCH 'FOO (FEE (PLUS2 X1 X2) (DIFFERENCE X1 X2))))

This is simple, because CATCH compiles open. No FLUID deciarations or LIST building is
needed, as in previous versions of PSL. An explicit Apply must be used for a function

argument; usually, the APPLY will compile open, with no overhead:

(DE PASS-FN(X1 FN) :
(CATCH 'FOO (APPLY FN (LIST X1))))

The following MACROs are provided to aid in the use of Catch and Throw with a NIL

tag, by examining the ThrowSignal!#* and ThrowTag!¥*:

(Catch!-All FN:function [FORM:forml): any : macro

This issues a {Catch NIL ...); if a Throw was actually done, the function EN is
applied to the two arguments ThrowTag!¥* and the value returned by the

throw. Thus FN is applied only if a Throw was executed.

PSL Manual 23 September 1983 Flow Of Control
section 7.4 : page 7.19

(Unwind!-Al11l FN:function [FORM:form]): any macro

This issues a (Catch NIL ..). The function EN is always called, and applied to
the two arguments ThrowTag!¥* and the value returned by the throw. If no

Throw was done then FN is called on NIL and the vailue returned.

(Unwind!-Protect F:form [C:fornml): any macro

The idea is to execute the “protected” form, F, and then run some “clean-
up” forms C even if a Throw (or Error) occurred during the evaluation of F.
This issues a (Catch NIL ..), the cleanup forms are then run, and finally

"

either the value is returned if no Throw occurred, or the Throw is “re-

thrown” to the same tag.

A common example is to ensure a file be closed after processing, even if an

error or throw occurred: N

(SETQ chan (OPEN file))
(UNWIND-PROTECT (process-file)
(CLOSE chan))

Note: Certain special tags are used in the PSL system, and should not be interfered with

casually:

ISERROR!$ Used by Error and ErrorSet which are implemented in terms of Catch and
Throw, see Chapter 12).

ISUNWIND!-PROTECT!S$
A special TAG placed to ensure that ALL throws pause at the UNWIND-
PROTECT “mark”.

I$PROG!$ Used to communicate between interpreted PROGs, GOs and RETURNSs.

PSL MANUAL 23 SEPTEMBER 1983 FUNCTION DEFINITION
SECTION 8.0 PAGE 8.1

CHAPTER 8
FUNCTION DEFINITION AND BINDING

8.1. Function Definition in PSL 8.1
8.2. Function Types 8.1
8.2.1. Notes on Code Pomters. .. e e e 8.2
8.2.2. Functions Useful in Function Defmmon e e e o 8.2
8.2.3. Function Definition in LISP Syntax 8.4
8.2.4. BackQuote e e e s 8.7
8.2.5. Low Level Function Deflmtlon Prlmmves e e 8.8
8.2.6. Function Type Predicates 89
8.3. Variables and Bindings. . . . C e e e e s 8.10
8.3.1. Binding Type Declaratlon C e e e e s 8.11
8.3.2. Binding Type Predicates .. 8.11
8.4. User Binding Functions 8.12

8.1. Function Definition in PSL

Functions in PSL are GLOBAL entities. To avoid function-variable naming clashes, the
Standard LISP Report required that no variable have the same name as a function. There
is no conflict in PSL, as separate function cells and value cells are used. A warning
message is given for compatibility. The first major section in this chapter describes how

to define new functions; the second describes the binding of variables in PSL.

8.2. Function Types

Eval-type functions are those called with evaluated arguments. NoEval functions are
called with unevaluated arguments. Spread-type functions have their arguments passed
in a one-to-one correspondence with their formal parameters. NoSpread functions

receive their arguments as a single list

There are four function types implemented in PSL:

expr An Eval, Spread function, with a maximum of 15 arguments. In referring to
the formal parameters we mean their values. Each function of this type
should always be called with the expected number of parameters, as indicated
in the function definition. Future versions of PSL will check this consistency.

fexpr A NoEval, NoSpread function. There is no limit on the number of arguments.
In referring to the formal parameters we mean the unevaluated arguments,
collected as a single List, and passed as a single formal parameter to the
function body.

Function Definition 23 September 1983 PSL Manual

page 8.2 section 8.2
nexpr An Eval, NoSpread function. Each call on this kind of function may present a

different number of arguments, which are evaluated, collected into a list, and
passed in to the function body as a single formal parameter.

macro The macro is a function which creates a new S-expression for subsequent
evaluation or compilation. There is no limit to the number of arguments a
macro may have. The descriptions of the Eval and Expand functions in
Chapter 9 provide precise details.

8.2.1. Notes on Code Pointers

A code-pointer may be displayed by the Print functions or expanded by Explode. The
value appears in the convention of the implementation (# <Code:a nnnn>, where a is the
number of arguments of the function, and nnnn is the function’s entry point, (given in
octal on the DEC-20 and VAX). A code-pointer may not be created by Compress. (See
Chapter 10 for descriptions of Explode and Compress.) The code-pointer associated with
a compiled function may be retrieved by GetD and is valid as long as PSL is in execution
(on the DEC-20 and VAX, compiled code is not relocated, so code-pointers do not
change). A code-pointer may be stored using PutD, Put, SetQ and the like or by being
bound to a variable. It may be checked for equivalence by Eq. The value may be

checked for being a code—pointer by the CodeP function.

.8.2.2. Functions Useful in Function Definition

In PSL, ids have a function cell that usually contains an executable instruction which
either JUMPs directly to the entry point of a compiled function or executes a CALL to an
auxiliary routine that handles intérpreted functions, undefined functions, or other special
services (such as auto-loading functions, etc). The user can pass anonymous function
objects around either as a code-pointer, which is a tagged object referring to a compiled

code block, or a lambda expression, representing an interpreted function.

(PutD FNAME:id TYPE:ftype BODY:{lambda,code-pointer}): id expr
Creates a function with name FNAME and type TYPE, with BODY as the
function definition. If successful, PutD returns the name of the defined

function.

If the body is a code-pointer or is compiled (i.e., !¥COMP=T as the function

was defined), a special instruction to jump to the start of the code is placed

PSL Manual 23 September 1983 Function Definition
section 8.2 page 8.3

in the function cell. If it is a lambda, the lambda expression is saved on the
property list under the indicator !*¥LAMBDALINK and a call to an interpreter

function (LambdaLink) is placed in the function ceil.

The TYPE is recorded on the property list of FNAME if it is not an expr.

[?7?? We need to add code to check that the the arglist has no more
than 15 arguments for exprs, 1 argument for fexprs and macros, and
??? for nexprs. Declaration mechanisms to avoid overhead also need to
be available. (In fact are available for the compiler, although still

poorly documented.) When should we expand macros? ???]

After using PutD on FNAME, GetD returns a pair of the the FNAME’s
(TYPE . BODY).

The GlobalP predicate returns T if queried with the defined function’s name.
If the function FNAME has already been deciared as a GLOBAL or FLUID

variable the warning:

#*** FNAME is a non-local variable

occurs, but the function is defined. If function FNAME is already defined, a

warning message appears:

*** Function FNAME has been redefined

Note: All function types may be compiled.

The following switches are useful when defining functions.

1 ¥REDEFMSG [Initially: T] switch
If 1*RedefMSG is not NIL, the message
*** Function 'FOO’ has been redefined

is printed whenever a function is redefined.

Function Definition 23 September 1983 PSL Manual
page 8.4 section 8.2

1 ¥USERMODE [Initially: T]
Controls action on redefinition of a function. All functions defined if
1*UserMode is T are flagged USER. Functions which are flagged USER can
be redefined freely. If an attempt is made to redefine a function which is

not flagged USER, the query
Do you really want to redefine the system function 'FO0'?

is made, requiring a Y, N, YES, NO, or B résponse. B starts the break loop,
so that one can change the setting of !¥Usermode. After exiting the break
loop, one must answer Y, Yes, N, or No. See YesP in Chapter 10. If
*UserMode is NIL, all functions can be redefined freely, and all functions
defined have the USER flag removed. This provides some protection from

redefining system functions.

1%¥COMP [Initially: NIL]
The value of !¥comp controls whether or not PutD compiles the function
defined in its arguments before defining it. If !¥comp is NIL the function is
defined as a lambda expression. If !¥*comp is non-NIL, the function is first
compiled. Compiiation produces certain changes in the semantics of

functions, particularly FLUID type access.

(GetD U:any): {NIL, pair}
if U is not the name of a defined function, NIL is returned. If U is a defined

function then the pair ({expr, fexpr, macro, nexpr} . {code-pointer, lambda})

is returned.

(CopyD NEW:id OLD:id): NEW:id
The function body and type for NEW become the same as OLD. If no
definition exists for QLD an error:
*x=%% QLD has no definition in COPYD

is given. NEW is returned.

switch

switch

PSL Manual 23 September 1983 Function Definition
section 8.2 page 8.5

(RemD U:id): {NIL, pair} expr
Removes the function named U from the set of defined functions. Returns
the (ftype . function) pair or NIL, as does GetD. The function type attribute

of U is removed from the property list of U.

8.2.3. Function Definition in LISP Syntax

The functions De, Df, Dn, Dm, and Ds are most commonly used in the LISP syntax form of
PSL. They are difficult to use from RLISP as there is not a convenient way to represent
the argument list. The functions are compiled if the compiler is loaded and the GLOBAL

1%¥COMP is T.

(De FNAME:id PARAMS:id-list [FN:form]): id macro

Defines the function named FNAME, of type expr. The forms FN are made
1

into a lambda expression with the formal parameter list PARAMS, and this

is used as the body of the function.

Previous definitions of the function are lost. The name of the defined

function, FNAME, is returned.

(Df FNAME:id PARAM:id-list FN:any): id macro

Defines the function named FNAME, of type fexpr. The forms FN are made

into a lambda expression with the formal parameter list PARAMS, and this is

used as the body of the function.

Previous definitions of the function are lost. The name of the defined

function, FNAME, is returned.

(Dn FNAME:id PARAM:id-1list FN:any): id macro
Defines the function named FNAME, of type nexpr. The forms FN are made
into a lambda expression with the formal parameter list PARAMS, and this is

used as the body of the function.

10r the compiled code pointer for the lambda expression if the compiler is on.

Function Definition 23 September 1983 PSL Manual
page 8.6 section 8.2

Previous definitions of the function are lost. AThe name of the defined

function, FNAME, is returned.

(Dm MNAME:id PARAM:id-list FN:any): id macro

Defines the function named FNAME, of type macro. The forms FN are made
into a lambda expression with the formal parameter list PARAMS, and this is

used as the body of the function.

Previous definitions of the function are lost. The name of the defined

function, FNAME, is returned.

(Ds SNAME:id PARAM:id-list FN:any): id ' macro

Defines the smacro SNAME. Smacros are actually a syntactic notation for a

special class of macros, those that essentially treat the macro’s argument
as a list of arguments to be substituted into the body of the expression and
then expanded in line, rather than using the computational power of the
macro to customize code. Thus they are a special case of defmacro. See

also the BackQuote facility.

For example:
To make a substitution macro for
FIRST ->CAR we could say '

(DM FIRST(X)
(LIST 'CAR (CADR X)))

Instead the following is clearer

(DS FIRST(X)
(CAR X))

The following (and other) macro utilities are in the file PU:USEFUL.SL; use (LOAD
USEFUL) to acc:ess.2

2Useful was written by D. Morrison.

PSL Manual 23'September 1983 Function Definition
section 8.2 page 8.7
(DefMacro A:id B:form [C:forml): id macro

DefMacro is a useful tool for defining macros. A DefMacro form looks like
.- (DEFMACRO <NAME> <PATTERN> <S1> <S2> ... <Sn>)

The <PATTERN> is an S-expression made of pairs and ids. It is matched
against the arguments of the macro much like the first argument to DeSetQ.
All of the non-NIL ids in <pattern> are local variables which may be used
freely in the body (the <Si>). If the macro is called the <Si> are
evaluated as in a ProgN with the local variables in <pattern> appropriately
bound, and the value of <Sn> is returned. DefMacro is often used with

BackQuote.

(DefLambda }: macro

DefLambda defines a macro much like a substitution macro (smacro) except
that it is a lambda expression. Thus, modulo redefinability, it has the same
semantics as the equivalent expr. It is mostly intended as an easy way to
open compile things. For example, we would not normally want to define a
substitution macro for a constructor (NEW-FOO X) which maps into
(CONS X X), in case X is expensive to compute or, far worse, has side
effects. (DEFLAMBDA NEW-FOO (X) (CONS X X)) defines it as a macro
which maps (NEW-FQO (SETQ BAR (BAZ))) to
((LAMBDA (X) (CONS X X)) (SETQ BAR (BAZ})).

8.2.4. BackQuote

Note that the special symbols described below only work in LISP syntax, not RLISP. In
RLISP you may simply use the functions BackQuote, UnQuote, and UnQuoteL. Load
USEFUL to get the BackQuote function.

The backquote symbol “” (accent grave) is a Read macro which introduces a quoted
expression which may contain the unquote symbols comma “,” and comma-atsign “,@".
An appropriate form consisting of the unquoted expression calls to the function Cons and
quoted expressions are produced so that the resulting expressi'on looks like the quoted
one except that the values of the unquoted expressions are substituted in the appropriate

place. “,@" splices in the value of the subsequent expression (i.e. strips off the outer

Function Definition 23 September 1983 PSL Manual
page 8.8 section 8.2

layer of parentheses). Thus
'(a (b ,x) cd ,@x e f)
is equivalent to
(cons 'a (cons (list 'b x) (append '(c d) (append x '(e f)))))
In particular, if x is bound to (1 2 3) this evaluates to
(a(b(123))cd123ef)

(BackQuote A:form): form macro

Function name for back quote ' (accent grave).

(UnQuote A:any): Undefined fexpr

Function name for comma ,. It is an error to Eval this function: it should

occur only inside a BackQuote.

(UnQuoteL A:any): Undefined , fexpr

Function name for comma-atsign ,@. It is an error to Eval this function; it

should only occur inside a BackQuote.

'8.2.5. MacroExpand

(MacroExpand A:form [B:id]): form macro

MacroExpand is a useful tool for debugging macro definitions. If given one
argument, MacroExpand expands all the macros in that form. Often one
wishes for more control over this process. For example, if a macro expands
into a Let, we may not wish to see the Let itself expanded to a lambda
expression. Therefore additional arguments may be given to MacroExpand.
If these are supplied, they should be macros, and only those specified are

expanded. MacroExpand is in the USEFUL package.

PSL Manual 23 September 1983 Function Definition
section 8.2 page 8.9

8.2.6. Low Level Function Definition Primitives
The following functions are used especially by PutD and GetD, defined above in Section

8.2.2, and by Eval and Apply, defined in Chapter 9.

(FUnBoundP U:id): boolean expr

Tests whether there is a definition in the function cell of U; returns NIL if

so, T if not.

Note: Undefined functions actually call a special function,
UndefinedFunction, that invokes Error. FUnBoundP defines “unbound” to

mean “calls UndefinedFunction”.

(FLambdaLinkP U:id): boolean , expr

Tests whether U is an interpreted function; return T if so, NIL if not. This is
done by checking for the special code-address of the lambdalLink function,

which calls the interpreter.

(FCodeP U:id): boolean expr

Tests whether U is a compiled function; returns T if so, NIL if not.

(MakeFUnBound U:id): NIL ' expr

Makes U an undefined function by planting a special call to an error

function, UndefinedFunction, in the function cell of U.

(MakeFLambdaLink U:id): NIL expr

Makes U an interpreted function by planting a special call to an interpreter

support function (lambdaLink) function in the function cell of U.}

(MakeFCode U:id C:code-pointer): NIL expr

Makes U a compiled function by planting a special JUMP to the code-

address associated with C.

Function Definition 23 September 1983 PSL Manual

page 8.10 section 8.2
(GetFCodePointer U:id): code-pointer expr

Gets the code-pointer for U.

(Code!-Number !-0f ! -Arguments C:code-pointer): {NIL,integer} expr
Some compiled functions have the argument number they expect stored in

association with the codepointer C. This integer, or NIL is returned.

[??? Should be extended for nexprs and declared exprs. ???]

8.2.7. Function Type Predicates

See Section 8.2 for a discussion of the function types available in PSL.

(ExprP U:any): boolean expr

Test if U is a code—-pointer, lambda forrﬁ, or an id with expr definition.

(FExprP U:any): boolean expr

Test if U is an id with fexpr definition.

(NExprP U:any): boolean ' expr

Test if U is an id with nexpr definition.

{MacroP U:any): boolean expr

Test if U is an id with macro definition.

8.3. Variables and Bindings

Variables in PSL are ids, and associated values are usually stored in and retrieved from
the value cell of this id. If variables appear as parameters in lambda expressions or in
Prog’s, the contents of the value cell are saved on a binding stack. A new value or NIL is
stored in the value cell and the computation proceeds. On exit from the lambda or Prog
the old value is restored. This is called the “shallow binding” model of LISP. It is chosen
to permit compiled code to do binding efficiently. For even more efficiency, compiled
code may eliminate the variable names and simpl\‘/ keep values in registers or a stack.
The scope of a variable is the range over which the .variable has a defined value. There

are three different binding mechanisms in PSL.

LOCAL BINDING Only compiled functions bind variables locally. Local variables occur as

PSL Manual
section 8.3

FLUID BINDING

23 September 1983 Function Definition
page 8.11

formal parameters in lambda expressions and as LOCAL variables in
Prog’s. The binding occurs as a lambda expression is evaluated or as a
Prog form is executed. The scope of a local variable is the body of the
function in which it is defined.

FLUID variables - are GLOBAL in- scope but may occur as formal
parameters or Prog form variables. In interpreted functions, all formal
parameters and LOCAL variables are considered to have FLUID binding
until changed to LOCAL binding by compilation. A variable can be
treated as a FLUID only by declaration. If FLUID variables are used as
parameters or LOCALs they are rebound in such a way that the previous
binding may be restored. All references to FLUID variables are to the
currently active binding. Access to the values is by name, going to the
value cell.

GLOBAL BINDING GLOBAL variables may never be rebound. Access is to the value bound

to the variable. The scope of a GLOBAL variable is universal. Variables
declared GLOBAL may not appear as parameters in lambda expressions
or as Prog form variables. A variable must be declared GLOBAL prior to
its use as a GLOBAL variable since the default type for undeclared
variables is FLUID. Note that the interpreter does not stop one from
rebinding a global variable. The compiler will issue a warning in this
situation.

8.3.1. Binding Type Declaration

(Fluid IDLIST:id-1list): NIL expr

The ids in IDLIST are declared as FLUID type variables (ids not previously

declared are initialized to NIL). Variables in IDLIST already declared FLUID

are ignored. Changing a variable’s type from GLOBAL to FLUID is not

permissible and resuits in the error:

#%% |D cannot be changed to FLUID

(Global IDLIST:id-1list): NIL expr

The ids of IDLIST are declared GLOBAL type variables. If an id has not been

previously declared, it is initialized to NIL. Variables already declared

GLOBAL are ignored. Changing a variable’s type from FLUID to GLOBAL is

not permissible and results in the error:

% |D cannot be changed to GLOBAL

Function Definition 23 September 1983 PSL Manual

page 8.12 section 8.3
(UnFluid IDLIST:id-1list): NIL expr

The variables in IDLIST which have been declared as FLUID variables are no
longer considered as FLUID variables. Others are ignored. This affects only
- -compiled functions, as ~free variables in. interpreted functions are

automatically considered FLUID (see [Griss 81]).

8.3.2. Binding Type Predicates

(FluidP U:any): boolean expr

If U is FLUID (by declaration only), T is returned; otherwise, NIL is returned.

(GlobalP U:any): boolean expr

If U has been declared GLOBAL or is the name of a defined function, T is

returned; else NIL is returned.

{(UnBoundP U:id): boolean expr

Tests whether U has no value.

8.4. User Binding Functions
The following functions are available to build one’s own interpreter functions that use
the built-in FLUID binding mechanism, and interact well with the automatic unbinding that

takes place during Throw and Error calls.

[??? Are these correct when Environments are managed correctly ???]

(UnBindN N:integer): Undefined expr

Used in user-defined interpreter functions (like Prog) to restore previous

bindings to the last N values bound.

(LBind1 IDNAME:id VALUETOBIND:any): Undefined expr

Support for lambda-like binding. The current value of IDNAME is saved on
the binding stack; the value of VALUETOBIND is then bound to IDNAME.

PSL Manual 23 September 1983 Function Definition
section 8.4 page 8.13

(PBind1 IDNAME:id): Undefined expr

Support for Prog. Binds NIL to IDNAME after saving value on the binding
stack. Essentially LBind1(IDNAME, NIL)

PSL MANUAL 23 SEPTEMBER 1983 THE INTERPRETER
SECTION 9.0 PAGE 9.1

CHAPTER 9
THE INTERPRETER

9.1. Evaluator Functions Eval and Apply. 9.1
9.2. Support Functions for Eval and Apply. e e e e e e 9.5
9.3. Special Evaluator Functions, Quote, and Functlon e 9.7
9.4. Support Functions for Macro Evaluation. 9.7

9.1. Evaluator Functions Eval and Apply

The PSL evaluator uses an identifier's function cell (SYMFNC(id#) which is directly
accessible from kernel functions only) to access the address of the code for executing
the identifier's function definition, as described in chapter 8. The function cell contains
either the entry address of a compiled function, or the address of a support routine that
either signais an undefined function or calls the lambda interpreter. The PSL model of a
function call is to place the arguments (after treatment appropriate to function type) in

“registers”, and then to jump to or call the code in the function cell.

Expressions which can be legally evaluated are called forms. They are restricted S-

expressions:

form ::= id
| constant
| (id form ... form) % Normal function call
| (special . any) % Special cases: COND, PROG, etc.

% usually fexprs or macros.

The definitions of Eval and Apply may clarify which expressions are forms.

In Eval, Apply, and the support functions below, ContinuableError is used to indicate
malformed lambda expressions, undefined functions or mismatched argument numbers;
the user is permitted to correct the offending expression or to define a missing function

inside a Break loop.

The functions Eval and Apply are central to the PSL interpreter. Since their efficiency
is important, some of the support functions they use are hand-coded in LAP. The
functions LambdaApply, LambdaEvalApply, CodeApply, CodeEvalApply, and IDApply1 are
support functions for Eval and Apply. CodeApply and CodeEvalApply are coded in LAP.

The Interpreter 23 September 1983

PSL Manual
page 9.2 section 9.1
IDApply1 is handled by the compiler.
(Eval U:form): any expr

The value of the form U is computed. The following is an approximation of

the real code, leaving out some implementation details.

PSL Manual 23 September 1983 The Interpreter
section 9.1 page 9.3

(DE EVAL (U)
(PROG (FN)
(CoND
((IDP U) (RETURN (VALUECELL U))))
% ValueCell returns the contents of Value Cell if ID is
% BoundP, else signals unbound error.
(COND ((NOT (PAIRP U)) (RETURN U)))

% This is a "constant" which EVAL's to itself
(COND |
((EQCAR (CAR U) 'LAMBDA)
(RETURN
(LAMBDAEVALAPPLY (CAR U) (CDR U)))))

% LambdaEvalApply applies the lambda- expression Car U to the
% list containing the evaluation of each argument in Cdr U.
(COND
((CODEP (CAR U))
(RETURN (CODEEVALAPPLY (CAR U) (CDR U)))))

% CodeEvalApply applies the function with code-pointer Car U
% to the list containing the evaluation of each argument in
% Cdr U.
(COND
((NOT (IDP (CAR U)))
(RETURN
% permit user to correct U, and reevaluate.
(CONTINUABLEERROR 1101
"Ill-formed expression in EVAL" U))))

(SETQ FN (GETD (CAR U)))
(COND
((NULL FN)
% user might define missing function and retry
(RETURN ,
(CONTINUABLEERROR 1001 "Undefined function EVAL" U))))

(COND
((EQ (CAR FN) 'EXPR)
(RETURN
(COND
((CODEP (CDR FN))

% CodeEvalApply applies the function with
% codepointer Cdr FN to the list containing the
% evaluation of each argument in Cdr U.
(CODEEVALAPPLY (CDR FN) (CDR U)))

The Interpreter 23 September 1983 PSL Manual
page 9.4 section 9.1

(T
(LAMBDAEVALAPPLY
(CDR FN) (CDR U)))))))

% LambdaEvalApply applies the lambda-expression Cdr FN to the
% list containing the evaluation of each argument in Cdr U.
(COND
((EQ (CAR FN) 'FEXPR)
% IDApply1 applies the fexpr Car U to the list of
% unevaluated arguments.
(RETURN (IDAPPLY1 (CDR U) (CAR U))))

((EQ (CAR FN) 'MACRO)
% IDApply1 first expands the macro call U and then
% evaluates the result.
(RETURN (EVAL (IDAPPLY1 U (CAR U)))))

((EQ (CAR FN) 'NEXPR)
% IDApply!1 applies the nexpr Car U to the list obtained
% by evaluating the arguments in Cdr U.
(RETURN (IDAPPLY1 (EVLIS (CDR U)) (CAR U)))))))

(Apply FN:{id,function} ARGS:form-1list): any expr
Apply allows one to make an indirect function call. It returns the value of
FN with actual parameters ARGS. The actual parameters in ARGS are
already in the form required for binding to the formal parameters of FN.

PSL permits the application of macros, nexprs and fexprs; the effect is the

same as (Apply (Cdr (GetD EN)) ARGS); i.e. no fix-up is done to quote
arguments, etc. as in some LISPs. A call to Apply using List on the
second argument [e.g. (Apply F (List X Y))] is compiled so that the list is

not actually constructed.

The following is an approximation of the real code, leaving out

implementation details.

PSL Manual 23 September 1983 The Interpreter
section 9.1 ' page 9.5

(DE APPLY (FN ARGS)
(PROG (DEFN)
(COND
((CODEP FN)
% Spread the ARGS into the registers and transfer to the
% entry point of the function.
(RETURN (CODEAPPLY FN ARGS)))

((EQCAR FN 'LAMBDA)
% Bind the actual parameters in ARGS to the formal
% parameters of the lambda expression If the two lists
% are not of equal length then signal
% (CONTINUABLEERROR 1204
% "Number of parameters do not match"
% (CONS FN ARGS))

(RETURN (LAMBDAAPPLY FN ARGS)))

((NOT (IDP FN)) _
(RETURN (CONTINUABLEERROR 1104
"I1l-formed function in APPLY"
(CONS FN ARG))))

((NULL (SETQ DEFN (GETD FN)))
(RETURN (CONTINUABLEERROR 1004
"Undefined function in Apply"
(CONS FN ARGS))))

(T
% Do EXPR's, NEXPR's, FEXPR's and MACRO's alike, as
% EXPR's
(RETURN (APPLY (CDR DEFN) ARGS))))))

[??? Instead, could check for specific function types in Apply ??7]

9.2. Support Functions for Eval and Apply

(EvLis U:any-list): any-list expr

EvLis returns a list of the evaluation of each element of U.

The Interpreter 23 September 1983 PSL Manual

page 9.6 section 9.2
(LambdaApply FN:lambda, U:any-list): any expr

Checks that FN is a legal lambda, binds the formals of the lambda using
LBind1 to the arguments in U, and then uses EvProgN to evaluate the forms
in the lambda body. Finally the formals are unbound, using UnBindN, and

the result returned.

(LambdaEvalApply FN:lambda, U:form-list): any expr

Essentially LambdaApply(FN,EvLis(U)), though done more efficiently.

(CodeApply FN:code-pointer, U:any-list): any expr
Efficiently spreads the arguments in U into the “registers”, and then

transfers to the starting address referred to by FN

-

(CodeEvalApply FN:code-pointer, U:any-list): any ex
Essentially CodeApply(Eﬁ,EvLis(Q)), though more efficient.

The following entry points are used to get efficient calls on named functions, and are

open compiled.

(IdApplyO FN:id): any expr
(IdApply1 A1:form, FN:id): any expr
(IdApply2 At:form, A2:form, FN:id): any expr
(IdApply3 At:form, A2:form, A3:form, FN:id): any expr
(IdApply4 Atl:form, A2:form, A3:form, Ald:form, FN:id): any expr
(EvProgN U:form-1list). any expr

Evaluates each form in U in turn, returning the value of the last. Used for

various implied ProgNs.

PSL Manual 23 September 1983 The Interpreter
section 9.3 page 9.7

9.3. Special Evaluator Functions, Quote, and Function

(Quote U:any): any fexpr

Returns U. Thus:the argument is not evaluated by Eval.

(MkQuote U:any): list expr
{MkQuote U) returns (List 'QUOTE U)

(Function FN:function): function fexpr

The function FN is to be passed to another function. If EN is to have side
effects its free variables must be FLUID or GLOBAL. Function is like Quote

but its argument may be affected by compilation.
[??? Add FQUOTE, and make FUNCTION become CLOSURE ??7]

See also the discussion of Closure and related functions in Section 8.4.

9.4. Support Functions for Macro Evaluation

(Expand L:1ist, FN:function): 1ist expr
FN is a defined function of two arguments to be used in the expansion of a

macro. Expand returns a list in the form:
(FN L[O] (FN L[1] .. (FN LIn-1] LIn]) ...))

“n” is the number of elements in L, L[i] is the i'th element of L.

(DE EXPAND (L FN)
(COND ((NULL (CDR L)) (CAR L))
(T (LIST FN (CAR L) (EXPAND (CDR L) FN)))))

[??? Add RobustExpand (sure!) (document) ???]

[??? Add an Evalhook and Apply hook for CMU toplevel {(document) ???]

PSL MANUAL
SECTION 10.0

23 SEPTEMBER 1983

CHAPTER 10
INPUT AND OUTPUT

10.1. introduction .

10.2.
10.3.

10.4.

10.5.

10.1.1.

Organization of thlS Chapter

Printed Representation of LISP Objects
Functions for Printing

10.3.1.
10.3.2.
10.3.3.
10.3.4.

10.3.5.
10.3.6.

Basic Printing
Whitespace Printing Functlons
Formatted Printing . . .
The Fundamental Printing Functlon
Additional Printing Functions .
Printing Status and Mode.

Functions for Reading

10.4.1.
10.4.2.
10.4.3.
10.4.4.
10.4.5.
10.4.6.
10.4.7.

Reading S-Expressions .
Reading Single Characters
Reading Tokens .
Reading Entire Lines .
Read Macros.

Terminal Interaction

Input Status and Mode .

File System Interface: Open and Close.
10.6. Loading Modules.
10.7. Reading Files into PSL .

10.7.1.

RLISP File Reading Functions .

10.8. About I/0O Channels .

10.9. /0 to and from Lists and Strmgs .

10.10. Generalized Input/Qutput Streams . .
10.10.1. Using the “Special” Form of Open
10.11. Scan Table Internals .

10.12. Scan Table Utility Functions .

10.1. Introduction

INPUT AND OUTPUT
PAGE 10.1

10.1
10.2
10.3
10.6
10.6
10.6
10.7
10.8
10.9
10.10
10.11
10.11
10.13
10.13
10.14
10.15
10.16
10.16
10.17
10.19
10.22
10.23
10.24
10.26
10.28
10.29
10.29
10.33

One category of input and output in LISP is “symbolic” I/0. This allows a user to print

or read possibly complex LISP objects with one or a few calls on standard functions. PSL

also has powerful general-purpose 1/0.

Input from multiple sources and output to muitipie destinations can be done in PSL all

at the same time.

PSL provides 1I/0 functions with explicit specification of sources and

destinations for I/0. On the other hand for convenience it is often desirable to let the

source or destination be implicit.

functions with an implicit source or destination.

PSL provides the full set of I/0O operations through

Input and Output 23 September 1983 PSL Manual
page 10.2 section 10.1

The functions with and without an explicit channel designator argument are described
together in this chapter. In each case calling the function with the implicit source or
destination is the same as calling the version with explicit channel argument and

supplying the value of the variable IN!* or QUT!* as the channel.

The current input or output channel can be changed by setting or rebinding the
variables IN!* or QUT!®. Historically, the functions RDS and WRS have been used for this

and they are also available along with their special features.

10.1.1. Organization of this Chapter
We first discuss the syntax used for symbolic input and output. The syntax described
applies to PSL programs, interactive typein, format of data in data files, and to output by

PSL programs except when special formatting is used.

Functions for printing and reading follow. All (textual) input and output functions are

discussed. Next is Open, for setting up input and output with files, plus related functions.

A great deal of user input/output programming can be done using just a subset of the

functions described in these first sections.

PSL includes functions that load program modules and execute command files. They
are esséntial to building of software systems even if the system itself does no 1/0.

Functions of this type are described next.

The section on I/O channels discusses some features available for switching the current
output from channel to channel, and documents some fluid variables used in directing

some of the system’s input and output.

Functions in the next section actually operate on objects such as LISTS and STRINGS!
Since 1/0 functions scan input and format output, and since it is possible to read from or
print to a string, I/0 functions can be useful for building strings and for scanning them.

Some built-in functions are described.

The last two sections describe mechanisms that make possible some sophisticated uses
of the PSL 1I/0 system. One describes the mechanism in PSL that permits writing to a

string or taking input from the text buffer of a text editor. The other discusses the tables

PSL Manual 23 September 1983 Input and Output
section 10.1 ‘ page 10.3

used by the PSL scanner, which is modifiable.

10.2. Printed Representation of LISP Objects
Most of this-section is devoted to.the representation of tokens. In addition to tokens
there are composite objects with printed representations: lists and vectors. We briefly

discuss their printed formats first.

"(" expression expression . . . ")"
"(" expression expression . . . "." expression)
"[" expression expression . . . "]"

Of these the first two are for lists. Where possible, the first notation is preferred and
the printing routines use it except when the second form is needed. The second form is
required when the CDR of a PAIR is neither NIL nor another pair. The third notation is for

vectors. For example:

(A . (B.C)) % An S-EXPRESSION

(AB.C) % Same value, list notation
(A BC) % An ordinary list
[A B C] % A vector

The following standards for representing tokens are used:

* Ids begin with a letter or any character preceded by an escape character.
They may contain letters, digits and escaped characters. lds may also start
with a digit, if the first non-digit following is a plus sign, minus sign, or letter
other than "b” or “e”. This is to allow identifiers such as “1+” which occur in
some LISPs. Finally, a string of characters bounded by the IDSURROUND
character is treated as an id.

If !*Raise is non-NIL, unescaped lower case letters are folded to upper case.
The maximum size of an id (or any other token) is currently 5000 characters.

Note: Using lower case letters in identifiers may cause portability problems.
Lower case letters are automatically converted to upper case if the !*RAISE
switch is T. This case conversion is done only for id input, not for single
character or string input.

[??? Can we retain input Case, but Compare RAISEd ?7?]

The following examples show identifiers in a form accepted by the LISP scan
table. Note that most characters are treated as letters by the LISP scan table,
while they are treated as delimiters by the RLISP scan table.

page 10.4

Input and Output 23 September 1983 PSL Manual

- ThislsALongldentifier
- THISISALONGIDENTIFIER

- ThislsALongldentifierAndDifferentFromTheOther

this_is_a_long_identifier_with_underscores

this!_is!_a!_long!_identifier!_with!_underscores

an-identifier-with—-dashes

*RAISE

12222

* Strings begin with a double quote () and include all characters up to a
closing double quote. A double quote can be included in a string by doubling
it. An empty string, consisting of only the enclosing quote marks, is allowed.
The characters of a string are not affected by the value of the !¥RAISE.
Examples:

- “This is a string”
- “This is a ““string

nn
-

unn

* Integers begin with a digit, optionally preceded by a + or - sign, and consist
only of digits. The GLOBAL input radix is 10; there is no way to change this.
However, numbers of different radices may be read by the following
convention. A decimal number from 2 to 36 followed by a sharp sign (#),
causes the digits (and possibly letters) that follow to be read in the radix of
the number preceding the #.1 Thus 63 may be entered as 8#77, or 255 as
16#ff or 16#FF. The output radix can be changed, by setting OUTPUTBASE!¥.
If OutPutBase!® is not 10, the printed integer appears with appropriate radix.
Leading zeros are suppressed and a minus sign precedes the digits if the
integer is negative. Examples:

- 100
- +5234
~ -8#44 (equal to -36)

[??? Should we permit trailing . in integers for compatibility with some
LISPs and require digits on each side of . for floats 7??]

TOctal numbers can also be written as a string of digits followed by the letter "B”. This
“feature” may be removed in the future. '

section 10.2

PSL Manual 23 September 1983 Input and Output
section 10.2 page 105

* Floats have a period and/or a letter “e” or "E” in them. Any of the following
are read as floats. The value appears in the format [-]n.nn..nnE[-]mm if the
magnitude of the number is too large or small to display in [~lnnnn.nnnn
format. The crossover point is determined by the implementation. In BNF,
floats are recognized by the grammar:

<base> ::= <unsigned-integer>. |
.<unsigned-integer>|
<unsigned-integer>.<unsigned-integer>
<ebase> ::= <base>|<unsigned-integer> '
<unsigned-float> ::=z <base>|
<ebase>e<unsigned-integer>|
<ebase>e-<unsigned-integer>|
<ebase>e+<unsigned-integer>|
<ebase>E<unsigned-integer>|
<ebase>E-<unsigned-integer>]|
<ebase>E+<unsigned-integer>

<float> ::= <unsigned-float>|
+<unsigned-float>|
-<unsigned-float>
That is:

[+|-IInnn].Innn{e|E}[+|-Innn
nnn.

- .nnn

nnn.nnn

Examples:

1e6

-2

- 2.

2.0
-1.25E-9

* Code-pointers cannot be read directly, but can be printed and constructed.
Currently printed as #<Code argument—-count octal-address>.

* Anything else is printed as #<Unknown:nnnn>, where nnnn is the octal value
found in the argument register. Such items are not legal LISP entities and
may cause garbage collector errors if they are found in the heap. They
cannot be read in.

Input and Output 23 September 1983 PSL Manual

page 10.6 section 10.3

10.3. Functions for Printing

10.3.1. Basic Printing

(Prin1 ITM:any): ITM:any expr
(ChannelPrin1 CHAN:io-channel ITM:any): ITM:any expr

ChannelPrini is the basic LISP printing function. For well-formed, non-
circular (non-self-referential) structures, the result can be parsed by the

function Read.

(Prin2 ITM:any): ITM:any expr
(ChannelPrin2 CHAN:io-channel ITM:any): ITM:any : expr

ChannelPrin2 is similar to ChannelPrini1, except that strings are printed
without the surrounding double quotes, and delimiters within ids are not

preceded by the escape character.

(Print U:any): U:any expr
(ChannelPrint CHAN:io-channel U:any): U:any expr

Display U using ChannelPrinl and terminate line using ChannelTerpri.

10.3.2. Whitespace Printing Functions

(TerPri): NIL expr
{ChannelTerPri CHAN:io-channel): NIL expr

Terminate OUTPUT line on channel CHAN, and reset the POSN counter to 0.

(Spaces N:integer): NIL : - expr

PSL Manual 23 September 1983 Input and Output
section 103 page 10.7

(ChannelSpaces CHAN:io-channel N:integer): NIL

ChannelPrin2 N spaces. Will continue across multiple lines if N is greater
than the number of positions in the output buffer. (See POSN and
LINELENGTH)

(Tab N:integer): NIL

(ChannelTab CHAN:io-channel N:integer): NIL

Move to position N on channel CHAN, emitting spaces as needed. Calls

ChannelTerPri if past column N.

10.3.3. Formatted Printing
(PrintF FORMAT:string [ARGS:anyl): NIL

(ChannelPrintF CHAN:io-channel FORMAT:string [ARGS:anyl): NIL

ChannelPrintF is a simple routine for formatted printing, similar to the
function with the same name in the C language[22]. FORMAT is either a
LISP or SYSLISP string, which is printed on the output channel CHAN.
However, if a % is encountered in the string, the character following it is a
formatting directive, used to interpret and print the other arguments to
ChannelPrintF in order. The following format characters are currently

supported:

* For LISP tagged items, use:

%p print the next argument as a LISP item, using Prini

Yow print the next argument as a LISP item, using Prin2

Yor print the next argument as a LISP item, using ErrPrin
{Ordinarily Prin2 “”; Print Arg; Prin2 ")

%l same as %w, except lists are printed without top level

parens; NIL is printed as a blank

* Control formats:

%b take next argument as an integer and print that many
blanks
%t “fresh~line”, print an end-of-line character if not at the

beginning of the output line (does not use a matching

ex

o®

®

®

[]

r

-

=

=

—

Input and Output
page 10.8

%n

%t

23 September 1983 PSL Manual
section 10.3

argument)

print end-of-line character (does not use a matching
argument)

take the next argument as an integer, and ChannelTab to
that position

* The following are NOT for use from ordinary LISP programs. For
SYSLISP arguments only, use:

%d
%o
Y% x
%c
%s

print the next argument as a decimal integer
print the next argument as an octal integer

print the next argument as a hexadecimal integer
print the next argument as a singie character
print the next argument as a string

If the character following % is not either one of the above or another %, it

causes an error. Thus, to include a % in the format to be printed, use %%.

There is no checking for correspondence between the number of arguments

the FORMAT expects and the number given. If the number given is less

than the number in the FORMAT string, then garbage will be inserted for the

missing arguments. If the number given is greater than the number in the

FORMAT string, then the extra ones are ignored.

{(RPrint U:form): NIL expr
Print in RLISP format. Autoloading.
(PrettyPrint U:form): U expr

Prettyprints U. Autoloading. This is a rather powerful utility, unfortunately

not properly documented.

10.3.4. The Fundamental Printing Function

(WriteChar CH:character): character expr

PSL Manual 23 September 1983 Input and Output

section 10.3 page 109
(ChannelWriteChar CHANNEL:io-channel CH:character): character expr

Write one character to CHANNEL. All output is defined in terms of this
function. If CH is equal to char EOL (ASCH LF, 8#12) the line counter POSN
associated with CHANNEL is set to zero. Otherwise, it is increased by one.
The writing function associated with CHANNEL is called with CHANNEL and

CH as its arguments.

(de WRITECHAR (CH)
(CHANNELWRITECHAR OUT!* CH))

10.3.5. Additional Printing Functions

(Prin2L L:any): L expr

Prin2, except that a list is printed without the top level parens.
(Prin2T X:any): any expr

(ChannelPrin2T CHAN:io-channel X:any): any expr

Output X using ChannelPrin2 and terminate line with ChannelTerpri.

{PrinC ITM:any). ITM:any expr

Same function as Prin2.

(ChannelPrinC CHAN:io-channel ITM:any): ITM:any expr

Same function as ChannelPrin2.

(ErrPrin U:any): None Returned expr

Prin1 with special quotes to highlight U.

(ErrorPrintF FORMAT:string [ARGS:any]): NIL expr

ErrorPrintF is similar to PrintF, except that instead of using the currently
selected output channel, ERROUT!#* is used. Also, an end-of-line character

is always printed after the message, and an end-of-line character is printed

before the message if the line position of ERROUT!#* is greater than zero.

input and Output 23 September 1983 PSL Manual
page 10.10 section 10.3
(Eject): NIL _ expr

Skip to top of next output page on current output channel.

(ChannelE ject CHAN:io-channel): NIL expr

Skip to top of next output page on channel CHAN.

10.3.6. Printing Status and Mode

For information on directing various kinds of output see the section on channels.

OutPutBase!#* [Initially: 10] global
This fluid can be set to control the radix in which integers are printed out.
If the radix is not 10, the radix is given before a sharp sign, e.g. 8#20 is"20”

in base 8, or 16.

(Posn): integer expr
(ChannelPosn CHAN:io-channel): integer expr

Returns number of characters output on this line (i.,e. POSN counts since

last Terpri) on this channel.

(LPosn): integer expr
(ChannelLPosn CHAN:io-channel). integer expr

Returns number of lines output on this page (i.e. LPosn counter since last

Eject or formfeed character) on this channel.
(LineLength LEN:{integer, NIL}): integer expr

(ChannelLineLength CHAN:io-channel LEN:{integer, NIL}): integer

®
x
=

Set maximum output line length on CHAN if a positive integer, returning
previous vailue. If NIL just return previous value. Controls the insertion of

automatic Terpri’'s. If LEN is 0, an EOL character will not be inserted.

The fluid variables PRINLEVEL and PRINLENGTH allow the user to control how deep the

printer will print and how many elements at a given level the printer will print. This is

useful for debugging or dealing with large or deep objects. These variables affect the

PSL Manual ' 23 September 1983 Input and OQutput
section 10.3 page 10.11

functions Prini, Prin2, PrinC, Print, and PrintF (and the corresponding Channel

functions). The documentation of these variables is from the Common Lisp Manual.

PrinLevel [Initially: Nil]

Controls how many levels deep a nested data object will print. If PRINLEVEL
is Nil, then no control is exercised. Otherwise the value should be an
integer, indicating the maximum level to be printed. An object to be printed

is at level 0.

PrinLength [Initially: Nil]

Controls how many elements at a given level are printed. A value of Nil
indicates that there bé no limit to the number of components printed.

Otherwise the value of PRINLENGTH should be an integer.

10.4. Functions for Reading

10.4.1. Reading S-Expressions
(Read): any

(ChannelRead CHAN:io-channel): any
Reads and returns the .next S-expression from input channel CHAN. Valid
input forms are: vector-notation, pair-notation, list-notation, numbers,
strings, and identifiers. Identifiers are interned (see the Intern function in

Chapter 4), unless the FLUID variable !¥COMPRESSING is non-NIL.

ChannelRead returns the value of the global variable !'$EOF!$ when the end

of the currently selected input channel is reached.

ChannelRead uses the ChannelReadToken function, with tokens scanned
according to the “Lisp scan table”. The user can define similar read
functions for use with other scan tables. ChannelRead uses the Read
macro mechanism to do S-expression parsing. See Section 10.4.5 for more
information on read macros and how to add extensions. The following read

macros are defined initially:

global

giobal

[0}
F
=

]
%
=

Input and Output
page 10.12

(

23 September 1983 PSL Manual
section 10.4

Starts a scan collecting S-expressions according to list or dot
notation until terminated by a). A pair or list is returned.

Starts a scan collecting S-expressions according to vector
notation until terminated by a]. A vector is returned.

Calls Read to get an S-expression, X, and then returns the list
(Quote x).

{CHAR EOF)Generates an error when still inside an S—-expression:

#==%%% Jnexpected EOF while reading on channel

Otherwise the value of !$EQF!$ is returned. (Actually the value
is EQ to the initial value of !$EQOF!$.)

The USEFUL library defines several MACLISP style sharp sign read macros.

Note that these only work with the LISP reader, not RLISP. Those curréntly

included are

#I

#/

#\

this is like the quote mark ' but is for FUNCTION instead of
QUOTE.

this returns the numeric form of the following character read
without raising it. For example #/a is 97 while #/A is 65.

This is a read macro for the CHAR macro, described in the PSL
manual. Not that the argument is raised, if *RAISE is non-nil.
For example, #\a = #\A = 65, while #\la = #\(lower a) = 97.

This causes the following expression to be evaluated at read
time. For example, ‘(1 2 #.(plus 1 2) 4) reads as (1 2 3 4)

This reads two expressions, and passes them to the if_system
macro. That is, the first should be a system name, and if that is
the current system the second argument is returned by the
reader. If not, the next expression is returned.

#- is similar, but causes the second arg to be returned only if it
is NOT the current system.

PSL Manual 23 September 1983 Input and Output
section 104 page 10.13

10.4.2. Reading Single Characters
(ReadChar): character

(ChannelReadChar CHANNEL:io-channel): character
Reads one character (an integer) from CHANNEL. All input is defined in
terms of this function. If CHANNEL is not open or is open for writing only,
an error is generated. |If there is a non-zero value in the backup buffer
associated with CHANNEL, the buffer is emptied (set to zero) and the value
returned. Otherwise, the reading function associated with CHANNEL is
called with CHANNEL as argument, and the value it returns is returned by

ChannelReadChar..
##%%%* Channel not open

###%% Channel open for write only
(ReadCH): id

(ChannelReadCH CHAN:io-channel): id

Like ChannelReadChar, but returns the id for the character rather than its
ASCIl code.

(UnReadChar CH:character): Undefined

(ChannelUnReadChar CHAN:io-channel CH:character): Undefined

The input backup function. CH is deposited in the backup buffer associated
with CHAN. This function should be only called after ChannelReadChar is
called, before any intervening input operations, since it is used by the token
scanner. The “UnRead” buffer only holds one character, so it is generally

useless to “unread” more than one character.

10.4.3. Reading Tokens
The functions described here pertain to the token scanner and reader. Globals

switches used by these functions are defined at the end of this section.

®
x
=

l-:
x
=

o®
x
=

and

Input and Output 23 September 1983 PSL Manual
page 10.14 section 10.4

(ChannelReadToken CHANNEL:io-channel): {id, number, string} expr

This is the basic LISP token scanner. The value returned is a LISP item
corresponding to the next token from the input stream. Ids are interned,
unless the FLUID variable !*COMPRESSING is non-NIL. The GLOBAL variable
TOKTYPE!* is set to:

if the token is an ordinary id,

if the token is a string,

if the token is a number, or

if the token is an unescaped delimiter such as “(“, but not "I(" In
this last c:se, the value returned is the id whose print name is
the same as the delimiter.

WN - O

The precise behavior of this function depends.on two FLUID variabies:

CurrentScanTable!¥*
Is bound to a vector known as a scan table. Described below.

CurrentReadMacroIndicatort*

Bound to an id known as a read macro indicator. Described
below.

(RAtom): {id, number, string} expr

Reads a token from the current input channel. (Not called ReadToken for

historical reasons.)

[??? Should we bind CurrentScanTable!® for this function too ???]

(ChannelReadTokenWithHooks CHANNEL:io-channel): any expr

This function reads a token and performs any action specified if the token is
marked as a Read macro under the current indicator. Read uses this

function internally. Uses the variable CURRENTREADMACROINDICATOR!* to

determine the current indicator.

10.4.4. Reading Entire Lines

\
\
' Two functions exist for reading entire lines.

PSL Manual 23 September 1983 Input and Output

section 10.4 page 10.15
(ReadLine): string expr
(ChannelReadLine CHAN:io-channel): string expr

ReadLine and- ChannelReadLine read everything from the current position

of the scanner to the next EOL character.

It is frequently used as in the following example.

(de foo ()
(prog (promptstring*)
(readline)

(setq promptstring® "-->")
(return (readline))))

When one runs foo, the value of promptstring® is printed and then one types some

characters and ends the line. The string is returned.

4 lisp> (foo)
-->abcd
"abcd"

10.4.5. Read Macros
A function of two arguments (Channel, Token) can be associated with any DELIMITER or
DIPHTHONG token (i.e., those that have TokType!#¥=3) by putting the name of the function

on the appropriate indicator for the ID for the token that is to be a Read macro.

A ReadMacro function is called by ChannelReadTokenWithHooks if the appropriate token
with TOKTYPE!¥=3 is returned by ChannelReadToken. This function can then take over the
reading (or scanning) process, finally returning a token (actually an S-expression) to be

returned in place of the token itself.

Example: The quote mark, 'x converting to (Quote x), is done by the following example

which makes use of the function PutReadMacro which is defined in Section 10.12.

(de DOQUOTE (CHANNEL TOKEN))
(LIST 'QUOTE (CHANNELREAD CHANNEL))

(PUTREADMACRO LISPSCANTABLE!* '!' (FUNCTION DOQUOTE))

Input and Output 23 September 1983 , PSL Manual
page 10.16 ' section 10.4

A ReadMacro is installed on the property list of the macro-character as a function under
the indicators 'LISPREADMACRO, 'RLISPREADMACRO, etc. A Diphthong is installed on the

property list of the first character as (second-character . diphthong) under the indicators

- 'LISPDIPHTHONG, '‘RLISPDIPHTHONG, etc.

10.4.6. Terminal Interaction

(YesP MESSAGE:string): boolean expr

If the user responds Y or Yes, YesP returns T and the calculation continues
from that point in the file. If the user responds N or No, YesP returns NIL
and control is returned to the terminal, and the user can type in further
commands. However, later on he can use the command CONT; and control
is then transferred back to the point in the file after the last PAUSE was
encountered. If the user responds B, one enters a break loop. After

quitting the break loop, one still must respond Y, N, Yes, or No.

(Pause): Nil expr

(Only in RLISP.) The command PAUSE; may be inserted at any point in an
input file. If this command is encountered on input, the system prints the

message CONT? on the user’'s terminal and halts by calling YesP.

10.4.7. Input Status and Mode

PROMPTSTRING!* [Initially: “lisp>"] global

Displayed as a prompt when any input is taken from TTY. Thus prompts
should not be directly printed. Instead the value should be bound to
PROMPTSTRING! ¥.

I ¥*EOLINSTRINGOK [Initially: NIL] switch
If 1*¥EOLInStringOK is non-NIL, the warning message
#%* STRING CONTINUED OVER END-OF-LINE

is suppressed.

PSL Manual 23 September 1983 Input and Output

section 10.4

!¥RAISE [Initially: T]
If !1*¥RAISE is non-NIL, all characters input for ids through PSL input
functions are raised to upper case. I|f !*¥RAISE is NIL, characters are input

as is. A string is unaffected by !*¥RAISE.

1 ¥*COMPRESSING [Initially: NIL]
If !1*¥COMPRESSING is non-NIL, ChannelReadToken and other functions that

call it do not intern ids.

CURRENTSCANTABLE! #* [Initially:]
This variable is set to LISPSCANTABLE!* by the Read function (the “Lisp
syntax” reader). The RLISP reader sets it to RLISPSCANTABLE!* or
LISPSCANTABLE!* depending on the syntax it expects.

CURRENTREADMACROINDICATOR!* [initially:]
The function Read binds this variable to the value LISPREADMACRO. lts
value determines the property list indicator used in looking up Read macros.
The user may define a set of Read macros using some new indicator and
rebind this variable, then call the function ChannelReadTokenWithHooks to

perform input with the alternative set of Read macros.

Ordinary Read macros may be added by Puting properties on ids under the

LISPREADMACRO indicator.

10.5. File System Interface: Open and Close

(Open FILENAME:string ACCESSTYPE:id): CHANNEL:io-channel
If ACCESSTYPE is Eq to INPUT or OUTPUT, an attempt is made to access the
system-dependent FILENAME for reading or writing. If the attempt is
unsuccessful, an error is generated; otherwise a free channel is returned

and initialized to the default conditions for ordinary file input or output.

If none of these conditions hold, a file is not available, or there are no free

channels, an error is generated.

page 10.17

switch

switch

global

global

Input and Qutput 23 September 1983 PSL Manual
page 10.18 section 10.5

##%%% nknown access type
==ut* Improperly set-up special |0 open call
=#%%* File not found

#*x%% No free channels

If ACCESSTYPE is Eq to SPECIAL, no file is opened. Instead the channel is

initialized as a generalized input and/or output stream. See below.

(FileP NAME:string): boolean expr

This function will return T if file NAME can be opened, and NIL if not, e.g. if

it does not exist.

(Close CHANNEL:io-channel): io-channel expr

The closing function associated with CHANNEL is called, with CHANNEL as
its argument. If it is illegal to close CHANNEL, if CHANNEL is not open, or if

CHANNEL is associated with a file and the file cannot be closed by the
operating system, this function generates an error. Otherwise, CHANNEL is

marked as free and is returned.

Here is a simple example of input from a particular file with output sent to the current
output channel. This function reads forms from the file MYFILE.DAT and prints out all

those whose CAR is EQ to its parameter.

(defun filter-my-file (x)
(let ((chan (open "myfile.dat" 'input))
form)

(while (neq (setq form (channelread chan))

eof)
(if (and (pairp form) (eq (car form) x))

(print form)))

(close chan)))

The same thing with an unwind-protect form to give more assurance that the channel

(and the file) will be closed in all cases including errors, is shown below.

PSL Manual 23 September 1983 Input and Output
section 10.5 page 10.19

(defun filter-my-file (x)
(let ((chan (open "myfile.dat" 'input))
form)
(unwind-protect

(while (neq (setq form (channelread chan))

eof)
(if (and (pairp form) (eq (car form) x))

(print form)))

(close chan))))

The foilowing functions are part of RLISP. Please do not use them in LISP code.

(Out U:string): None Returned macro

Opens file U for output, redirecting standard output. Note that Out takes a

string as an argument, while Wrs takes an io—channel.

(EvQut L:string-list): None Returned expr

L is a list containing one file name which must be a string. EvOut js the

called by Qut after evaluating its argument.

(Shut [L:string]): None Returned macro

Closes the output files in the list L. Note that Shut takes file names as
arguments, while Close takes an io—channel. The RLISP IN function
maintains a stack of (file-name . io—channel) associations for this purpose.

Thus a shut will also correctly select the previous file for further output.

(EvShut L:string-list): none Returned expr

Does the same as Shut but evaluates its arguments.

10.6. Loading Modules

Two convenient procedures are available for loading modules. Various facilities
described in this manual are actually in loadable modules and their documentation notes
that they must be loaded. Loadable modules typically exist as FASL files {.b files on the
VAX or DEC-20); see Section 15.2.2 for information on producing FASL files.

Input and Output 23 September 1983 PSL Manual
page 10.20 section 10.6

(Load [FILE:{string, id}l): NIL
Each FILE is converted into a file name of the form “/u/local/lib/psi/file.b”
‘on the VAX, "pl:file.b” on the DEC-20. An attempt is made to execute the
function FaslIn on it Cnce loaded, the symbol FILE is added to the
GLOBAL variable OPTIONS!¥. All loads consult the OPTIONS!¥* list and do
not load files that are already present (See ReLoad below to load functions
already loaded). Also, consult the GLOBALS LoadDirectories!* and
LoadExtensions!¥* below for information on where loadable files may be

found and how their names are constructed.

(ReLoad [FILE:{string,id}]): NIL
Removes the filename from the list Options!* and executes the function

Load.

(Imports MODULENAMES:1ist): NIL
Imports is almost identical to load in its behavior, though not in the way it
is called. The only behavioral difference is that if imports is invoked as a
module is being loaded, the actual loading of the additional modules may
be delayed until loading of the current module is complete. This allows the
module loader to reclaim some space that would otherwise be wasted, a

matter that is specific to the way PSL is currently implemented.

!*¥VerboseLoad [Initially: NIL]

If T, turns on !*RedefMsg during Loads so that every function redefined
during a Load is announced. Also messages are given when a request is
made to Load a file that is already loaded, and a message is printed for

each file that is actually loaded.

!*¥PrintLoadNames [Initially: NIL]

If T, turns on printing of the message announcing each file loaded.

macro

macro

switch

switch

PSL Manual 23 September 1983 Input and Output

section 10.6 "page 10.21
LoadDirectories!¥* [Initially: A list of strings] global

Contains a list of strings to append to the front of file names given in Load
commands. This list may be one of the following, if your system is an
Apollo, Dec-20, or Vax:

(m* "/utah/psl/lap/")

("" "pl:")
("" "/usr/local/src/cmd/psl/dist/lap/")

load tries each directory on this list in turn as it searches for a specific file

to load in as the requested module.

LoadExtensions!#* [Initially: An a-list] global
Contains an a-list of (str . fn) in which the str is an extension to append to

the end of the filename and fn is a function to apply. The a-list contains
((".p" . FaslIn)(".lap" . LapIn)(".sl" . LapIN))

At presenf the file extensions in this list are searched in order within each of the

directories of LOADDIRECTORIES!*.

The following are some scenarios on the use of Load and Imports. Suppose that

Module B:

a. requires modules C and D during its execution, but can be loaded after
B. Then place (LOAD C D) in the file. When B is loaded interpretively, the load
will be executed immediately. When B is compiled, the LOAD of C and D will
be deferred until B is "LOADED”. If (IMPORTS '(C D)) had been used, nothing
would happen when B is interpreted, but when B is compiled, the same
deferred load will occur.

b. needs module A to be loaded before it is loaded. It is then necessary to
create a .LAP file to load in each of the modules:

AB.LAP consists of':
(LOAD A4)
(LOAD B)

The user may then load in AB and will get A followed by B.

c. needs module A during its compilation. Plage a (Compiletime (Load A))
somewhere in module B.

Input and Output 23 September 1983 PSL Manual
page 10.22 section 10.6

d. needs module A during its compilation and during execution. Place a
(Bothtimes (Load A)) somewhere in module B.

10.7. Reading File into PSL

The following procedures are used to read complete files into PSL, by first calling Open,
and then looping until end of file. The effect is similar to what would happen if the file
were typed into PSL. Recall that file names are strings, and therefore one needs string—
quotes (") around file names. File names may be given using full system dependent file
name conventions, including directories and sub-directories, “links” and "logical-device-

names”, as appropriate on the specific system.

1¥ECHO [Initially: Nill switch
The switch *ECHOQO is used to control the echoing of input. When (On Echo)
is placed in an input file, the contents of the file are echoed on the
standard output device. Dskin does not change the value of !*ECHQO, so

one may say (On Echo) before cailing Dskin, and the input will be echoed.

(DskIn F:string): None Returned expr

Enters a Read-Eval-Print loop on the contents of the file F. DskIn

expects LISP syntax in the file F. Use the following format: (Dskin “File”).

{LapIn U:string): None Returned expr

Reads a single LISP file as "quietly” as possible, i.e., it does not echo or
return values. Note that LapIn can be used only for LISP files. By
convention, files with the extension “.LAP” are intended to be read by LapIn.
These files are fypically used to load modules made up of several
binary (also known as FASL) files. The use of the Load function is normally
preferable to using LapIn. For information about fast loading of files of
compiled functions (FASL files) see FASL and the Load and FaslIn functions
in Chapter 15.

PSL Manual 23 September 1983 Input and Output
section 10.7 page 10.23

(FaslIn FILENAME:string): NIL expr

This is an efficient binary read loop, which fetches blocks of code,
constants and compactly stored ids. It uses a bit-table to relocate code
and to identify special LISP-oriented constructs. FILENAME must be a

complete file name.

10.7.1. RLISP File Reading Functions
The following functions are present in RLISP, they can be used from Bare-PSL by

loading RLISP.

(In [L:string]): None Returned macro

Similar to DskIn but expects RLISP syntax in the files it reads uniess it can
determine that the files are not in RLISP syntax. Also In can take more
than one file name as an argument. On most systems the function In
expects files with extension .LSP and .SL to be written in LISP syntax, not in
RLISP. This is. convenient when using both LISP and RLISP files. It is
conventional to use the extension .RED (or .R) for RLISP files and use .LSP
or .SL only for fully parenthesized LISP files. There are some system
programs, such as TAGS on the DEC-20, which expect RLISP files to have

the extension .RED.

If it is not desired to have the contents of the file echoed as it is read,

either end the In command with a “$” in RLISP, as

In "FILE1.RED","FILE2.SL"$
or include the statement “Off ECHO;” in your file.

(PathIn FileName-Tail:string): None Returned " expr
Allows the use of a directory search path with the Rlisp IN function. It
finds a list of search paths in the fluid variable PATHIN!¥ These are
successively concatenated onto the front of the string argument to PathIn
until an existing file is found (using FileP. If one is found, In will be
invoked on this file. If not, a continuable error occurs. For example on the

VAX,

Input and Output 23 September 1983
page 10.24

(Setq PathIn!*® '("" "/u/psl/" "/u/smith/"))
(PathIn "foo.red")

will attempt to open “foo.red”, then “/u/psl/foo.red”,

“/u/smith/foo.red” until a successful open is achieved.

To use Pathin in Bare-PSL, load PATHIN as wel!l as RLISP.

1*¥PrintPathin [Initially: NIL]

iIf T, a message is printed for each file that is read by Pathin.

(EvIn L:string-1list): None Returned

PSL Manual
section 10.7

and finally

switch

L must be a list of strings that are filenames. EvIn is the function called by

In after evaluating its arguments. In is useful only at the top-level, while

EvIn can be used inside functions with file names passed as parameters.

10.8. About 1/O Channels

(Rds {CHANNEL:io-channel, NIL}): io-channel

Rds sets IN!* to the value of its argument, and returns the previous value
of IN!* In addition, if SPECIALRDSACTION!* is non-NIL, it should be a

function of 2 arguments, which is called with the old CHANNEL as its first

argument and the new CHANNEL as its second argument.

the same as RAs(STDIN!¥).

(Wes {CHANNEL:io-channel, NIL}): io-channel

Rds(NIL) does

Wrs sets OUT!* to the value of its argument and returns the previous value

of OUT!*. |n addition, if SPECIALWRSACTION!#* is non-NIL, it should be a

function of 2 arguments, which is called with the old CHANNEL as its first

argument and the new CHANNEL as its second argument.

the same as Wrs(STDOUT!¥).

Wrs(NIL) does

GLOBAL variables containing information about channels are listed below.

PSL Manual 23 September 1983 Input and Output
section 10.8 ‘ page 10.25

IN!* [Initially: 0]
Contains the currently selected input channel. May be set or rebound by

the user: This is changed by the function Rds.

OUT!* [Initially: 1]
Contains the currently selected output channel. May be set or rebound by

the user. This is changed by the function Wrs.

STDIN!#* [Initially: 0]
The standard input channel (but not in the Unix sense of standard input).
Channel 0 is ordinarily the terminal and this variable is not intended to be

set or rebound.

STDOUT!#* [initially; 1]
The standard output channel. Like channel 0, channel 1 is ordinarily always

the terminal, and this variable is not intended to be set or rebound.

BreakIn!#* [Initially: NIL]

The channel from which the BREAK loop gets its input. It has been set to
default to StdIN!#¥ but may have to be changed on some systems with

buffered-10.

BreakOut!* [Initially: NIL]

The channel to which the BREAK loop sends its output. It has been set to
default to StdOut!¥*, but may have to be changed on some systems with

buffered-10.

HelpIn!#* [Initially: NIL]

The Help mechanism uses this variable’s value for input.

HelpQut!#* [initially: NIL]

This variable’s value determines the output channel used by the Help

mechanism.

global

global

global

global

global

global

global

global

Input and Output 23 September 1983 PSL Manual

page 10.26 : section 10.8
ERROUT! ¥ [Initially: 1] global

The channel used by the ErrorPrintF.

SPECIALRDSACTION!* [Initially: NIL] global
SPECIALWRSACTION!#* [Initially: NIL] ' global

10.9. /O to and from Lists and Strings

(BldMsg FORMAT:string, [ARGS:anyl): string expr

PrintF to string. This can be used as a very convenient way of obtaining
the printed representation of an object for further analysis. in many cases
it is also a very convenient way of constructing a needed string. |If
overflow occurs BldMsg returns a string stating that the string could not be

constructed.

(FlatSize U:any): integer . expr

Character length of Prin1 S-expression.

(FlatSize2 U:any): integer expr
Prin2 version of flatsize.

Note that for many purposes it is easier to use DigitP, AlphaP, etc. for performing the

kind of testing that Digit and Liter do.

(Digit U:any): boolean expr

Returns T if U is a digit, otherwise NIL. Effectively this is:

(de DIGIT (U)
(IF (MEMQ U '(10 !1 12 13 14 15 16 17 18 !19)) T NIL))
(Liter U:any): boolean expr

Returns T if U is a character of the alphabet, NIL otherwise. This is

effectively:

PSL Manual 23 September 1983 Input and Output
section 10.9 ' page 10.27

(de LITER(U)

(IF (MEMQ U '(ABCDEFGHIJKLM
NOPQRSTUVWIXYZabecdef
ghijklmnopqrstuvwxy
z)) T NIL))

(Explode U:any): id-1list . expr

Explode takes the constituent characters of an S-expression and forms a
list of single character ids. It is implemented via the function

ChannelPrini, with a list rather than a file or terminal as destination.

Returned is a list of interned characters representing the charaCters

required to print the value of U. Example:

* Explode FOO; => (F O O)

* Explode (A . B); => ((A! L. IB1)

[??? add print macros. cf. UC! lisp 7??]

(Explode2 U:{atom}-{vector}): id-list expr

Prin2 version of Explode.

(Compress U:id-list): {atom}-{vector} expr

U is a list of single character identifiers which is built into a PSL entity and

returned. Recognized are numbers, strings, and identifiers with the escape

character prefixing special characters. The formats of these items appear in
the “Primitive Data Types” Section, Section 2.1.2. Identifiers are not interned

on the Id-hash-table. Function pointers may not be compressed. If an

entity cannot be parsed out of U or characters are left over after parsing an

error occurs:

#%¥% Poorly formed atom in COMPRESS

(Implode U:id-1list): atom expr

Compress with ids interned.

Input and Output 23 September 1983 PSL Manual
page 10.28 section 10.10

10.10. Generalized Input/Output Streams

[?77? We should replace these globals and SPECIAL option by a (SPECIALOPEN

Readfunction writefunction closefunction) cail ?7?]

All-input and output. functions.are implemented in terms of operations on “channeis”. A
channel is just a small integer2 which has 3 functions and some other information

associated with it. The three functions are:

a. A reading function, which is called with the channel as its argument and
returns the integer ASCIll value of the next character of the input stream. If
the channel is for writing only, this function is WriteOnlyChannel. |If the
channel has not been opened, this function is ChannelNotOpen. The reading
function is responsible for echoing characters if the flag !¥ECHO is T. It
should use the function WriteChar to echo the character. It may not be
appropriate for a read function to echo characters. For example, the “disk”
reading function does echoing, while the reader used to implement the
Compress function does not.

The read function must also be concerned with the handling of ends of
“files” (actually, ends of channels) and ends of lines. It should return the
ASCIl code for an end of file character (system dependent) when reaching the
end of a channel. It should return the ASCIl code for a line feed character to
indicate an end of line (or "newline”). This may require that the ASCH code
for carriage return be ignored when read, not returned.

b. A writing function, which is called with the channel as its first argument and
the integer ASCIl value of the character to write as its second argument. |If
the channel is for reading only, this function is ReadOnlyChannel. If the
channel has not been opened, this function is ChannelNotOpen.

c. A closing function, which is called with the channel as its argument and
performs any action necessary for the graceful termination of input and/or
output operations to that channel. If the channel is not open, this function is
ChannelNotOpen.

The other information associated with a channel includes the current position in the
output line (used by Posn), the maximum line length allowed (used by LineLength and the

printing functions), the single character input backup buffer (used by the token scanner),

2The range of channel numbers is from 0 to MaxChannels, where MaxChannels is a
system-dependent constant, currently 31, defined in I0-DATA.RED. MaxChanneis is a
WCONST, and is not available for use at runtime.

PSL Manual 23 September 1983 Input and Qutput
section 10.10 page 10.29

and other system-dependent information.

Ordinarily, the user need not be aware of the existence of this mechanism. However,
- because of its generality, it -is possible to. implement operations other than just reading
“from and-writing to files ‘using it. In particular, the LISP functions Explode and Compress
are performed by writing to a list and reading from a list, respectively {on channels 3 and

4 respectively).

10.10.1. Using the “Special” Form of Open .
Note: Please pardon the creaky mechanism used to implement this facility. We expect

to improve it.

If Open is called with ACCESSTYPE Eq to SPECIAL and the GLOBAL variables
SPECIALREADFUNCTION!¥*, SPECIALWRITEFUNCTION!¥* and SPECIALCLOSEFUNCTION!#* are
bound to ids, then a free channel is returned and its associated functions are set to the
values of these variables. Other non system-dependent status is set to default
conditions, which can later be overridden. The functions ReadOnlyChannel and
WriteOnlyChannel are available as error handlers. The parameter FILENAME is used only

if an error occurs.

The following GLOBALs are used by the functions in this section.

SPECIALCLOSEFUNCTION!* [Initially: NIL] global
SPECIALREADFUNCTION!* [Initially: NIL] : global
SPECIALWRITEFUNCTION!#* [initially: NIL] global

10.11. Scan Table Internals

Scan tables have 129 entries, indexed by 0 through 128. 0 through 127 are indexed by
ASCll character code to get an integer code determining the treatment of the
corresponding character. The last entry is not an integer, but rather an id which specifies

a Diphthong Indicator for the token scanner.

[??? A future implementation may replace the FLUID CurrentReadMacroIndicator!¥*

with another entry in the scan table. ?2?]

Input and Output 23 September 1983 PSL Manual
page 10.30 section 10.11

The following encoding for characters is used.

0..9 DIGIT: indicates the character is a digit, and gives the corresponding numeric
value.

10 - -LETTER: indicates that the character is a letter.

11 -~ DELIMITER: indicates that the character is a delimiter which is not the starting
character of a diphthong.

12 COMMENT: indicates that the character begins a comment terminated by an
end of line.

13 DIPHTHONG: indicates that the character is a delimiter which may be the
starting character of a diphthong. (A diphthong is a two character sequence
read as one token, i.e., "<<” or “=")

14 IDESCAPE: indicates that the character is an escape character, to cause the

following character to be taken as part of an id. (Ordinarily an exclamation
point, i.e. "1”)

15 STRINGQUOTE: indicates that the character is a string quote. (Ordinarily a
double quote, i.e. ™))

16 PACKAGE: indicates that the character is used to introduce explicit package
names. (Ordinarily “\")) '

17 IGNORE: indicates that the character is to be ignored. (Ordinarily BLANK, TAB,
EOL and NULL)

18 MINUS: indicates that the character is a minus sign.

19 PLUS: indicates that the character is a pius sign.

20 DECIMAL: indicates that the character is a decimal point.

21 IDSURROUND: indicates that the character is to act for identifiers as a string

quote acts for strings. Although this is not used in the default scan table, the
intended character for this function is a vertical bar, |.)

System builders who wish to define their own parsers can bind an appropriate scan
table to CurrentScanTable!* and then call ChannelReadToken or
ChannelReadTokenWithHooks for lexical scanning. Utility functions for building scan

tabtes are described in the next section.

PSL Manual 23 September 1983 Input and Output

section 10.11 page 10.31
LISPSCANTABLE!* [Initially: as shown in following tablel global
0 ~@ IGNORE 32 IGNORE 64 @ LETTER 96 ' DELIMITER
1 ~A LETTER 33 ! IDESCAPECHAR 65 A LETTER 97 a LETTER
2 "B LETTER 34 " STRINGQUOTE 66 B LETTER 98 b LETTER
3 ~C LETTER '35 # LETTER ' 67 C LETTER 99 ¢ LETTER
4 ~D LETTER 36 $ LETTER - 68 D LETTER 100 d LETTER
5 ~“E LETTER " 37 % COMMENTCHAR 69 E LETTER 101 e LETTER
6 “F LETTER 38 & LETTER 70 F LETTER 102 f LETTER
7 ~G LETTER 39 ' DELIMITER 71 G LETTER 103 g LETTER
8 ~H LETTER 40 (DELIMITER 72 H LETTER 104 nh LETTER
9 <tab> IGNORE 41) DELIMITER 73 I LETTER 105 i LETTER
10 <1f> IGNORE 42 % LETTER T4 J LETTER 106 j LETTER
11 ~K LETTER 43 + PLUSSIGN 75 K LETTER 107 k LETTER
12 ~L IGNORE 44 | DIPHTHONGSTART 76 L LETTER 108 1 LETTER
13 <cr> IGNORE 45 - MINUSSIGN 77 M LETTER 109 m LETTER
14 ~N LETTER 46 . DECIMALPOINT 78 N LETTER 110 n LETTER
15 ~0 LETTER 47 / LETTER 79 O LETTER 111 o LETTER
16 ~P LETTER 48 0 DIGIT 80 P LETTER 112 p LETTER
17. ~Q LETTER 49 1 DIGIT 81 Q LETTER 113 q LETTER
18 "R LETTER 50 2 DIGIT 82 R LETTER 114 r LETTER
19 ~S LETTER 51 3 DIGIT 83 S LETTER 115 s LETTER
20 ~T LETTER 52 4 DIGIT 84 T LETTER 116 t LETTER
21 ~U LETTER 53 5 DIGIT 85 U LETTER 117 u LETTER
22 ~V LETTER 54 6 DIGIT 86 V LETTER 118 v LETTER
23 "W LETTER 55 7 DIGIT 87 W LETTER 119 w LETTER
24 ~X LETTER - 56 8 DIGIT 88 X LETTER 120 x LETTER
25 ~Y LETTER 57 9 DIGIT 89 Y LETTER 121 y LETTER
26 ~Z DELIMITER 58 : LETTER 90 Z LETTER 122 z LETTER
27 $ LETTER 59 ; LETTER 91 [DELIMITER 123 { LETTER
28 ~\ LETTER 60 < LETTER 92 \ PACKAGE 124 | LETTER
29 ~] LETTER 61 = LETTER 93] DELIMITER 125 } LETTER
30 ~~ LETTER 62 > LETTER 94 ~ LETTER 126 ~ LETTER
31 ~_ LETTER 63 ? LETTER 95 _ LETTER 127 <rubout>
LETTER

The Diphthong Indicator in the 128th entry is the identifier LISPDIPHTHONG.

W OO-IONUTEWN O

Input and Qutput
page 10.32

~@ IGNORE

~A DELIMITER

“B DELIMITER

~C DELIMITER

~D DELIMITER

~“E DELIMITER

~F DELIMITER

~G DELIMITER

“H DELIMITER

<tab> IGNORE

10 <1f> IGNORE

11 ~K DELIMITER
12 ~L IGNORE

13 <cr> IGNORE

14 ~N DELIMITER
15 ~O DELIMITER
16 ~P DELIMITER
17 ~Q DELIMITER
18 ~R DELIMITER
19 ~S DELIMITER
20 ~T DELIMITER
21 ~U DELIMITER
22 ~V DELIMITER

23 "W DELIMITER

24 ~X DELIMITER
25 ~Y DELIMITER
26 ~Z DELIMITER
27 $ DELIMITER
28 ~\ DELIMITER
29 ~] DELIMITER

30 ~~ DELIMITER
31 ~_ DELIMITER

23 September 1983

PSL Manual
section 10.11

RLISPSCANTABLE!* [initially: as shown in following table]
32 IGNORE 64 @ DELIMITER 96 ' DELIMITER
33 ! IDESCAPECHAR 65 A LETTER 97 a LETTER
34 " STRINGQUOTE 66 B LETTER 98 b LETTER
35 # DELIMITER 67 C LETTER 99 ¢ LETTER
" 36 ¢$§ DELIMITER 68 D LETTER 100 d LETTER
37 % COMMENTCHAR 69 E LETTER 101 e LETTER
38 & DELIMITER 70 F LETTER 102 f LETTER
39 ' DELIMITER 71 G LETTER 103 g LETTER
40 (DELIMITER 72 H LETTER 104 h LETTER
41) DELIMITER 73 I LETTER 105 i LETTER
42 * DIPHTHONGSTART 74 J LETTER 106 j LETTER
43 + DELIMITER 75 K LETTER 107 k LETTER
44 | DELIMITER 76 L LETTER 108 1 LETTER
45 - DELIMITER 77 M LETTER 109 m LETTER
46 . DECIMALPOINT 78 N LETTER 110 n LETTER
47 / DELIMITER 79 O LETTER 111 o LETTER
48 0 DIGIT 80 P LETTER 112 p LETTER
49 1 DIGIT 81 Q LETTER 113 q LETTER
50 2 DIGIT 82 R LETTER 114 r LETTER
51 3 DIGIT 83 S LETTER 115 s LETTER
52 4 DIGIT 84 T LETTER 116 t LETTER
53 5 DIGIT 85 U LETTER 117 u LETTER
54 6 DIGIT 86 V LETTER 118 v LETTER
55 7 DIGIT 87 W LETTER 119 w LETTER
56 8 DIGIT 88 X LETTER 120 x LETTER
57 9 DIGIT 89 Y LETTER 121 y LETTER
58 : DIPHTHONGSTART 90 Z LETTER 122 z LETTER
59 ; DELIMITER 91 [DELIMITER 123 { DELIMITER
60 < DIPHTHONGSTART 92 \ PACKAGE 124 | DELIMITER
61 = DELIMITER 93] DELIMITER 125 } DELIMITER
62 > DIPHTHONGSTART 94 ~ DELIMITER 126 ~ DELIMITER
63 ? DELIMITER 95 _ LETTER 127 <rubout>
DELIMITER

The Diphthong Indicator in the 128th entry is the identifier RLISPDIPHTHONG.

[??? What about the RlispRead scantable ???]

global

[??? Perhaps describe one basic table, and changes from one to other, since mostly

the same ???]

TOKTYPE!#* [Initially: 3]

ChannelReadToken sets TOKTYPE!* to:

WN -0

In the last case, the value returned is the id whose print name is the same

if the token is an ordinary id,

if the token is a string,

if the token is a number, or

if the token is an unescaped delimiter.

global

PSL Manual) 23 September 1983 input and Qutput
section 10.11 page 10.33

as the delimiter.

10.12. Scan Table Utility Functions
-~ The following functions are:provided to manage scan tables, in the READ-UTILS module

(use via LOAD READ-UTILS):

(PrintScanTable TABLE:vector): NIL expr

Prints the entire scantable, gives the 0 .. 127 entries with the name of the

character class. Also prints the indicator used for diphthongs.

[?2? Make smarter, reduce output, use nice names for control

characters, ala EMODE. ???7]

(CopyScanTable OLDTABLE: {vector, NIL}): vector expr
Copies the existing scantable (or CURRENTSCANTABLE!* if given NIL).

Currently GenSym()’s the indicators used for diphthongs.

[??? Change when we use Property Lists in extra slots of the Scan-

Table ???]

(PutDiphthong TABLE:vector, D1:id 1ID2:id DIP:id): NIL expr

Installs DIP as the name of the diphthong ID1 followed by ID2 in the given

scan table.

(PutReadMacro TABLE:vector 1ID1:id FNAME:id): NIL expr

Installs FNAME as the name of the Read macro function for the delimiter or

diphthong ID1 in the given scan tabie. [not implemented yet]

PSL MANUAL - 23 SEPTEMBER 1983 TOP LEVEL LOOP
SECTION 11.0 PAGE 11.1

CHAPTER 11
TOP LEVEL LOOP

11.1. Introduction L L L 11.1
© 11.2.-The General Purpose Top Loop Function. 111
11.3. Changing the Default Top Level Function 11.4
114. The Break Loopo 11.4

11.1. Introduction
In this chapter those functions are presented reiating directly to the user interface; for
example, the general purpose Top Loop function, the History mechanism, and changing

the default Top Level function.

11.2. The General Purpose Top Loop Function
PSL provides a general purpose Top Loop that allows the user to specify his own Read,
Eval and Print functions and otherwise obtain a standard set of services, such as

Timing, History, Break Loop interface, and interface to the Help system.

TopLoopEval!#¥ [Initially: NIL] A global

The Eval used in the current Top Loop.

TopLoopPrint!# [Initially: NIL] global

The Print used in the current Top Loop.

TopLoopRead ! ¥ [Initially: NIL] global

The Read used in the current Top Loop.

(TopLoop TOPLOOPREAD!*:function TOPLOOPPRINT!*:function
TOPLOOPEVAL!#*:function TOPLOOPNAME!*:id WELCOMEBANNER:string): NIL expr

This function is called to establish a new Top Loop (currently used for
Standard LISP, RLISP, and Break).. It prints the WELCOMEBANNER and then

invokes a “Read-Eval-Print” loop, using the given functions. Note that
TOPLOOPREAD!*, etc. are FLUID variables, and so may be examined (and

--changed) within the executing Top Loop. TopLoop provides a standard

Top Level Loop 23 September 1983 PSL Manual
page 11.2 section 11.2

History and timing mechanism, retaining on a list HISTORYLIST!* the input

and output as a list of pairs. A prompt is constructed from

TOPLOOPNAME!* and is printed out, prefixed by the History count. As a

-convention, the nameis followed by a number of “>"s, indicating the loop
depth.
The initial values ot the following four globals are those that exist in Bare-PSL. They

may differ in other PSL executables.

TopLoopName ! ¥ [Initially: lisp] global

Short name to put in prompt.

TopLoopLevel!#* [Initially: 0] global

Depth of top loop invocations.

1 ¥*EMsgP [Initially: T] switch

Whether to print error messages.

InitForms!#* [Initially: NIL] global

Forms to be evaluated at startup.

1*TIME [Initially: NIL] switch

If on, causes a step evaluation time to be printed after each command.

(Hist [N:integer]): NIL nexpr
This function does not work with the Top Loop used by PSL:RLISP or by
{beginrlisp); it does work with LISP and with RLISP if it is started from LISP
using the RLISP function. Hist is called with 0, 1 or 2 integers, which
control how much history is to be printed out:

(HIST) Display full history.
{(HIST n m) Display history from n to m.

(HIST n) Display history from n to present.
(HIST -n) Display last n entries.

[??? Add more info about what a history is. ???]

The following functions permit the user to access and resubmit previous expressions,

PSL Manual 23 September 1983 Top Level Loop
section 11.2 page 11.3

and to re—examine previous results.

(Inp N:integer): any expr

Return N’th input at this level.

(ReDo N:integer): any expr

Reevaluate N‘th input.

(Ans N:integer): any expr

Return N‘'th result.

HistoryCount!* [Initially: 0] global

Number of entries read so far.

HistoryList!#¥ [Initially: Nill global
List of entries read and evaluated.

TopLoop has been used to define the following StandardLisp and RLISP top loops.

(StandardLisp): NIL expr
Interpreter LISP syntax top loop, defined as:
(De StandardLisp Nil
(Prog (CurrentReadMacroIndicator!* CurrentScanTable!¥)
(Setq CurrentReadMacroIndicator!¥* 'LispReadMacro)
(Setq CurrentScanTable!* LispScanTable!¥)

(Toploop 'Read 'Print 'Eval "LISP"
"PORTABLE STANDARD LISP")))

Note that the scan tables are modified.
(RLisp): NIL expr

Alternative interpreter RLISP syntax top loop, defined as:

[??? xread described in RLISP Section ?7?]

(De RLisp Nil
(Toploop 'XRead 'Print 'Eval "RLISP" "PSL RLISP"))

Note that for the moment, the default RLISP loop is not this (though‘ this

Top Level Loop 23 September 1983 PSL Manual

page 11.4 section 11.2

may be used experimentally); instead a similar (special purpose hand coded)
function, BeginRlisp, based on the older Beginl is used. It is hoped to

change the RLISP top-level to use the general purpose capability.

(BeginRLisp): None Returned _ expr

Starts RLISP from PSL:PSL only if RLISP is loaded. The module RLISP is
present if you started in RLISP and then entered PSL.

11.3. Changing the Default Top Level Function

As PSL starts up, it first sets the stack pointer and various other variables, and then
calls the function Main inside a While loop, protected by a Catch. By default, Main calls a
StandardLisp top loop, defined using the generai TopLoop function, described in the next
section. In order to have a saved PSL come up in a different top loop, the function Main

should be appropriately redefined by the user (e.g., as is done to create RLISP).

(Main): Undefined expr

Initialization function, called after setting the stack. Should be redefined by

the user to change the default TopLoop.

11.4. The Break Loop
The Break Loop uses the top loop mechanism and is described in detail in Chapter 12.

For information, iook there.

PSL MANUAL 23 SEPTEMBER 1983 ERROR HANDLING AND RECOVERY
SECTION 12.0 PAGE 12.1

CHAPTER 12
ERROR HANDLING

12.1. Introduction L L, 12.1
12.2. The Basic Error Functions. 12.1
12.3. Basic Error Handlers 12.3
12.4. Break Loop oL Lo 12.5
12.5. Interrupt Keys L L 12.9
12.6. Details on the Break Loop 12.9
12.7. Some Convenient Error Calls 12.10

12.1. Introduction

In PSL, as in most LISP systems, various kinds of errors are detected by functions in the
process of checking the validity of their argument types and other conditions. Errors are
then “signalled” by a call on an Error function. In PSL, the error handler typically calls an
interactive Break loop, which permits the user to examine the context of the error and
optionally make some corrections and continue the computation, or to abort the

computation.

While in the Break loop, the user remains in the binding context of the function that
detected the error; the user sees the value of FLUID variables as they are in the function

itself. If the user aborts the computation, fluid and local variabies are unbound.

[??? What about errors signalled to the Interrupt Handler ???]

12.2. The Basic Error Functions

(Error NUMBER:integer MESSAGE:any): None Returned expr

Under the initial (and usual) values of a couple of switches, the error
message is printed and an interactive break loop (see below) is entered. If
the user “quits” out of the interactive break loop, control returns to the

innermost error handler.

The user may supply an error handler. The interactive break loop and the
top level loop also supply error handlers, so if the user makes no special

preparation, control will return to an existing break loop or to the top level

page 12.2

of LISP.

Whenever a call on Error results in return to an error handler, the error
-~ number of the error becomes the value returned by the error handler.
FLUID -variables and’- LOCAL bindings are unbound to return to the
environment of the error handler. GLOBAL variables are ndt affected by the
process. The error message is printed with 5 leading asterisks on both the
standard output device and the currently selected output device unless the
standard output device is not open. If the message is a list it is displayed
without top level parentheses. The message from the error call is available

for later examination in the GLOBAL variable EMSG!¥*.

Note: the exact format of error messages generated by PSL functions
described in this document may not be exactly as given and should not be
relied upon to be in any particular form. Likewise, error numbers generated
by PSL functions are not fixed. Currently, a number of different calls on

Error result in the same error message and number.

[??? Describe Error # ranges here, or have in a file on machine ?2?]

(ContinuableError NUMBER:integer MESSAGE:any FORM:form): any

Similar to Error. If an interactive break is entered due to a call on
ContinuableError, the user has options of “continuing” or “retrying” (see
information on the break loop, below). In either of these cases the call on
ContinuableError returns. The value returned is as described in the

documentation of the interactive break loop.

The FORM argument is used for “retrying” after a continuable error. The
FORM is generally made to look like a call on the function that signalled the
error (actual argument values filled in), and the function signalling the error
generally returns with the value returned by the call on ContinuableError.
For example the call on ContError, in the exampie below is equivalent to

the following call on ContinuableError:

(CONTINUABLEERROR 99 (LIST 'DIVIDE (MKQUOTE U) (MKQUOTE V)))

Error Handling and Recovery 23 September 1983 ‘ PSL Manual

section 12.2

PSL Manual 23 September 1983 Error Handling and Recovery
section 12.2 page 12.3

The FORM argument may be NIL. In this case it is expected that the break

will be left via “continue” rather than “retry”.

As in-the example above, setting up the ErrorForm!¥* can get a bit tricky,
often involving MkQuoteing of already evaluated arguments. The foliowing
MACRO may be useful.

(ContError [ARGS:anyl): any macro

The format of ARGS is (ErrorNumber, FormatString, {arguments to PrintF},

ReEvalForm). The FORMATSTRING is used with the following arguments in

a call on BldMsg to build an error message. If the only argument to PrintF
is a string, the FORMATSTRING may be omitted, and no call to BldMsg is

made. The ReEvalForm is something like Foo(X, Y) which becomes list(’Foo,

MkQuote X, MkQuote Y) to be passed to the function ContinuableError.
(DE DIVIDE (U, V)
(COND((ZEROP V)
(CONTERROR 99 "Attempt to divide by 0 in DIVIDE",

(DIVIDE U V)))
(T (CONS (QUOTIENT U V) (REMAINDER U V)))))

(FatalError S:any): None Returned ' expr

This function allows neither continuation nor even a return to any error

handler. Its definition is:

(ProgN (ErrorPrintF "#¥%¥% Fatal error: %s" S)
(While T (Quit)))

12.3. Basic Error Handlers

(ErrSet U:form !¥*EMsgP:boolean): any macro

ErrSet and ErrorSet are the basic PSL error handler functions.

If an error occurs during the evaluation of U, the value of NUMBER from the
associated error call is returned as the value of the ErrSet. There are
actually a couple of eXceptions. If a {continuable) error is continued by the

user in the interactive Break loop, no special return to ErrSet is done.

Error Handling and Recovery 23 September 1983 PSL Manual
page 124 section 12.3

Also if the user requests the computation to be aborted completely back to

the top level, no return to ErrSet is done.

The boolean argument is evaluated without protection of the error handler.
The FLUID variable !"EMSGP is bound to the boolean value for the
evaluation of the FORM. |If the value of !*EMSGP is NIL when an error
occurs no error message is printed and no interactive Break loop occurs.
In this case control must return to the innermost error handler except for

the case of a fatal error.

If ErrSet is returned to in the normal way, its value is a list of one element,
the value of the FORM. If ErrSet is returned to via the error mechanism,

its value is the error number of the error call that caused the return.

(ErrorSet U:any !¥EMsgP:boolean !¥BACKTRACE:boolean): any expr

This is an older function than ErrSet. ErrSet is generally preferred.

In most respects ErrorSet behaves the same as Errset. See the
documentation of ErrSet above. Note that ErrorSet is an expr, so U gets
evaluated once as the parameter is passed and the result is then evaluated
inside ErrorSet. Since ErrorSet itseif calls Eval on its first argument

there are likely to be problems with compiled code that uses ErrorSet.

In addition to binding EMSGP as ErrSet does, ErrorSet overrides the
behavior usually specified by the !*BACKTRACE switch. The backtrace
behavior of PSL errors during the execution of a form inside an ErrorSet

error handler is determined by the second parameter to the ErrorSet.

The following two switches and one global variable are used by the functions in this

section. Useage of any of these can be considered advanced.

1 ¥EMsgP [Initially: T] global
Fluid variable rebound by ErrSet and ErrorSet. Controls error message
printing during call on error. If NIL, no error message will be printed and no
interactive break loop will be entered. If an unwind backtrace has been

requested through the BACKTRACE flag or a call on ErrorSet, one will be.

PSL Manual 23 September 1983 Error Handling and Recovery

section 12.3 page 12.5
EMSG!* [Initially: NIL] global

Contains the message generated by the last error call. Particularly useful in

case printing of the message was suppressed.

1#BackTrace [Initially: NIL] switch
Used by the top level read-evai-print loop to control whether an unwind
backtrace will be printed when errors occur outside the scope of any user-
specified error handler. Since ErrorSet is somewhat obsolete, the precise

behavior controlled by this flag may change.

12.4. Break Loop

On detecting an error, PSL normally enters a Read/Eval/Print loop called a Break loop.
Here the user can examine the state of his computation, change the values of FLUID and
GLOBAL variables, or define missing functions. He can then dismiss the error call to the
normal error handling mechanism (ErrorSet or ErrSet above). If the error was of the
continuable type, he may continue the computation. By setting the switch !*¥BREAK to
NIL, all Break loops can be suppressed, and just an error message is displayed.

Suppressing error messages also suppresses Break loops.

{¥BREAK [Initially: T] switch

Controls whether the Break package is called before unwinding the stack on

error.

BreakLevel!* [Initially: 0] global

The current number of nesting level of breaks.

MaxBreakLevel!* [Initially: 5] global
The maximum number of nesting levels of breaks permitted. If an error
occurs with at least this number of nested breaks already existing, no entry
to an interactive break loop is made. Control aborts back to the innermost
error handler instead.

The prompt “Break>" indicates that PSL has entered a Break loop. A message of the

form “Retry form is ..” may also be printed, in which case the user is able to continue his

- computation by repairing the offending expression. By default, a Break loop uses the

Error Handling and Recovery 23 September 1983 PSL Manual
page 12.6 section 12.4

functions Read, Eval, and Print. This may be changed by setting BREAKREADER!¥,
BREAKEVALUATOR!*, or BREAKPRINTER!* to the appropriate function name.

ERRORFORM! ¥ [Initially: NIL] global

Contains an expression to reevaluate inside a Break loop for continuable
errors. [Not enough errors set this yet]l Used as a tag for various Error

functions.

Several ids, if typed at top-level, are special in a Break loop. These are used as
commands, and are currently E, M, R, T, Q, A, |, and C. They call functions stored on their
property lists under the indicator '‘BreakFunction. These ids are special only at top-level,
and do not cause any difficulty if used as variables inside expressions. However, they
may not be simply typed at top-level to see their values. This is not expected to cause
any difficulty. If it does, an escape command will be provided for examining the relevant

variables.

The meanings of these commands are:

E Edit the value of ErrorForm!¥*. This is the object printed in the “Retry form is
..” message. The function BreakEdit is the associated function called by this
command. The Retry command (below) uses the corrected version of
ErrorForm!*¥ The currently available editors are described in Part 2 of the

manual.
M Show the modified ErrorForm!¥. Calls the function BreakErrmsg.
R Retry. This tries to evaluate the retry form, and continue the computation. It

evaluates the value of ERRORFORM!¥*. This is often useful after defining a
missing function, assigning a value to a variable, or using the Edit command,
above. This command calls the function BreakRetry.

C Continue. This causes the expression last printed by the Break loop to be
returned as the value of the call on ContinuableError. This is often useful
as an automatic stub. If an expression containing an undefined function is
evaluated, a Break loop is entered, and this may be used to return the value
of the function call. This command calls the function BreakContinue.

Q Quit. This exits the Break loop by throwing to the closest surrounding error
handler. It calls the function BreakQuit. ‘

A Abort. This. aborts to the top level, i.e., restarts PSL. It calls the function
Reset.

PSL Manual 23 September 1983 Error Handling and Récovery
section 12.4 page 12.7

T Trace. This prints a backtrace of function calls on the stack except for those
on the lists IgnoredInBackTrace!* and.InterpreterFunctions!¥* It calls the
function BackTrace.

| "~ Interpreter Trace. - This prints a backtrace of only interpreted functions call on
- the stack except for those on the list InterpreterFunctions!¥*. It calls the
function InterpBackTrace.

An attempt to continue a non-continuable error with R or C prints a message and

behaves as Q.

IgnoredInBaéktrace!* [Initially: "(Eval Apply FastApply CodeApply
CodeEvalApply Catch ErrorSet EvProgN TopLoop BreakEval
BindEval Break Main)] global

A list of function names that will not be printed by the commands | and T

given within a Break loop.

InterpreterFunctions!# [initially: (Cond Prog And Or ProgN SetQ)] global
A list of function names that will not be printed by the command | given

within a Break loop.

The above two globals can be reset in an init file if the programmer desires to do so.

The following is a slightly edited transbript, showing some of the BREAK options:

i Error Handling and Recovery 23 September 1983 PSL Manual
page 12.8 section 12.4

% foo is an undefined function, so the following has two errors
% in it

1> (Plus2 (foo 1)(foo 2))
*%%¥%% 'FOO' is an undefined function {1001}
" ¥%%%¥ Continuable error: retry form is '(FO0 1)'

Break loop

1 lisp break> (plus2 1 1) % We simply compute a value
2 % prints as 2

2 lisp break> ¢ % continue with this value

% it returns to compute "(foo 2)"

¥%%¥%%¥ 'FOO' is an undefined function {1001}
*¥%¥¥%%¥ Continuable error: retry form is '(FO0 2)'

Break loop

1 lisp break> 3 % again compute a value
3

2 lisp break> c % and return

5 % finally complete

% Pretend that we had really meant to call "fee™:

2> (de fee (x) (add1l x))

FEE

3> (plus2 (foo 1)(foo 2)) % now the bad expression
¥%% 'FO0' is an undefined function {1001}

#%%¥%¥¥ Continuable error: retry form is '(FOO 1)

Break loop

1 lisp break> e % lets edit it

Type HELP<CR> for a list of commands.

edit> p % print form
(FOO 1)
edit> (1 fee) % replace 1'st by "fee"
edit> p % print again
(FEE 1)
edit> ok % we like it
(FEE 1)
2 lisp break> m % show modified ErrorForm!¥*
ErrorForm!¥* : '(FEE 1)'
NIL
3 lisp break> r % Retry EVAL ErrorForm!¥*

*¥%%%¥%¥ 'FOO' is an undefined function {1001}
¥%¥%¥%¥ Continuable error: retry form is '(F00 2)'

PSL Manual 23 September 1983 Error Handling and Recovery
section 12.4 page 12.9

Break loop

1 lisp break> (de foo(x) (plus2 x 1)) % define foo
FOO

2 lisp break> r % and retry
5 .

12.5. Interrupt Keys
Need to load the moduie INTERRUPT to enable. This applies only to the DEC20.

<Ctrl-T> indicates routine currently executing, gives the load average, and gives the

location counter in octal;
<Ctrl-G> returns you to the Top-Loop;

<Ctrl-B> takes you into a lower-level Break loop.

12.6. Details on the Break Loop

If the SWITCH !¥BREAK is T, the function Break() is called by Error or
ContinuableError before unwinding the stacks, or printing a backtrace. Input and output
to/from Break loops is done from/to the values (channels) of BREAKIN!¥ and BREAKQUT!¥.

The channels selected on entrance to the Break loop are restored upon exit.

BreakIn!#* [Initially: NIL] . global
So Rds chooses StdIN!¥*. ’

BreakOut ! * [Initially: NIL] global
Similar to Breakin!¥.

Break is essentially a Read-Eval-Print function, called in the error context. Any FLUID
may be printed or changed, function definitions changed, etc. The Break uses the normal
TopLoop mechanism (including History), embedded in a Catch with tag !$BREAK!$. The
TopLoop attempts to use the parent loop’s TOPLOOPREAD!¥*, TOPLOOPPRINT!* and
TOPLOOPEVAL!¥; the BreakEval function first checks top-level ids to see if they have a
special BreakFunction on their property lists, stored under 'BreakFunction. This is

expected to be a function of no arguments, and is applied instead of Eval.

-

Error Handling and Recovery 23 September 1983
page 12.10

12.7. Some Convenient Error Calls

The following functions may be useful in user packages:

-(RangeError Object:any Index:integer Fn:function): None Returned

(StdError (BldMsg "Index %r out of range for %p in %p"
Index Object Fn))

\
(StdError Message:string): None Returned

(Error 99 Message)

(TypeError Offender:any Fn:function Typ:any). None Returned

(StdError (BldMsg "An attempt was made to do %p on %r,
which is not %w" Fn Offender Typ))

PSL Manual
section 12.7

(UsageTypeError Off:any Fn:function Typ:any Usage:any): None Returned

(StdError

(BldMsg "An attempt was made to use %r as %w in %p,
where %w is needed" Offender Usage Fn Typ))

(IndexError Offender:any Fn:function): None Returned

(UsageTypeError Offender Fn "an integer" "an index")

(NonPairError Offender:any Fn:function): None Returned

(TypeError Offender Fn "a pair")

(NonListError Offender:any Fn:function): None Returned

(TypeError Offender Fn "a list or NIL")

(NonIDError Offender:any Fn:function): None Returned

(TypeError Offender Fn "an identifier")

PSL Manual 23 Septembér 1983 Error Handling and Recovery

section 12.7

(NonNumberError Offender:any Fn:function): None Returned

(TypeError Offender Fn "a number")

- {NonIntegerError Offender:any Fn:function): None Returned

(TypeError Offender Fn "an integer")

(NonPositivelIntegerError Offender:any Fn:function): None Returned

(TypeError Offender Fn "a non-negative integer")

(NonCharacterError Offender:any Fn:function): None Returned

(TypeError Offender Fn "a character")

(NonStringError Offender:any Fn:function): None Returned

(TypeError Offender Fn "a string")

(NonVectorError Offender:any Fn:function): None Returned

(TypeError Offender Fn "a vector")

(NonWordsError Offender:any Fn:function): None Returned

(TypeError Offender Fn "a words vector")

(NonSequenceError Offender:any Fn:function): None Returned

(TypeError Offender Fn "a sequence")

page 12.11

expr

PSL MANUAL 23 SEPTEMBER 1983 DEBUGGING TOOLS
SECTION 13.0 PAGE 13.1

CHAPTER 13
DEBUGGING TOOLS

" 13.1. Introduction 13.1

13.1.1: Brief Summary of FuII Debug Package e e e 13.1
13.1.2. Redefining of User Functions by Debug 13.2
13.1.3. A Few Known Deficiencies 13.3
13.2. Step e 13.3
13.3. Tracing Function Executron. e, 13.4
13.3.1. Tracing Functions 13.4
13.3.2. Saving Trace Qutput e e e, 13.6
13.3.3. Making Tracing More Selectlve e, 13.7
13.3.4. Turning Off Tracing .. 13.9
13.4. A Break Facility Ce e 13.10
13.5. Enabling Debug Facilities and Automatlc Tracmg and Breakmg. e 13.11
13.6. A Heavy Handed Backtrace Facility 13.12
13.7. Embedded Functions e 13.12
13.8. Counting Function lnvocatlons e, 13.13
13.9. Stubs S 13.14
13.10. Functions for Prmtmg Useful Informatlon C e s 13.14
13.11. Printing Circular and Shared Structures. 13.15
13.12. Internals and Customization 13.16
13.12.1. User Hooks. . . . e e 13.16
13.12.2. Functions Used for Prmtmg/Readmg e e e e, 13.17
13.13. Example L L L 13.18

13.1. Introduction

- This chapter describes the debugging facilities available in PSL. Most of these are made
available by loading the module DEBUG. There is also a stepper made available by
loading STEP. It is described in Section 13.2. An extensive example showing the use of

the facilities in the debugging package can be found in Section 13.13.

13.1.1. Brief Summary of Full Debug Package
The PSL debugging package contains a selection of functions that can be used to aid

program development and to investigate faulty programs.1

It contains the following facilities.

1Much of this chapter was adapted from a paper by Norman and Morrison.

Debugging Tools 23 September 1983 PSL Manual
page 13.2 section 13.1

* A trace package. This allows the user to see the arguments passed to and
the values returned by selected functions. It is also possible to have traced
interpreted functions print all the assignments they make with SetQ (see
Section 13.3).

* A break package. This allows the user to wrap a Break around functions.

* A backtrace facility.. This allows one to see which of a set of selected
functions were active as an error occurred (see Section 13.6).

* Embedded functions make it possible to do everything that the trace package
can do, and much more besides (see Section 13.7). This facility is available
only in RLISP.

* Some primitive statistics gathering (see Section 13.8).

* Generation of simple stubs. |If invoked, procedures defined as stubs simply
print their argument and read a value to return (see Section 13.9).

* Some functions for printing useful information, such as property lists, in an
intelligible format (see Section 13.10).

* PrintX is a function that can print circular and re—entrant lists and vectors,
and so can sometimes allow debugging to proceed even in the face of severe
damage caused by the wild use of RplacA and RplacD (see Section 13.11).

13.1.2. Redefining of User Functions by Debug

Many facilities in Debug depend upon redefining user functions so that they may log or
print behavior when called. Since several facilities may be active simultaneously for a
single user function, Debug redefines a function only the first time a facility is requested.
Information about which facility was requested is kept on a property list. If a second
facility is requested for a function, that information is added to the property list. When

the function is called, the property list is examined to see what activities should occur.

Turning off a specific Debug facility does not cause the function to have its original
definition restored. All that happens is that information about the facility is removed from
the property list. To restore the original definition of the function use the Restr macro

described in Section 13.3.4.

PSL Manual 23 September 1983 7 Debugging Tools
section 13.1 page 13.3

13.1.3. A Few Known Deficiencies

* An attempt to trace certain system functions (e.g. Cons) causes the trace
package to overwrite itself. Given the names.of functions that cause this sort
of trouble it is fairly- easy to change the trace.package to deal gracefully with
them. The global BreakDebugList!¥* contains the names of functions known
to cause trouble. Report any other functions causing trouble to a system
expert or send mail to PSL-BUGS.

* The Portable LISP Compiler uses information about registers which certain
system functions destroy. Tracing these functions may make the
optimizations based thereon invalid. The correct way of handling this problem
is currently under consideration. In the mean time you should avoid tracing
any functions with the ONEREG or TWOREG flags.

13.2. Step

(Step F:form): any expr
Step is a loadable option (LOAD STEP). It evaluates the form F, single-
stepping. F is printed, preceded by -> on entry, <-> for macro
expansions. After evaluation, F is printed preceded by <- and followed by
the result of evaluation. A single character is read at each step to

determine the action to be taken:

<Ctri-N> (Next)
Step to the Next thing. The stepper continues until the next
thing to print out, and it accepts another command.

Space Go to the next thing at this level. In other words, continue to
evaluate at this level, but don't step anything at lower levels.
This is a good way to skip over parts of the evaluation that
don't interest you.

<Ctrl-U> (Up)
Continue evaluating until we go up one level. This is like the
space command, only more so; it skips over anything on the
current level as well as lower levels.

<Ctrl-X> (eXit)
Exit; finish evaluating without any more stepping.

<Ctrl-G> or <Ctrl-P> (Grind)
Grind (i.e., prettyprint) the current form.

Debugging Tools 23 September 1983 PSL Manual
page 13.4 section 13.2

<Ctri-R> Grind the form in Rlisp syntax.

<Ctrl-E> (Editor)
Invoke the structure editor on the current form.

- <Ctrl-B> (Break)
Enter a break loop from which you can examine the values of

variables and other aspects of the current environment.
<Ctrl-L> Redisplay the last 10 pending forms.

? Display the help file.

To step through the evaluation of function H on argument X do

(Step '(H X))
13.3. Tracing Function Execution

13.3.1. Tracing Functions

To see when a function gets cailed, what arguments it is given and what value it

returns, do
(TR functionname)
or if several functions are of interest,

(TR name1 name2 ...)

(Tr [FNAME:id]): Undefined macro

If the specified functions are defined (as expr, fexpr, nexpr or macro), Tr

modifies the function definition to include print statements. Note that the
arguments are not quoted. The following example shows the style of

output produced by this sort of tracing:

The input...

PSL Manual 23 September 1983 Debugging Tools
section 13.3 page 13.5

(DE XCDR (A4)

(CDR A) %A very simple function)
(TR XCDR)
(XCDR '(P Q R))

gives output...

XCDR entered
A: (P Q R)
XCDR = (Q R)

Interpreted functions can also be traced at a deeper level.

(Trst [FNAME:id]): Undefined macro
(TRST name?l name2 ...)

causes the body of an interpreted function to be redefined so that all
assignments (made with SetQ) in its body are printed. Calling Trst on a
function automatically has the effect of doing a Tr on it too, so that it is

not possible to have a function subject to Trst but not Tr.

One can use the Trst facility to cause only assignments to variables specified in a

function to be printed instead of all of them.

(TrstSome FNAME:id [VARS:id]): Undefined macro
(TrstSome fname var?1 var2 ...)

Give the function name first and then the variables.

Trace output often appears mixed up with output from the program being studied, and
to avoid too much confusion Tr arranges to preserve the column in which printing was
taking place across any output that it generates. If trace output is produced as part of a
line has been printed, the trace data are enclosed in markers ‘<’ and '>’, and these
- symbols are placed on the line so as to mark out the amount of printing that had

occurred before trace was entered.

Debugging Tools 23 September 1983 PSL Manual
page 13.6 section 13.3

1*¥PrintNoArgs [Initially: NIL] switch

If !*¥PrintNoArgs is T, printing of the arguments of traced or broken

functions is suppressed.

TracedFns!#* [Initially: NIL] global

TracedFns!#* contains the names of all functions currently being traced.

13.3.2. Saving Trace Output

The trace facility makes it possible to discover in some detail how a function is used,
but in certain cases its direct use results in the generation of vast amounts of (mostly
useless) print-out. There are several options. One is to make tracing more selective (see
Section 13.3.3). The other, discussed here, is to either print only the most recent

information, or dump it all to a file to be perused at leisure.

Debug has a ring buffer in which it saves information to reproduce the most recent
information printed by the trace facility (both Tr and Trst). To see the contents of this

buffer use Tr without any arguments
(TR)
(NewTrBuff N:integer): Undefined ' | expr
To set the number of entries retained to n use
(NEWTRBUFF n)
Initially the number of entries in the ring buffer is 5.

! ¥TRACE [Initially: T] switch

Enables runtime printing of trace information for functions which have been

traced.

Turning off the TRACE switch
(OFF TRACE)

suppresses the printing of any trace information at run time; it is still saved in the ring

-buffer. Thus a useful technique for isolating the function in which an error occurs is to

PSL Manual 23 September 1983 Debugging Tools
section 13.3 page 13.7

trace a large number of candidate functions, do OFF TRACE and after the failure look at

the latest trace information by calling Tr with no arguments.

-

(TrOut [FNAME:id]): Undefined _ ex

(StdTrace): Undefined

®
F
=

Normally trace information is directed to the standard output, rather than

the currently selected output. To send it elsewhere use the statement
(TROUT filename)

The statement
(STDTRACE)

closes that file and cause future trace output to be sent to the standard
output. Note that output saved in the ring buffer is sent to the currently

selected output, not that selected by TrOut.

13.3.3. Making Tracing More Selective |
One can specify a predicate when tracing a function so that tracing will be enabled only

when the predicate is true.

(TrWhen FNAME:id PREDICATE:form): Undefined macro

Trace information for the function FNAME will be printed only if PREDICATE
is T. The variables in the predicate must be either globals or parameters of

the function.

(TrWhen foo (GreaterP x y))

(TraceCount N:integer): Undefined expr

The function (TraceCount n) can be used to switch off trace output. If n is
a positive number, after a call to (TraceCount n) the next n items of trace
output that are generated are not printed. (TraceCount n) with n negative
or zero switches all trace output back on. (TraceCount NIL) returns the
residual count, i.e, the number of additional trace entries that are

suppressed.

Debugging Tools 23 September 1983 PSL Manual
page 13.8 section 13.3

To get detailed tracing in the stages of a calculation that lead up to an error, try

(TRACECOUNT 1000000) % or some other suitable large number
(TR ...) % as required

%run the failing problem

(TRACECOUNT NIL)

It is now possible to calculate how many trace entries occurred before the error, and so
the problem can now be re-run with TraceCount set to some number slightly less than

that.

An alternative to the use of TraceCount for getting more selective trace output is Trin.

(TrIn [FNAME:id]): Undefined macro

To use TrlIn, establish tracing for a collection of functions, using Tr in the
normal way. Then do Trin on some small collection of othervfunctions.
The effect is just as for Tr, except that trace output is inhibited except if
control is dynamically within the TrIn functions. This makes it possible to
use Tr on a number of heavily used general purpose functions, and then
only see the calls to them that occur within some specific subpart of your

entire program.

TRACEMINLEVEL!* [Initially: 0] global
TRACEMAXLEVEL ! * [Initiaily: 1000] global

The global variables TRACEMINLEVEL!¥* and TRACEMAXLEVEL!¥* (whose values
should be non-negative integers) are the minimum and maximum depths of
recursion at which to print trace information. Thus if you only want to see
top level calls of a highly recursive function (like a simple-minded version

of Length) simply do

|
(SETQ TRACEMAXLEVEL!¥* 1)

PSL Manual 23 September 1983 Debugging Tools
section 13.3 , page 13.9

13.3.4. Turning Off Tracing
If a particular function no longer needs tracing, do
- (UNTR functionname)

or

(UNTR name! name2 ...)

(UnTr [FNAME:id]): Undefined macro

This merely suppresses generation of trace output. Other information, such
as invocation counts, backtrace information, and the number of arguments

is retained.

To completely destroy information about a function use
(RESTR namel name2 ...)

(Restr [FNAME:id]): Undefined macro

This returns the functions specified to their original state. If no arguments

are given, all functions will be returned to their original state.

To suppress traceset output without suppressing normal trace output use

(UNTRST name1 name2 ...)

(UnTrst [FNAME:id]): Undefined macro

UnTring a Trsted function also UnTrst’s it.
TrIn in Section 13.3.3 is undone by UnTr (but not by UnTrst).

(UnTrAll): Undefined expr
The function UnTrAll untraces all functions currently traced, i.e. all

functions on the list TracedFns!¥.

Debugging Tools 23 September 1983 PSL Manual
page 13.10 section 13.4

13.4. A Break Facility
A break facility exists in Debug that allows one to wrap a Break around a function,

causing a Break to occur both before and after execution of the function. Variants on the

- break function similar to those available for the trace function are available.

(Br [FNAME:id]): Undefined macro

Br causes a Break to be placed around each of the functions listed. A
Break occurs both before and after the execution of each broken function.
Give a ¢ command to the Break to continue before execution and an r

command to continue after execution.

(BrIn [FNAME:id]): Undefined macro

BrIn is used in the same way as TrlIn, to cause breaking of a broken

function only within the functions specified.

Note that if a function specified by BrIn terminates abnormally, the BriIn facility may

not work properly. To fix it, call BrIn with no arguments.

(BrWhen FNAME:id PREDICATE:form):. Undefined macro

One can specify a predicate when breaking around a function so that
Breaks will be enabled only when the predicate is true. This works exactly

as the macro Tr¥When.

BrokenFns!¥* [Initially: NIL] global
BrokenFns!* contains the names of all functions currently broken.

Note that the switch !¥PrintNoArgs is also used by the break facility.

(UnBr [FNAME:id]): Undefined macro

UnBr causes breaking to be disabled for the functions specified.

(UnBrAll). Undefined expr

Unbreaks all functions that are currently broken, i.e., all functions on the list

BrokenFns!¥.

PSL Manual 23 September 1983 Debugging Tools
section 13.5 ' page 13.11

13.5. Enabling Debug Facilities and Automatic Tracing and Breaking

Under the influence of
(ON TRACEALL)

any functions successfully defined by PutD are traced. Note that if PutD fails (as might

happen under the influence of the LOSE flag) no attempt is made to trace the function.

(ON BREAKALL)
causes any functions successfully defined by PutD to be broken.

To enable those facilities (such as Btr in Section 13.6 and TrCount in Section 13.8)

which require redefinition, but without tracing, use

(ON INSTALL)

Thus, a common scenario might look like

(ON INSTALL)
(DSKIN "MYFNS.SL")
(OFF INSTALL)

which would enable the backtrace and statistics routines to work with all the functions
defined in the MYFNS file.

!*¥INSTALL [Initially: NIL] switch

Causes DEBUG to know about all functions defined with PutD.

- 1¥TRACEALL [Initially: NIL] switch

Causes all functions defined with PutD to be traced.

1*BreakAll [Initially: NIL] _ switch

Causes all functions defined with PutD to be broken.

Debugging Tools 23 September 1983 PSL Manual
page 13.12 section 13.6

13.6. A Heavy Handed Backtrace Facility
The backtrace facility allows one to see which of a set of selected functions were active
as an error occurred. The function Btr gives the backtrace information. The information

“kept is controlled by two switches: !*BTR and !*BTRSAVE.

When backtracing is enabled (BTR is on), a stack is kept of functions entered but not
left. This stack records the names of functions and the arguments that they were called
with. If a function returns normally the stack is unwound. If however the function fails,

the stack is left alone by the normal LISP error recovery processes.

(Btr [FNAME:id]): Undefined macro
When called with no arguments, Btr prints the backtrace information
available. When called with arguments (which should be function names),
the stack is reset to Nil, and the functions named are added to the list of

functions Debug knows about.

(ResBtr [FNAME:id]): Undefined expr

ResBtr resets the backtrace stack to Nil.

1*¥BTR [initially: T] switch

If '*¥BTR is T, it enables backtracing of functions which the Debug package

has been told about. If it is Nil, backtrace information is not saved.

1 ¥BTRSAVE [Initially: T] switch
Controls the disposition of information about functions which failed within
an ErrorSet. |If it is on, the information is saved separately and printed

when the stack is printed. If it is off, the information is thrown away.

13.7. Embedded Functions

Embedding means redefining a function in terms of its old definition, usually with the
intent that the new version does some tests or printing, uses the old one, does some
more printing and then returns. If ff is a function of two arguments, it can be embedded

using a statement of the form:

PSL Manual 23 September 1983 . Debugging Tools
section 13.7 page 13.13

SYMBOLIC EMB PROCEDURE ff(A1,A2);
<< PRINT A1;
PRINT A2;
PRINT ff(A1,A2) >>;

The -effect- of this particular use of embed is broadly similar to-a call Tr ff, and arranges
that whenever ff is called it prints both its arguments and its result. After a function has

been embedded, the embedding can be temporarily removed by the use of
UNEMBED ff;
and it can be reinstated by

EMBED ff;

This facility is available oniy to RLISP users.

13.8. Counting Function Invocations

1%¥TRCOUNT [Initially: T] : switch
Enables counting invocations of functions known to Debug. If the switch
TRCOUNT is ON, the number of times user functions known to Debug are

entered is counted. The statement
(ON TRCOUNT)

also resets that count to zero. The statement
(OFF TRCOUNT)

causes a simple histogram of function invocations to be printed.

If regular tracing {provided by Tr) is not desired, but you wish to count the function

invocations, use

(TRCNT name1 name2 ...)

Debugging Tools 23 September 1983 PSL Manual
page 13.14 ‘ section 13.8

(TrCnt [FNAME:id]): Undefined macro

See also Section 13.5.

-13.9. Stubs
Stubs are useful in top-down program development. If a stub is invoked, it prints its

arguments and asks for a value to return.

(Stub [FuncInvoke:form]): : macro

Each FUNCINVOKE must be of the form (id argl1 arg2 ..), where there may
be zero arguments. Stub defines an expr for each form with name id and
formal arguments argl, arg2, etc. If executed such a stub prints its

arguments and reads a value to return.

The statement
(STUB (FOO U V))
defines an expr, Foo, of two arguments.
(FStub [FuncInvoke:form]): Nil | macro

FStub does the same as Stub but defines fexprs.

At present the currently (i.e.,, when the stub is executed) selected input and output are
used. This may be changed in the future. Algebraic and possibly macro stubs may be

implemented in the future.

13.10. Functions for Printing Useful Information

(PList [X:id]): macro
(PLIST id1 id2 ...)

prints the property lists of the specified ids in an easily readable form.

PSL Manual 23 September 1983 Debugging Tools
section 13.10 page 13.15

(Ppf [FNAME:id]): macro
(PPF fn1 fn2 ...)

prints -the definitions and other useful information about the specified

functions.

13.11. Printing Circular and Shared Structures

Some LISP programs rely on parts of their data structures being shared, so that an Eq
test can be used rather than the more expensive Equal one. Other programs (either
deliberately or by accident) construct circular lists through the use of RplacA or RplacD.
Such lists can be displayed by use of the function PrintX. This function also prints

circular vectors.

(PrintX A:any): NIL expr

If given a normal list the behavior of this function is similar to that of
Print; if it is given a looped or re-entrant data structures it prints it in a
special format. The representation used by PrintX for re-entrant structures
is based on the idea of labels for those nodes in the structure that are

referred to more than once.

Consider the list created by the operations:

(SETQ R '(S W))
(RPLACA R (CDR R))

The function Print called on the list R gives

((W) W)

If PrintX is called on the list R, it discovers that the list (W) is referred to twice, and

invents the label %L1 for it. The structure is then printed as

(%L1: (W) . %L1)

%L1: sets the label, and the other instance of %L1 refers back to it. Labeled sublists can
appear anywhere within the list being printed. Thus the list created by the following

statements

Debugging Tools 23 September 1983 PSL Manual
page 13.16 section 13.11

(SETQ L '(A B C))
(SETQ X (CDR L))
(SETQ X (CONS L K))

which is printed as
((ABC)BC)

by Print could be printed by PrintX as
((A L1, BC) . %L1)

A label set with a comma (rather than a colon) is a label for part of a list, not for the

sublist.

PrintX uses the globals PrinLevel and PrinLength to control the number of levels of
an object that get printed and the number of items of a list or vector that get printed,

respectively. See Chapter 10 for a fuller description.

'¥*SAVENAMES [initially: NIL] switch

If on, names assigned to substructures by PrintX are retained from one use
to the next. Thus substructures common to different items will be shown

as the same.

13.12. Internals and Customization
This section describes some internal details of the debug package which may be useful
in customizing it for specific applications. The reader is urged to consult the source for

further details.

13.12.1. User Hooks
These are all global variables whose values are normally NIL. If non-NIL, they should

be exprs taking the number of variables specified, and are called as specified.

PUTDHOOK ! * [Initially: NiL] global

Takes one argument, the function name. It is called after the function has
been defined, and any tracing under the influence of !¥TRACEALL or

1%#INSTALL has taken place. It is not called if the function cannot be

PSL Manual , 23 September 1983 Debugging Tools
section 13.12 page 13.17

defined (as might happen if the function has been flagged LOSE).

TRACENTRYHOOK ! ¥ [Initially: NIL] global
‘Takes two-arguments, the: function name and. a list of the actual arguments.
It is called by the trace package if a traced function is entered, but before it
is executed. The execution of a surrounding EMB function takes place after
TRACENTRYHOOK!* is called: This is useful if you need to call special user-
provided print routines to display critical data structures, as are

TRACEXITHOOK!* and TRACEXPANDHOOK!#.

TRACEXITHOOK!* [initially: NIL] global

Takes two arguments, the function name and the value. It is called after

the function has been evaluated.

TRACEXPANDHOOK ! # [Initiaily: NIL] giobal

Takes two arguments, the function name and the macro expansion. It is

only called for macros, and is called after the macrg is expanded, but before

the expansion has been evaluated.

TRINSTALLHOOK ! * [Initially: NIL] global
Takes one argument, a function name. It is called if a function is redefined
by the Debug package, as for examplie when it is first traced. It is called

before the redefinition takes place.

13.12.2. Functions Used for Printing/Reading
These should all contain EXPRS taking the specified humber of arguments. The initial

values are given in square brackets.

PPFPRINTER!#* [Initially: PRINT] global

Takes one argument. It is used by Ppf to print the body of an interpreted

function.

Debugging Tools 23 September 1983 PSL Manual

page 13.18 section 13.12
PROPERTYPRINTER!* [Initially: PRETTYPRINT] global

Takes one argument. It is used by PList to print the values of properties.

"STUBPRINTER! ¥ [Initially: PRINTX] giobal

Takes one argument. Stubs defined with Stub/FStub use it to print their

arguments.

STUBREADER!* [Initially: '-REDREADER] global

Takes no arguments. Stubs defined with Stub/FStub use it to read their

return value.

TREXPRINTER!* {Initiailly: PRINT] global

Takes one argument. It is used to print the expansions of traced macros.

TRPRINTER!* [Initially: PRINTX] global

Takes one argument. It is used to print the arguments and values of traced

functions.
TRSPACE! * [Initially: 0] global

Controls indentation.

13.13. Example
This contrived example demonstrates many of the available features. It is a transcript of

an actual PSL session.

PSL Manual 23 September 1983 Debugging Tools
section 13.13 page 13.19

@PSL :
PSL 3.1, 15-Nov-82

1 lisp> (LOAD DEBUG)

NIL

lisp> (DE FOO (N)

lisp> (PROG (A)

lisp> (COND ((AND (NEQ (REMAINDER N 2) 0) (LESSP N 0))

lisp> (SETQ A (CAR N)))) %Should err out if N is a number
lisp> (COND ((EQUAL N O0) (RETURN 'BOTTOM)))

lisp> (SETQ N (DIFFERENCE N 2))

lisp> (SETQ A (BAR N))

lisp> (SETQ N (DIFFERENCE N 2))

lisp> (RETURN (LIST A (BAR N) A))))

FOO

3 lisp> (DE FOOBAR (N)

3 lisp> (PROGN (FOO N) NIL))

FOOBAR

4 lisp> (TR FOO FOOBAR)

(FOO FOOBAR)

5 lisp> (PPF FOOBAR FOO)

[(CRE VRN SR ST SR VR SO SO N

EXPR procedure FOOBAR(N) [TRACED;Invoked O times]:
PROGN

(FOO N)

NIL

EXPR procedure FOO(N) [TRACED;Invoked O times]:

PROG

(A)

(COND ((AND (NEQ (REMAINDER N 2) 0) (LESSP N 0)) (SETQ A (CAR N))))
(COND ((EQUAL N 0) (RETURN 'BOTTOM)))

(SETQ N (DIFFERENCE N 2))

(SETQ A (BAR N)) '

(SETQ N (DIFFERENCE N 2))

(RETURN (LIST A (BAR N) A))

(FOOBAR F00)

6 lisp> (ON COMP)

NIL

7 lisp> (DE BAR (N)

T lisp> (COND ((EQUAL (REMAINDER N 2) 0) (FOO (TIMES 2 (QUOTIENT N 4))))
7 lisp> (T (FOO (SUB1 (TIMES 2 (QUOTIENT N 4)))))))

¥%% (BAR): base 275266, length 21 words

BAR

Debugging Tools 23 September 1983 PSL Manual
page 13.20 section 13.13

8 lisp> (OFF COMP)
NIL
9 lisp> (FOOBAR 8)
FOOBAR being entered
N: 8
FOO being entered
N: 8
FOO (level 2) being entered
N: 2
FOO (level 3) being entered
N: 0
FOO (level 3) = BOTTOM
FOO (level 3) being entered
N: 0
FOO (level 3) = BOTTOM
FOO (level 2) = (BOTTOM BOTTOM BOTTOM)
FOO (level 2) being entered
N: 2
FOO (level 3) being entered
N: 0
FOO (level 3) = BOTTOM
FOO (level 3) being entered
N: 0
FOO (level 3) = BOTTOM
FOO (level 2) = (BOTTOM BOTTOM BOTTOM)
FOO = (%4L1: (BOTTOM BOTTOM BOTTOM) (BOTTOM BOTTOM BOTTOM)
#L1)
FOOBAR = NIL
NIL
10 lisp> % Notice how in the above PRINTX printed the return values
10 lisp> % to show shared structure
10 lisp> (TRST F0O0)
(FOO)
11 lisp> (FOOBAR 8)
FOOBAR being entered
N: 8
FOO being entered
N: 8

(o))

N

FOO (level 2) being entered
N: 2
N:=0
FOO (level 3) being entered
N: 0
FOO (level 3) = BOTTOM
A := BOTTOM

PSL Manual 23 September 1983 Debugging Tools
section 13.13 ‘ page 13.21

N := -2
FOO (level 3) being entered
N: 0
"FOO (level 3) = BOTTOM
FOO (level 2) = (BOTTOM BOTTOM BOTTOM)
A := (BOTTOM BOTTOM BOTTOM) '

N := 4
FOO (level 2) being entered
N: 2
"N := 0
FOO (level 3) being entered
N: 0
FOO (level 3) = BOTTOM
A := BOTTOM
N := -2
FOO (level 3) being entered
N: 0

FOO (level 3) = BOTTOM
FOO (level 2) = (BOTTOM BOTTOM BOTTOM)
FOO = (%L1: (BOTTOM BOTTOM BOTTOM) (BOTTOM BOTTOM BOTTOM)

%L1)
FOOBAR = NIL
NIL
| 12 1lisp> (TR BAR)
| (BAR)

13 1isp> (FOOBAR 8)
FOOBAR being entered
N: 8
FOO being entered
N: 8
BAR being entered
A1: 6
FOO (level 2) being entered
N: 2
BAR (level 2) being entered
At O
FOO (level 3) being entered
N: O
FOO (level 3) = BOTTOM
BAR (level 2) = BOTTOM
BAR (level 2) being entered
Al: =2
FOO (level 3) being entered
N: O
FOO (level 3)
BAR (level 2) =

= BOTTOM
BOTTOM

Debugging Tools 23 September 1983
page 13.22

FOO (level 2) = (BOTTOM BOTTOM BOTTOM)

BAR = (BOTTOM BOTTOM BOTTOM)
BAR being entered

A1: 4
FOO (level 2) being entered
N: 2
BAR (level 2) being entered
At: O
FOO (level 3) being entered
N: O

FOO (level 3) = BOTTOM
BAR (level 2) = BOTTOM
BAR (level 2) being entered
Atl: -2
FOO (level 3) being entered
N: O
FOO (level 3) = BOTTOM
BAR (level 2) = BOTTOM

FOO (level 2) = (BOTTOM BOTTOM BOTTOM)

BAR = (BOTTOM BOTTOM BOTTOM)

FOO = (%L1: (BOTTOM BOTTOM BOTTOM) (BOTTOM BOTTOM BOTTOM)

7L1)

FOOBAR = NIL

NIL

14 1isp> (OFF TRACE)

NIL

15 lisp> (FOOBAR 8)

NIL

16 lisp> (TR)

¥%#%* Start of saved trace information ¥¥¥
'BAR (level 2) = BOTTOM

FOO (level 2) = (BOTTOM BOTTOM BOTTOM)

BAR = (BOTTOM BOTTOM BOTTOM)

FOO = (%L1: (BOTTOM BOTTOM BOTTOM) (BOTTOM BOTTOM BOTTOM)

#L1)

FOOBAR = NIL

¥%% End of saved trace information ¥¥¥
NIL

17 lisp> (FOOBAR 13)

*¥%%¥%% An attempt was made to do CAR on '-1', which is not a pair

Break loop
18 lisp break>> Q
19 1isp> (TR)
*%¥% Start of saved trace information ¥¥¥
FOO being entered
N: 13

PSL Manual
section 13.13

PSL Manual 23 September 1983 Debugging Tools
section 13.13 page 13.23

BAR being entered
At "
FOO (level 2) being entered
N: 3 :
~BAR (level 2) being entered
Al: 1
FOO (level 3) being entered
N: -1
#%¥¥ End of saved trace information ¥¥#
NIL
20 lisp> (BTR)
¥%¥% Backtrace: ¥¥#%
These functions were left abnormally:
FOO
N: -1
BAR
Al: 1
FOO
N: 3
BAR
Al: 1
FOO
N: 13
FOOBAR
N: 13
¥%¥%¥ End of backtrace ¥¥¥
NIL
21 lisp> (STUB (F0O N))
¥%¥ Function 'FOO' has been redefined
NIL
22 1isp> (FOOBAR 13)
Stub FOO called

N: 13

Return? :

22 lisp> (BAR (DIFFERENCE N 2))
Stub FQO called

N: 3

Return? :

22 lisp> (BAR (DIFFERENCE N 2))
Stub FOO called

N: -1
Return? :
22 lisp> 'ERROR

Debugging Tooils 23 September 1983 PSL Manual
page 13.24 section 13.13

NIL

23 lisp> (TR)

#%% Start of saved trace information ¥¥¥

BAR being entered
Al: 11 |
BAR (level 2) being entered |
Al: 1 |

BAR (level 2) = ERROR

BAR = ERROR
FOOBAR = NIL
*¥%¥¥ End of saved trace information ¥¥¥
NIL *

24 lisp> (OFF TRCOUNT)

FOOBAR(6) RRRERERELRFRRRRRE®

BAR(16) RERRERRERERRER KRR ERRRRRRERERERRRRERRRERERRERRRRRLRXRRRE
|
|
1 NIL

22 lisp> (QUIT)

PSL MANUAL , 23 SEPTEMBER 198MISCELLANEOUS USEFUL FEATURES
SECTION 14.0 - PAGE 14.1

CHAPTER 14
MISCELLANEOUS USEFUL FEATURES

"14.1.-The HELP ‘Mechanism.
14.2. Exiting PSL
14.3. Saving an Executable PSL.
14.4. Init Files. e
14.5. Miscellaneous Functions .
14.6. Garbage Collection.

14.1. The HELP Mechanism

(Help [TOPICS:id]): NIL
If no arguments are given, a message describing Help itself and known
topics is printed. Otherwise, each of the id arguments is checked to see if
any help information is available. If it has a value under the property list
indicator HelpFunction, that function is called. If it has a value under the
indicator HelpString, the value is printed. |If it has a value under the
indicator HelpFile, the file is displayed on the terminal. By default, a file
called “topic.HLP” on the logical device, "PH:" is looked for, and printed if

found.

Help also prints out the values of the Top Loop fluids, and finally searches

the current Id~Hash-Table for loaded modules.

HelpIn!#* [initiaily: NiL]

The channel used for input by the Help mechanism.

HelpOut!* [Initially: NIL]

The channel used for output by the Help mechanism.

14.2. Exiting PSL
The normal way to suspend PSL execution is to call the Quit function or to

- <Ctri-C> on the DEC-20 or <Ctri-Z> on the VAX.

14.1
14.1
14.2
14.3
14.4
14.4

fexpr

global

global

strike

Miscellaneous Useful Features 23 September 1983 PSL Manual
page 14.2 section 14.2

(Quit): Undefined expr
Return from LISP to superior process. |If the operating system permits a
choice, QUIT is a continuable exit, and EXITLISP is a permanent exit (that

-terminates the PSL process).

(ExitLisp): Undefined ' expr
Return from LISP to superior process. If the operating system permits a
choice, QUIT is a continuable exit, and EXITLISP is a permanent exit (that

terminates the PSL process).

14.3. Saving an Executable PSL

(SaveSystem MSG:string FILE:string FORMS:form-1list): Undefined expr
This records the welcome message (after attaching a date) in the global
variable LispBanner!* used by StandardLisp’s call on TopLoop, and then
calls DumpLisp to compact the core image and write it out as a machine
dependent executable file with the name FILE. FILE should have the
appropriate extension for an executable file. SaveSystem also sets

Usermode!* to T.

The forms in the list FORMS will be evaluated when the new core image is

started. For example

(SaveSystem "PSL 3.1" "PSL.EXE" '((Read-Init-File "PSL")
(InitializeInterrupts)))

If RLISP has been loaded, SaveSystem will have been redefined to save the
message in the global variable date!¥, and redefine Main to call RlispMain,
which uses date!¥* in Beginl. The older SaveSystem will be saved as the

function LispSaveSysten.

LispBanner!#* [Initially:] global

Records the welcome message given by a call to SaveSystem from PSL.

Also contains the date, given by the function Date.

PSL Manual 23 September 1983 Miscellaneous Useful Features

section 14.3 page 14.3
Date!* [Initially: Nil] global

Records the welcome message given by a call to SaveSystem from RLISP.

~ (DumpLisp FILE:string): Undefined ' expr
This calls Reclaim to compact the heap, and unmaps the unused pages
(DEC-20) or moves various segment pointers (VAX) to decrease the core
image. The core image is then written as an executable file, with the name

FILE.

14.4. Init Files

Init files are available to make it easier for the user to customize PSL to his/her own
needs. When PSL, RLISP, or PSLCOMP is executed, if a file PSLINIT, RLISP.INIT, or
PSLCOMP.INIT (.psirc, rlisprc, or .pslcomprc on the VAX) is on the home directory, it will
be read and evaluated. Currently all init files must be written in LISP syntax. They may
use FASLIN or LOAD as needed.

The following functions are used to implement init files, and can be accessed by

LOADing the INIT-FILE module.

(User-HomeDir-String): string expr

Returns a full pathname for the user’'s home directory.

(Init-File-String PROGRAMNAME:string): string expr

Returns the full pathname of the user’s init file for the program

PROGRAMNAME.

(Init-File-String "PSL")

(Read-Init-File PROGRAMNAME:string): Nil expr

Reads and evaluates the init file with name PROGRAMNAME. Read-Init-
File calls Init-File-String with argument PROGRAMNAME.

(Read-Init-File "PSL")

Miscellaneous Useful Features 23 September 1983 PSL Manual
page 14.4 section 14.5

14.5. Miscellaneous Functions

(Reset): Undefined expr

-.=-Return to top level of LISP. -Similar to <Ctri-C> and Start on the DEC-20,

but with the reset function, unwind-protect forms get a chance to run.

{Time): integer expr

CPU time in milliseconds since login time.

(Date): string expr

The date in the form 16-Dec-82.

14.6. Garbage Colilection

(Reclaim): Undefined expr

Reclaim is the user level call to the garbage collector. Internal system

functions always use !%Reclaim.

(!%Reclaim): Undefined expr

!%2Reclaim is is used within the system to call the garbage collector.
Active data in the heap is made contiguous and all tagged pointers into the
heap from active local stack frames, the binding stack and the symbol table

are relocated. If !*¥GC is T, prints some statistics. Increments GCKNT!¥.

1%GC [Initially: NIL] switch

1%¥GC controls the printing of garbage collector messages. If NIL, no
indication of garbage collection occurs. If non-NIL various system

dependent messages may be displayed.

GCTime!* [Initially:] global

Time spent in garbage collection. Cumulative (but starting from when?).

PSL Manual 23 September 1983 Miscellaneous Useful Features

section 14.6 ' page 14.5
GCKNT!* [Initially: 0] global

Records the number of times that Reclaim has been called to this point.
GCKNT!#* may be reset to another value to record counts incrementally, as

desired.

PSL MANUAL 23 SEPTEMBER 1983 COMPILER

SECTION 15.0 PAGE 15.1

CHAPTER 15

COMPILER
15.1. Introduction L L L L L o e e e 15.1
15.2. The Compilero 15.1
16.2.1. Compiling Files o L
15.2.2. Compiling Functions into FASL Fules C e e e e e e e e 15.2
15.2.3. Compiling Functions into Memory 15.3
15.2.4. Fluid and Global Declarations 15.3
15.2.5. Conditional Compilation . . . Ce e 15.4
15.2.6. Functions to Control the Time When Somethmg is Done e 15.5
15.2.7. Order of Functions for Compilation 15.6
15.2.8. Switches Controlling Compiler e e 15.6
15.2.9. Differences between Compiled and lnterpreted Code e e e 15.8
15.2.10. Compiler Errors. 000 15.9

15.1. Introduction
The functions and facilities in the PSL LISP/SYSLISP compiler and supporting loaders
(LAP and FASL) are described in this chapter.

15.2. The Compiler
The compiler is a version of the Portable LISP Compiler [Griss 81], modified and
extended! to more efficiently support both LISP and SYSLISP compilation. See the later

sections in this chapter and references [Griss 81] and [Benson 81] for more details.

15.2.1. Compiling Files

On some computer systems it is possible to compile a file by invoking PSLCOMP with a
command line argument specifying the name of the file to be compiled. The Compile-
File function is executed; see immediately below for a description of its behavior. When
PSLCOMP is invoked with a command line argument, no break loop is entered in case of
error, but the error message is printed along with a warning from the compiler and the

compilation aborts.

1Many of the recent extensions to the PLC were implemented by John Peterson.

Compiler 23 September 1983 PSL Manual

page 15.2 section 15.2
(Compile-File FILE:string): undefined expr

Load compl-extra to get this function.

"Compiles a single file; producing a .B file of the same name. The .B file is
written with the same directory specification as in the argument to
compile-file. If you supply no suffix to compile-file, it will search for a
source file with the name vyou specified and with one of the suffixes
“.BUILD”, “.SL”, or “.RED” in that order. The compile-file function assumes
that files with “BUILD” or “.RED” suffix are in RLISP syntax. If the filename

is given with a “random” extension, syntax is assumed to be LISP.

The conservative approach is to supply the suffix explicitly. This avoids
some technical pitfalls related to “long” filenames that an operating system

may truncate.

15.2.2. Compiling Functions into FASL Files
In order to produce files that may be input using Load or FaslIn, the FaslOut and

FaslEnd pair may be used.

(0]
X
=

~(P:aleut FILE:string): NIL

(FaslEnd). NIL

®
X
-

After the command FaslOut has been given, all subsequent S-—expressions
and function definitions typed in or input from files are processed by the
Compiler, LAP and FASL as needed, and output to FILE. Functions are
compiled and partially assembled, and output as in a compressed binary
form, involving blocks of code and relocation bits. This activity continues
until the function FaslEnd terminates this process. Note that a “b” file

extension is automatically appended to the output file.

The FaslOut and FaslEnd pair also use the DFPRINT!¥* mechanism, turning on the
switch !*¥DEFN, and redefining DFPRINT!#* to trap the parsed input in the RLISP top-loop.

Currently this is not usable from pure LISP level.

[??? Fix, by adding !*"DEFN mechanism to basic top-loop. ???]

PSL Manual 23 September 1983 Compiler
section 15.2 page 15.3

15.2.3. Compiling Functions into Memory

Functions can be compiled directly into memory using a loaded interpretive definition.

“1*¥COMP [Initially: NIL] switch
If the compiler is loaded (which is usually the case, otherwise load the
COMPILER module), turning on the switch !*¥COMP causes all subsequent
procedure definitions of appropriate type to be compiled automatically and

a message of the form
<function-name> COMPILED, <words> WORDS, <words> LEFT
to be printed. The first number is the number of words of binary program

words left unused in binary program space.

Currently, exprs, fexprs, nexprs and macros may be compiled. This is controlled by a

flag ('COMPILE) on the property list of the procedure type.
If desired, uncompiled functions already resident may be compiled by using

|

!

space the compiled function took, and the second number the number of
(Compile NAMES:id-1list): any expr

Compiling into memory can be particularly usefui as a way of checking the efficiency
(and correctness) of code generated by the compiler. The switches !¥PLAP and !¥*PGWD
control printing of the LAP (assembly) code generated by the compiler. See their

documentation for details.

15.2.4. Fluid and Global Declarations

The FLUID and GLOBAL declarations must be used to indicate variables that are to be
used as non-LOCALs in compiled code. Currently, the compiler defaults variables bound
in a particular procedure to LOCAL. The effect of this is that the variable only exists as
an “anonymous” stack location; its name is compiled away and called routines cannot see
it (i.e., they would have to use the name). Undeclared non-LOCAL variables are
automatically declared FLUID by the compiler with a warning. In many cases, this means
that a previous procedure that bound this variable should have known about this as a
‘FLUID. Declare it with FLUID, below, - and recompile, since the caller cannot be

automatically fixed.

Compiler 23 September 1983 PSL Manual
page 15.4 ‘ section 15.2

[??? Should we provide an !*AllFluid switch to make the default Fluid, or should we

make Interpreter have a LOCAL variable as default, or both ???]

- -Declaring a variable to be FLUID or. GLOBAL causes the-variable to be initialized at the

point of deciaration with the value NIL unless it already has a value at that point.

(Fluid NAMES:id-list): any expr
Declares each variable FLUID (if not previously declared), this means that it
can be used as a Prog LOCAL, or as a parameter. On entry to the
procedure, its current value is saved and all access is always to the VALUE

cell of the variable; on exit (or Throw or Error), the old values are restored.

{Global NAMES:id-1list): any expr
Declares each variable GLOBAL (if not previously declared); this means that

it cannot be used as a LOCAL, or as a parameter. Access is always to the

VALUE cell (SYMVAL) of the variable.

[??? Should we eliminate GLOBALs ?7?]

15.2.5. Conditional Compilation

{If_System SYS-NAME:id, TRUE-CASE:any, FALSE-CASE:any): any macro

This is a compile-time conditional macro for system-dependent code.
FALSE-CASE can be omitted and defaults to NIL. SYS-NAME must be a
member of the fluid variable System_List!*. For the Dec-20, System _List!* is
(Dec20 PDP10 Tops20 KL10). For the VAX it is (VAX Unix VMUnix). An

example of its use follows.

PROCEDURE MAIL();
IF_SYSTEM(TOPS20, RUNFORK "SYS:MM.EXE",
IF_SYSTEM(UNIX, SYSTEM "/BIN/MAIL",
STDERROR "MAIL COMMAND NOT IMPLEMENTED"));

PSL Manual 23 September 1983 Compiler
section 15.2 ' page 15.5

15.2.6. Functions to Control the Time When Something is Done
Which expressions are evaluated during compilation only, which output to the file for

load time evaluation, and which do both (such as macro definitions) can be controlled by

- the properties ‘EVAL and /IGNORE on certain function names, or the following functions.

(CommentOutCode U:form): NIL macro
Comment out a single expression; use <<U>> to comment out a block of

code.

(CompileTime U:form): NIL expr
Evaluate the expression U at compile time only, such as defining auxiliary

smacros and macros that should not go into the file.

Certain functions have the flag 'IGNORE on their property lists to achieve
the same effect. E.g. FLAG('(LAPOUT LAPEND),IGNORE) has been done.

{BothTimes U:form): U:form expr
Evaluate at compile and load time. This is equivalent in effect to executing

Flag{'(f1 f2),'EVAL) for certain functions.

(LoadTime U:form): U:form expr
Evaluate at load time only. Should not even compile code, just pass direct
to file.
[??? EVAL and IGNORE are for compatibility, and enable the above sort of functions to

be easily written. The user should avoid EVAL and IGNORE flags, if possible ???]

15.2.7. Order of Functions for Compilation

Non-expr procedures must be defined before their use in a compiled function, since the
compiler treats the various function types differently. Macros are expanded and then
compiled; the argument list of fexprs quoted; the arguments of nexprs are collected into a
single list. Sometimes it is convenient to define a dummy version of the function of
appropriate type, to be redefined later. This acts as an “External or Forward” declaration

of the function.

[??? Add such a declaration. ???]

Compiler 23 September 1983 PSL Manual
page 15.6 section 15.2

15.2.8. Switches Controlling Compiler
The compilation process is controlled by a number of switches, as well as the above

declarations and the !*COMP switch, of course.

1*¥R21I [Initially: T] switch
If T, causes recursion removal if possible, converting recursive calls on a
function into a jump to its start. If this is not possible, it uses a faster cail
to its own “internal” entry, rather than going via the Symbol Table function
cell. The effect in both cases is that tracing this function does not show

the internal or eliminated recursive calls, nor the backtrace information.

1 ¥NOLINKE [Initiaily: NIL] switch
If T, inhibits use of !'*¥LINKE cmacro. If NIL, “exit” calls on functions that
would then immediately return. For example, the calls on FOO(x) and FEE(X)
in

PROCEDURE DUM(X,Y);
IF X=Y THEN FOO(X) ELSE FEE(X+Y);

can be converted into direct JUMP's to FEE or FOO’s entry point. This is
known as a "tail-recursive” call being converted to a jump. If this happens,
there is no indication of the call of DUM on the backtrace stack if FEE or

\
|
|
\ FOO cause an error.

| '*0RD [Initially: NIL] switch
If T, forces the compiler to compile arguments in Left-Right Order, even

though more optimal code can be generated.

[??? *ORD currently has a bug, and may not be fixed for some time.

Thus do NOT depend on evaluation order in argument lists ???]

1 #MODULE [Initially: NiL] switch
Indicates block compilation (a future extension of this compiler). When
implemented, even more function and variable names are “compiled away”.

Technicaily the following switches are part of the loader. See the documentation of

" compiler and loader implementation also.

PSL Manual 23 September 1983 Compiler

section 15.2 page 15.7
1*¥PLAP [Initially: NIL] switch

If T, causes the printing of the portable cmacros produced by the the
compiler. In LAP, causes LAP forms to printed before expansion. Used

mainly to see output.of compiler before assembly.

1#PGWD [Initially: NIL] switch
Causes LAP to print the actual DEC-20 mnemonics and corresponding
assembled instruction in octal, displaying OPCODE, REGISTER, INDIRECT,
INDEX and ADDRESS fields. Affects printing during compilation.

1 ¥PCMAC [Initially: NIL] switch

A combination of I*PLAP and !*PGWD.

1*¥PWRDS [Initially: T] switch

Prints out the address and size of each compiled function.

15.2.9. Differences between Compiled and Interpreted Code
The following just re—iterates some of the points made above and in other sections of

the manual regarding the “"obscure” differences that compilation introduces.

[??? This needs some careful work, and perhaps some effort to reduce the list of

differences 7?71

In- the process of compilation, many functions are open-coded, and hence cannot be
redefined or traced in the compiled code. Such functions are noted to be OPEN-CODED
in the manual. If called from compiled code, the call on an open-compiled function is
replaced by a series of online instructions. Most of these functions have some sort of
indicator on their property lists: 'OPEN, "ANYREG, 'CMACRO, 'COMPFN, etc. For exampie:
SETQ, CAR, CDR, COND, WPLUS2, MAP functions, PROG, PROGN, etc. Also note that some
functions are defined as macros, which convert to some other form (such as PROG),

which itself might compile open.

Some optimizations are performed that cause inaccessible or redundant code to be

removed, e.g. 0*foo(x) could cause foo(x) not to be called.

Compiler 23 September 1983 PSL Manual
page 15.8 ° section 15.2

Unless variables are declared {(or detected) to be Fluid or global, they are compiled as

local variables. This causes their names to disappear, and so are not visible on the

Binding Stack. Further more, these variables are NOT available to functions called in the

~dynamic scope of the function containing their binding.

Since compiled calls on macros, fexprs and nexprs are different from the default exprs,
these functions must be deciared (or defined) before compiling the code that uses them.
While fexprs and nexprs may subsequently be redefined (as new functions of the same
type), macros are executed by the compiler to get the replacement form, which is then
compiled. The interpreter of course picks up the most recent definition of ANY function,

and so functions can switch type as well as body.

[7?? If we expand macros at PUTD time, then this difference will go away. ?7?]

As noted above, the !*R2l, I*NOLINKE and !*"MODULE switches cause certain functions to
call other functions (or themselves usually) by a faster route (JUMP or internal call). This

means that the recursion or call may not be visible during tracing or backirace.

15.2.10. Compiler Errors
A number of compiler errors are listed below with possible explanations of the error.
#** Function form converted to APPLY

This message indicates that the Car of a form is either

a. Non-atomic,
b. a local variable, or
c. a global or fluid variable.

The compiler converts (F X1 X2 ..), where F is one of the above, to {APPLY F (LIST X1 X2
).

*** NAME already SYSLISP non-local
This indicates that NAME is either a WVAR or WARRAY in SYSLISP mode, but is being
used as a local variable in LISP mode. No special action is taken.

*** WVAR NAME used as local
This indicates that NAME is a WVAR, but is being used as a bound variable in SYSLISP

mode. The variable is treated as an an anonymous local variable within the scope of its

binding.

PSL Manual 23 September 1983 Compiler
section 15.2 page 159

*=** NAME already SYSLISP non-local
This indicates that a variable was previously declared as a SYSLISP WVAR or WARRAY
and is now being used as a LISP fluid or global. No special action is takén.

#** NAME already LISP non-local
This indicates that a variable was previously declared as a LISP fluid or global and is now
being used as a SYSLISP WVAR or WARRAY. No special action is taken.

*** Undefined symbol NAME in Syslisp, treated as WVAR
A variable was encountered in SYSLISP mode which is not local nor a WVAR or WARRAY.
The compiler declares it a WVAR. This is an error, all WVARs should be explicitly
declared. '

*** NAME declared fluid

A variable was encountered in LISP mode which is not local nor a previously declared
fluid or global. The compiler declares it fluid. This is sometimes an error, if the variable
was used strictly locally in an earlier function definition, but was intended to be bound

non-locally. All fluids should be declared before being used.

PSL MANUAL 23 SEPTEMBER 1983 BIBLIOGRAPHY
SECTION 16.0 PAGE 16.1
CHAPTER 16
BIBLIOGRAPHY

The following books and articles either are directly referred to in the manual text, or will

~...be helpful for supplementary reading.

[Allen 79] Allen, J. R.
The Anatomy of LISP.
McGraw—Hill, New York, New York, 1979.

[Baker 78] Baker, H. G.
Shallow Binding in LISP 1.5.
CACM 21(7):565, July, 1978.

[Benson 81] Benson, E. and Griss, M. L.
SYSLISP: A Portable LISP Based Systems Implementation Language.
Utah Symbolic Computation Group Report UCP-81, University of Utah,
Department of Computer Science, February, 1981.

[Bobrow 761 Bobrow, R. J.; Burton, R. R.; Jacobs, J. M.; and Lewis, D.
UCI LISP MANUAL (revised). }
Oniine Manual RS:UCLSP.MAN, University of California, Irvine, 7?, 1976.

[Charniak 80] Charniak, E.; Riesbeck, C. K.; and McDermott, D. V.
Artificial Intelligence Programming.
Lawrence Erlbaum Associates, Hillsdale, New Jersey, 1980.

[Fitch 771 Fitch, J. and Norman, A.
Impiementing LISP in a High Level Language.
Software: Practise and Experience 7:713-xx, 1977.

[Foderaro 81] Foderaro, J. K. and Skiower, K. L.
The Franz LISP Manual.
, 1981.

[Frick 78] Frick, . B.
Manual for Standard LISP on the DECSYSTEM 10 and 20.
Utah Symbolic Computation Group Technical Report TR-2, University
of Utah, Department of Computer Science, July, 1978.

[Griss 77al Griss, M. L.
BIL: A Portable Implementation Language for LISP-Like Systems.
Utah Symbolic Computation Group Opnote No. 36, University of Utah,
Department of Computer Science, 1977.

[Griss 77b] Griss, M. L. and Swanson, M. R.
MBALM/1700 : A Micro-coded LISP Machine for the Burroughs B1726.
In Proceedings of Micro-10 ACM, pages 15. ACM, 1977.

Bibliography
page 16.2

[Griss 78al

[Griss 78b]

[Griss 79al

[Griss 79b]

[Griss 81]

{Griss 82]

{Harrison 73]

[Harrison 74]

[Hearn 66]

[Hearn 73]

[Kessler 79]

23 September 1983 PSL Manual
section 16.0

Griss, M. L. and Kessler, R. R.
REDUCE 1700: A Micro-coded Algebra System.
In Proceedings of The 11th Annual Microprogramming Workshop,
pages 130-138. IEEE, November, 1978.

Griss, M. L.
MBALM/BIL: A Portable LISP Interpreter.
Utah Symbolic Computation Group Opnote No. 38, University of Utah,
Department of Computer Science, 1978.

Griss, M. L.; Kessler, R. R.; and Maguire, G. Q. Jr.
TLISP - A Portable LISP Implemented in P-code.
In Proceedings of EUROSAM 79, pages 490-502. ACM, June, 1979.

Griss, M. L. and Kessler, R. R.
A Microprogrammed Implementation of LISP and REDUCE on the
Burroughs B1700/B1800 Computer.
Utah Symbolic Computation Group Report UCP 70, University of Utah,
Department of Computer Science, 1979.

Griss, M. L. and Hearn, A. C.
A Portable LISP Compiler.
Software - Practice and Experience 11:541-605, June, 1981.

Griss, M. L.; Benson. E.; and Hearn, A. C.
Current Status of a Portable LISP Compiler.
In Proceedings of the SIGPLAN 1982 Symposium on Compiler
Construction, pages 276-283. ACM SIGPLAN, June, 1982.

Harrison, M. C.
Data structures and Programming.
Scott, Foresman and Company, Glenview, {llinois, 1973.

Harrison, M. C.
A Language Oriented Instruction Set for BALM.
In Proceedings of SIGPLAN/SIGMICRO 9, pages 161. ACM, 1974.

Hearn, A. C.
Standard LISP. -
SIGPLAN Notices Notices 4(9):xx, September, 1966.
Also Published in SIGSAM Bulletin, ACM Vol. 13, 1969, p. 28-49. .

Hearn, A. C.
REDUCE 2 Users Manual.
Utah Symbolic Computation Group, Report UCP-19, University of Utah,
Department of Computer Science, 1973.

Kessler, R. R.
PMETA - Pattern Matching META/REDUCE.
Utah Symbolic Computation Group, OpNote 40, University of Utah,
Department of Computer Science, January, 1979.

PSL Manual
section 16.0

[Lefaivre 78]

[LISP360 xx]

[MACLISP 76]

[Marti 791

[McCarthy 73]

[Moore 761

[Nordstrom 73]

[Nordstrom 78]

[Norman 81]

[Pratt 73]

'[Quam 691

23 September 1983 Bibliography
page 16.3

Lefaivre, R.
RUTGERS/UCI LISP MANUAL.
Online Manual, RS:RUTLSP.MAN, Rutgers University, Computer Science
" Department, May, 1978.

XX, -

LISP/360 Reference Manual.

Technical Report, Stanford Centre for information Processing, Stanford
University, xx.

XX.
MACLISP Reference Manual.
Technical Report, MIT, March, 1976.

Marti, J. B, et al.
Standard LISP Report.
SIGPLAN Notices 14(10):48-68, October, 1979.

McCarthy, J. C. et al.
LISP 1.5 Programmer’s Manual.
M.LT. Press, 1973.
7th Printing January 1973.

J. Strother Moore Ii.
The INTERLISP Virtual Machine Specification.
CSL 76-5, Xerox, Palo Alto Research Center, 3333 Coyote Road,etc,
September, 1976.

Nordstrom, M.
A Parsing Technique.
Utah Computational Physics Group Opnote No. 12, University of Utah,
Department of Computer Science, November, 1973.

Nordstrom, M.; Sandewall, E.; and Breslaw, D.
LISP F3 : A FORTRAN Implementation of InterLiSP.
Manual, Datalogilaboratoriet, Sturegatan 2 B, S 752 23, Uppsala,
SWEDEN, 1978.
Mentioned by M. Nordstrom in ‘Short Announcement of LISP F3’, a
handout at LISP80.

Norman, A.C. and Morrison, D. F.
The REDUCE Debugging Package.
Utah Symbolic Computation Group Opnote No. 49, University of Utah,
Department of Computer Science, February, 1981.

Pratt, V.
Top Down Operator Precedence.
In Proceedings of POPL-1, pages 7?-7?2. ACM, 1973.

Quam, L. H. and Diffie, W.
- Stanford LISP 1.6 Manual.
Operating Note 28.7, Stanford Artificial Intelligence Laboratory, 1969.

Bibliography
page 16.4

[Sandewall 78]

[Steele 81]

[Teitelman 78]

[Teitelman 81]
[Terashima 78]

[Weinreb 81]

[Weissman 67]

[Winston 81]

23 September 1983 PSL Manual
: section 16.0

Sandewall, E.
Programming in an Interactive Environment : The LISP Experience.
Computing Surveys 10(1):35-72, March, 1978.

Steele, G. L. and Fahiman, S. E.
Spice LISP Reference: Manual.
Manual , Carnegie-Mellon University, Pittsburgh, September, 1981.
(Preliminary Common LISP Report). '

Teitelman, W.; et al.
Interlisp Reference Manual, (3rd Revision).
Xerox Palo Alto Research Center, 3333 Coyote Hill Road, Palo
Alto,Calif. 94304, 1978.

Teitleman, W. and Masinter, L.
The InterLISP Programming Environment.
IEEE Computer 14(4):25-34, 1981.

Terashima, M. and Goto, E.
Genetic Order and Compactifying Garbage Collectors.
Information Processing Letters 7(1):27-32, 1978.

Weinreb, D. and Moon, D.
LISP Machine Manual.
, 1981.
Fourth edition.

Weissman.
LISP 1.5 Primer.
Dickenson Publishing Company, inc., 1967.

Winston, P. H., and Horn, B. K P.
LISP.
Addison-Wesley Publishing Company, Reading, Mass., 1981.

PSL MANUAL 23 SEPTEMBER 1983 CONCEPT INDEX
SECTION 17.0 ' PAGE 17.1

CHAPTER 17
INDEX OF CONCEPTS

The following is an alphabetical list of concepts, with the page on which they are

discussed.
“Error handlers” 12.3
A-Llists. 24,59, 512
Absolute Value. 3.2
Access to Value Cell 15.3
Addition. 3.2
Always. 7.7
And function 2.8
And ..o 7.7
Any -catchall data type 2.3
Appending Lists 5.7
Arc cosecant function 3.13
Arc cosine function 3.12
Arc cotangent function. 3.13
Arc secant function 3.13
Arc sine function 3.12
Arc tangent function 3.12
Arguments. 8.1, 8.10
Arithmetic 3.2
Arrays L 6.7
ASCIL . ..o 10.3, 10.11
Assignment 4.6
Association list. 2.4
Association lists. 5.9, 5.12
Atom L L 2.6
Atoms 2.3
Automatic Breaking 13.11
Automatic Tracing 13.11
Back Quote. 8.7
Backtrace................... 13.12
Backup Buffer. 10.11
Bigintegers................. 3.1
BigNum 2.1, 3.1
Binary Trees. 5.1
Binary. L. 10.22
Binding Type 8.11, 8.12
Binding., 4.6, 8.10
Bit Operations 3.7
Boolean Functions 2.8
Boolean 2.6, 35

Concept Index
page 17.2

Booleans
Box Diagrams. . ..
Break Commands .
Break Facility
Break Loop.
Breaking Functions
Building A-Lists . .
Byte—-Vector

Car Manipuiation .
Case Statement . .

Cdr Manipulation .
Channeis
Characters
Circular Functions
Circular Structures

23 September 1983

Classes of Data Types

Closing Channels .
Code-Pointer
Collect.........
Common Lisp. ...
Comparison
Compilation

Compiled Functions
Compiled vs. Interpreted.

Compiler
Compiling files. . .

Compiling Functions.

Compiling to FASL

Files........

Compiling to Memory.

Composites of Car
Conc

and Cdr

Concatenating Lists

Cond

Conditional Compilation.

Conditionals
Constant
Constants.

Continuing After Errors.
Control Time of Execution
Converting Data Types.........

Copying Functions
Copying Strings . .
Copying Vectors. .
Copying X-Vectors
Copying
Cosecant function

............

............

2.3

5.1

12.5

13.10

11.4, 12.1, 125, 12.9
13.10

5.12

2.1, 6.5

5.2

7.3

12.1, 12.9
5.2

10.17

2.3, 6.1
3.8

13.15

2.3

10.17
2.1, 2.6, 8.2, 8.9, 10.11
7.7

6.7

5.10
8.10, 15.7
8.9

15.7

15.1

15.1

15.2, 15.3
15.2

15.3

5.2

7.7

5.7

7.4

15.4

7.1

2.6

23

121

15.5

2.9, 3.1
8.2

6.1

6.3

6.6

5.2

an

PSL Manual
section 17.0

PSL Manual 23 September 1983 Concept Index

section 17.0 page 17.3
Cosine function - 3.11
Cotangent function. 3.11
Count...................... 7.7
Counting Function Calls 13.13
Customizing Debug 13.16
Data Type Conversion 2.9, 3.1
Data Types. 2.1, 10.6, 10.11
Debug and Redefinition 13.2
Debug Deficiencies. 13.3
Debug Example 13.18
Debug Printing Functions.. 13.17
Debug Reading Functions. 13.17
Debugging Tools 13.1
Decimal Qutput 10.7
Declaration. 8.10, 8.11
Default Top Level. 11.4
Deficiencies in Debug. 13.3
Deletion from lists 5.9
Delimiters. 10.3, 10.11
Digits. 10.11
Diphthong indicator 10.29
Diphthong 10.33
Division 3.2
DO ... 7.7
Dot Notation 5.1
Dot-notation 22
Each. 7.13
Editing in the Break Loop. 12.5
Elementary Functions. 3.8
Embedded Functions 13.12
Enabling debug facilities. 13.11
Endoffile 10.28

Endofline.................. 10.28
EOF PR 10.28
EOL 10.28
Equality testing functions. 2.5
Error Calls 12.10
Error Functions. 12.1
Error Handling 12.1
Error Number. 12.1
Errors.o oL, 8.12
Evalflag. 4.12
Eval Type Functions'. 8.1
Evaluation e e 9.1
Examples 12.5, 13.18

Executable 14.2

Concept Index
page 17.4

Exit
Exiting PSL.

23 September 1983

Explicit Sequence Control.

Exponent

. Exponential Functions.

Exponentiation . . .

FASL

File Input
File Names.
File Output.

Filename Conventions

Finally
Find...........
FixNum.
Flag indicators . . .
Flagging Ids

Floats.
Fluid Binding
Fluid Declarations.

From

Function Cell
Function Definition

- Function Execution Tracing.

Function Order. ..

Function Redefinition

Function types . ..
Function.

Garbage Collection

Global Binding . ..

Global Declarations

Globals.

7.1,7.18
14.1

7.4

2.1

3.8

3.2

8.1, 8.10
23

3.14
10.22

8.1, 8.10

2.1

10.22

10.17, 10.22
10.22

10.23

7.7

43

2.1

4.12

45

4.4, 4.5

2.1, 2.6, 10.11
3.1

8.10

15.3

77

2.4

10.7, 10.11, 10.26
10.7

7.7

2.3

4.1, 9.1

8.1

13.4

15.5

13.2

8.1, 8.10
2.4

14.4
8.10
15.3
4.12
7.1

2.1, 65

PSL Manual
section 17.0

PSL Manual
section 17.0

Hexadecimal Qutput.
- History Mechanism.
Hook

Id Space.
ld-Hash-Table

Indexing vectors and strings
Indicator, on property list.
Init Files. e
Initially.
Input Functions
Input in Files
Input, .

Internais in Debug
Interpretation.
Interpreted Functions
Interpreter
Interrupt Keys.
Inum

Length
Letter ‘as Token Type
Linefeed
Lisp syntax.
List Concatenation

23 September 1983

10.17

2.1

4.12, 141
10.7

1.1

4.2

10.11

10.26

42,43

2.1, 4.1

14.1

2.1, 2.6, 2.9, 4.1, 10.11
2.1, 26, 29, 4.1, 10.11
7.1

4.12

7.7

6.1

4.4

14.3

7.7

10.11

10.22

10.1

2.1, 2.6, 29, 10.11
3.1

2.9, 4.2

13.16

15.7

8.9, 8.12

9.1

12.9

2.1, 29

3.1

3.1

2.1

7.6

7.7

2.4, 810, 8.12, 95
5.6

10.11

10.28

10.3, 10.17

5.7

5.9

54

Concept Index
page 17.5

Concept Index

page 17.6

23 September 1983

List Reversal.
List Substitutions
List-notation

Loading FASL Files.
Loading Modules
Local Binding
Logarithms.
Logical And
Logical Exclusive Or.
Logical Not.
Logical Or
Looping Constructs
loseflag

Mapping Functions
Mathematical Functions
Maximize
Minimize I
Minus as Token Type..........
Modulo function.
Multiplication

NoEval Type Functions. .

Non-Local Exit
None Returned

NoSpread Type Functions.
Not function.

Notation.
Number
Numbers
Numeric Comparison

10.26
5.6
54
5.6
5.1
5.10
5.14
24
24,29, 44,51
10.19
10.19
8.10
3.8
3.7
3.7
3.7
3.7
7.6
412

8.2, 8.10, 9.7
7.13

3.8

7.7

7.7

10.11

3.9

3.2

7.7
10.28
8.1, 8.10
7.1

2.6, 2.8, 4.11

8.1

7.18

2.3

8.1

2.8

7.7

2.1

2.6, 2.9, 10.11
23, 3.1

35

42
42,43
10.7

PSL Manual
section 17.0

PSL Manual 23 September 1983
section 17.0

OFF command 4.10
ONcommand................ 4.10
On.... 7.7
Open Coding 15.7
Orfunction.................. 2.8
Or .. 7.7
Order of Functions. 15.5
OutputBase................. 10.10
OQutput..................... 10.1
OutPutBasel!® 10.10
Overflow 10.26
Package Cell. 4.1
Package.......... 4.2
Pair Construction 5.2
Pair Manipulation 5.2
Pair 2.1, 24, 26, 5.1
Pairs., ... 5.1
Parameters. 8.1, 8.10
Parser 10.11
Plus as Token Type 10.11
Predicates 2.5, 3.5, 5.6, 8.9, 8.10, 8.12
Print Name. 4.1

- Printing Circular Lists. 13.15
Printing Functions 13.14
Printing Property Lists 13.14
Printing Registers. 10.10
Printing 10.6
Product 7.7
Prog. 7.4, 8.10, 8.12
ProgN........... 7.4
Properties. 4.4
Property Cell Access 4.6
Property Cell 4.1, 44
Property List. 4.1, 44, 4.1
Put Indicators. 4.1
Radix for 1/0 10.11
Random Numbers. 3.8
Read macro indicator. 10.14
Read Macros 10.15
Reading Entire Lines. 10.14
Reading Functions 10.11
Register and Tracing 13.3
Registers 10.10
Remainder function 3.2
Removing Functions. 8.2
Return 7.1

Concept Index

page 17.7

Concept Index
page 17.8

23 September 1983

Saving Executable PSL
Saving Trace Qutput.

Scan Table. .

Scope of Variables
Searching A-Lists.
Secant function

Selective Trac

. ..

Sequence of Evaluation

Set Functions

Sharp-Sign Read Macros

SIMPFG indica
Sine function

tor

Spread Type Functions.
Square Root function

String 10 . ..

String Operations.

String Quotes

Substring Matching

Subtraction. .

Switches Controlling Compiler . . .

Switches . ..

Tag Field . . .

Tangent function
Terminal Interaction........ ...

Throw

Top Level Fun
Top Level Loo

ction.
P

Top Loop Mechanism....... ...

Top Loop . ..
Trace Output

7.7
5.10

10.11

.23

29

14.2

13.6
10.11, 10.14, 10.33, 11.1
8.10

5.12

3.1

13.7

7.4

5.8

10.12
4.10

3.10
10.10
5.10
10.17

8.1

3.13
10.26

6.1

10.11
2.1, 286, 2.9, 10.11
2.4

13.14
5.14

4.3

3.2

7.7

15.6
4.10, 4.12

4.1
2.1
3.1
10.16
12.1
15.5
10.11
11.4
11.1
12.9
11.1
13.6

PSL Manual
section 17.0

PSL Manual 23 September 1983 Concept index
section 17.0 : page 17.9

Trace Predicate 13.7
Trace ring buffer 13.6
Tracing Functions. 13.4
Tracing Macros 13.3
Tracing New Functions. 13.11
Transcendental Functions. 3.8
Trigonometric Functions. 3.8
Truth and falsity. 2.8
Turning Off Trace. 13.9
Type Checking Functions 2.6
Type Conversion 2.9, 3.1
Type Declarations. 2.1
Type Field 2.1
Type Mismatch. 10.26
Unary Functions. 3.2
Undefined. 23
Union. 7.7
Unless e 7.7
Until. 7.7
Untraceable Functions 13.3
Userflag 412
User Function Redefinition 13.2
User Hooks in Debug 13.16
User Interface 11.1
Value Cell. 4.1, 4.6, 8.10
Variable Binding 4.6, 8.10
Vector Indexing 6.1
Vector Operations 6.3
Vector e 2.1, 26, 2.9
When..................... . 7.7
While......... 7.7
With. 7.7
Word Operations 6.5
Word-Vector 2.1, 6.5
Word 2.1
Writing Functions. 10.6
X-Vector Operations. 6.6
X-Vector 6.1

X-Vectors. 2.3

PSL MANUAL 23 SEPTEMBER 1983 FUNCTION INDEX
SECTION 18.0 PAGE 18.1

CHAPTER 18
INDEX OF FUNCTIONS
The following is an alphabetical list of the PSL functions, with the page on which they

are defined.

1%Reclaim expr 14.4
Abs expr 3.2
AConc expr 5.7
ACOs expr 3.12
AcosD expr 3.12
Acot. P expr 3.13
AcotD. expr 3.13
ACSC. expr 3.13
AcseD o, expr 3.13
Addt expr 3.2
Adjoin expr 5.8
AdjoinQ expr 5.8
AlphaNumericP. I expr 6.9
AlphaP expr 6.8
And . .. fexpr 2.8
ARS expr 11.3
Append expr 5.7
Apply L expr 9.4
AsecC. expr 3.13
AsecD L. expr 3.13
Asin. expr 3.12
AsinD.......... e e expr 3.12
ASS . .. expr 5.13
ASSOC. expr 5.13
Atan2. expr 3.12
Atan2D. expr 3.12
Atan. L. expr 3.12
AtanD. expr 3.12
Atom L expr 2.6
Atsoc. expr 5.13
BackQuote macro 8.8
BeginRLisp.................. expr 11.4
BldMsg. expr 10.26
BothCaseP expr 6.9
BothTimes expr 15.5
Br.... macro 13.10
Brin macro 13.10
BrWhen macro 13.10
Btr...... macro 13.12

Function Index
page 18.2

Ceiling.....................
ChannelEject
ChannellineLength
ChannellPosn.
ChannelPosn
ChannelPrin1
ChannelPrin2
ChannelPrin2T
ChannelPrinC
ChannelPrint.
ChannelPrintF.
ChannelRead
ChannelReadCH
ChanneiReadChar.
ChannelReadLine
ChannelReadToken.
ChannelReadTokenWithHooks
ChannelSpaces.
ChannelTab
ChannelTerPri. e
ChannelUnReadChar.
ChannelWriteChar.
Char!-Bits.
Charl-Code.
Char!-DownCase
Char'-Equal
Charl-Font
Char!-GreaterP.
Charl=Int

Charl=

Code!-Number!-0Ofl-Arguments. . .
CodeApply
CodeEvalApply
CodeP

23 September 1983

5.2
7.3
7.20
7.18
5.2
3.8
10.10
10.10
10.10
10.10
10.6
10.6
10.9
10.9
10.6
10.7
10.11
10.13
10.13
10.15
10.14
10.14
10.7
10.7
10.6
10.13
10.9
6.10
6.10
6.10
6.9
6.10
6.9
6.11
6.9
6.10
6.9
6.9
6.9
6.2
6.10
10.18
6.10
8.10
9.6
9.6
2.6

PSL Manual
section 18.0

PSL Manual 23 September 1983 Function Index

section 18.0 page 183
CommentOutCode macro 15.5
Compile-File. expr 15.2
Compile.................... expr 15.3
CompileTime expr 15.5
Compress. expr 10.27

‘Concat. expr 6.7
Cond.......... e fexpr 7.1
Cons expr 5.2
ConstantP. expr 2.7
ContError. macro 12.3
Continuablekrror. expr 12.2
Copy . o oo expr 53
CopyD expr 8.4
CopyScanTable. expr 10.33
CopyString. expr 6.2
CopyStringToFrom expr 6.2
CopvyVector expr 6.4
CopyVectorToFrom. expr 6.4
Cos .« . expr 3.1
CosD expr 3.11
Cot.. ..o expr 3.11
CotD expr 3.11
CsC .. e expr 3.11
CsecD expr 3.1
Date. expr 14.4
De macro 8.5
Decr. macro 3.3
DefLambda.................. macro 8.7
DefList. expr 4.5
DefMacro................... macro 8.7
DegreesToDMS. expr 3.10
DegreesToRadians expr 3.9
Del. expr 5.9
DelAsc.................. ... expr 5.9
DelAsciP. expr 59
DelatQ..................... expr 5.9
DelatQIP. expr 5.10
Delete expr 5.9
DeletiP. expr 5.9
DelQ............. expr 5.9
DelQIP expr 5.9
DeSetQ. macro 4.7
Df. macro 8.5
Difference expr 33
Digitt~Char. expr 6.10
Digit. expr 10.26
DigitP. expr 6.9

Function Index
page 18.4

Divide. expr
Dm. macro
DMStoDegrees expr
DMStoRadians expr
Dn.... .. macro
Dol macro
Do-Loop!* macro
Do-Loop., macro
Do.... macro
DS ... macro
Dskin expr
Dumplisp. expr
Eject. expr
Eq expr
EqCar. expr
EgqN expr
EqQStr expr
Equal expr
Error expr
ErrorPrintFo L. expr
ErrorSet expr
ErrPrin o o oL expr
ErrSet. macro
Eval expr
Evin.. 0 L. expr
Evlis expr
EvOut. expr
EvProgN. expr
EvShut........... expr
Exit macro
Exitlisp.o oL expr
Exp. expr
Expand..................... expr
Explode2 expr
Explode expr
ExprP expr
Expt........ expr
Factorial. expr
FasiEnd expr
Faslin. expr
FaslOut. expr
FatalError. expr
FCodeP. expr
FExprP expr
FileP. expr
FindPrefix. expr

23 September 1983

33
8.6
3.10

1 3.10

8.5
7.17
7.17
7.17
7.16
8.6
10.22
143

10.10
25
2.6
2.5
26
25
12.1
10.9
12.4
10.9
12.3
9.2
10.24
95
10.19
9.6
10.19
7.7
14.2
3.13
9.7
10.27
10.27
8.10
33

3.14
15.2
10.23
15.2
12.3
8.9
8.10
10.18
44

PSL Manual
section 18.0

PSL Manual 23 September 1983 Function Index

section 18.0 page 18.5

FindSuffix................... expr 4.4

First. macro 5.5

Fixo. ..o expr 3.2

FiXP expr 2.7

Flagl expr 4.6

Flag........ expr 45

FlagP expr 4.6

FLambdalLinkP. expr 8.9

FlatSize2 expr 10.26

FlatSize expr 10.26

Float. expr 3.2

FloatP. expr 2.7

Floor expr 3.8

Fluid. expr 8.11, 154

FluidP. expr 8.12

Fort™. macro 7.13

For. macro 7.8

ForEach macro 7.14

Fourth macro 5.5

FStub. macro 13.14

FUnBoundP. expr 8.9

Function. fexpr 9.7

GenSym. expf 4.3

Geqg ... e expr 35

Get. e, expr 4.4

GetD, expr 8.4

GetFCodePointer. expr 8.10

GetV. expr 6.3

Global expr 8.11, 15.4

GlobalP expr 8.12

GmergeSort................. expr 5.11

GO ... e fexpr 7.5 |

GraphicP ", expr 6.8 i

GreaterP. expr 35 i

Gsort.............. ... expr 5.10 i
|

Help. fexpr 14.1 '

Hist nexpr 11.2

id2int. L. expr 2.10

Id2String L. expr 2.10

IdApply0. expr 9.6

IdApplyl. expr 9.6

IdAppIv2. expr 9.6

dApply3. expr 9.6

IdApplyd. expr 9.6

IdP expr 27

Function Index
page 18.6

IdSort. expr

1 macro
If System. macro
IGetS expr
1GetV expr
implode expr
Imports expr
In. .. macro
Incro macro
IndexError. expr
Indx expr
Init—=File-String expr
Inp. expr
Int!-Char expr
Int2Code expr
Int2id expr
INt285ys. expr
Intern. expr
InternGenSym. expr
InternP. expr
InterSection expr
InterSectionQ.. expr
IPutS expr
Putv expr
I1SizeS. expr
I1SizeV. expr
LambdaApply, expr
LambdaEvalApply expr
LAnd o expr
Lapino expr
LastCar. expr
LastPair expr
LBind1 expr
LConc. expr
Length expr
Lleq. expr
LlessP. expr
Lett*. macro
Let. i macro
Linelength expr
Lisp2Char. expr
List2Set expr
List2SetQ expr
List2String expr
List2Vector. expr
List. fexpr
Liter. expr

23 September 1983

5.11
7.2
15.4

6.5

6.5

10.27

10.20
10.23
3.4

12.10

6.6

143

11.3

6.11

2.12

2.10

2.12

2.9

4.3

43

5.8

5.8

6.5

6.5

6.5

6.5

9.6
9.6
3.7
10.22
5.5
5.5

- 8.12

5.7
5.6
3.6
3.6
7.18
7.17
10.10
2.12
5.8
5.8
2.10
2.1
5.7
10.26

PSL Manual
section 18.0

PSL Manual 23 September 1983 Function Index

section 18.0 page 18.7
LNot. expr 3.7
Load., macro 10.20
LoadTime. expr 15.5
Logl10. expr 3.14
Log2. expr 3.14
Log expr 3.13
LOr. expr 3.7
LowerCaseP expr 6.9
LPosn. R expr 10.10
LShift. expr 3.8
LXOr. o expr 3.7
MacroExpand macro . 88
MacroP., . expr 8.10
Main. L expr 114
Make!-Bytes. expr 6.6
Make!-Halfwords expr 6.5
Make!-String e expr 6.12
Make!-Vector expr 6.4
Make!-Words expr 6.5
MakeFCode. expr 8.9
MakeFLambdalink. expr 8.9
MakeFUnBound. expr 8.9
MakeUnBound expr 4.9
Map......., expr 7.14
MapC...................... expr 7.15
MapCan expr 7.15
MapCar axpr 7.15
MapCon expr 7.15
MapList expr 7.15
MapObl expr 4.3
Max2 expr 3.6
Max macro 3.6
Member e expr 5.6
MemQ expr 5.6
Min2. expr 3.6
Min macro 3.6
Minus. expr 34
MinusP., . expr 3.6
MkQuote expr 9.7
MkString. expr 6.2
MkVect. expr 6.4
Mod....................... expr 3.9
NConc expr 5.7
NCons expr 5.3
Ne...... expr 2.6

Neg macro 2.6

Function Index
page 18.8

Newld. expr
NewTrBuff expr
NExprP expr
NEXt. o o oo e e macro
NonCharacterError expr
NoniDError. expr
NonintegerError expr
NonlistError. expr
NonNumberError. expr
NonPairError. expr
NonPositivelntegerError expr
NonSequenceError expr
NonStringError expr
NonVectorError. expr
NonWordsError. expr
Not. i expr
NString!-Capitalize expr
NString!-DownCase expr
NString!-UpCase. expr
Nth. expr
Null expr
NumberP expr
1 macro
ON .. macro
OneP expr
Open expr
Or . . e fexpr
Out macro
Pair expr
PairP expr
Pathin. expr
Pause. expr
PBindt.......... expr
PList. macro
Plus2 expr
Plus....... macro
PNth. expr
Posn. expr
Ppf. macro
PrettyPrint expr
Prinl expr
Prin2 expr
Prin2L. expr
Prin2T expr
PrinC expr

23 September 1983

2.9
13.6
8.10
7.7
12.11
12.10
12.11
12.10
12.11
12.10
12.11
12.11
12.11
12.11
12.11
2.8
6.13
6.13
6.13
5.5
2.7
2.7

4.10

4.10
3.6
10.17
2.8

10.19

5.13
2.7
10.23
10.16
8.13
13.14
34
34
5.6
10.10
13.15
10.8
10.6
10.6
10.9
10.9
10.9
10.6

PSL Manual
section 18.0

PSL Manual - 23 September 1983 Function Index

section 18.0 , page 18.9
PrintF. expr 10.7
PrintScanTable expr 10.33
PrintX. expr 13.15
Progl........ e e e e macro 7.4
Prog2. expr 7.4
Prog....... fexpr 7.4
ProgN. fexpr 7.4
Prop.......... expr 4.6
PSetF...................... macro 49
PSetQ. macro 4.7
Put. expr 4.4
PutD. expr 82
PutDiphthong expr 10.33
PutReadMacro expr 10.33
PutV................ e expr 6.4
Quit.......... expr 14.2
Quote. e e fexpr 9.7
Quotient. expr 3.4
RadiansToDegrees expr 3.9
RadiansToDMS expr 3.10
Random expr 3.14
RangeError. expr 12.10
RAtom expr 10.14
Rds expr 10.24
Read-Init-File. expr 14.3
Read expr 10.11
ReadCH expr 10.13
ReadChar................... expr. 10.13
ReadlLine expr 10.15
Recip...................... expr 3.4
Reclaim expr 14.4
ReDo expr 11.3
Reload. macro 10.20
Remainder e expr 3.5
RemD. expr 85
RemFlagl................... expr 4.6
RemFlag. expr 4.6
RemOb..................... expr 43
RemProp expr 45
RemPropL. expr 45
Repeat..................... macro 7.6
ResBtr expr 13.12
Reset. e e expr 14.4
Rest. macro 55
Restr macro 13.9
Return expr 7.6

Function Index 23 September 1983 PSL Manual
page 18.10 section 18.0
Reverse expr 5.10
ReversiP. expr 5.10
RLisp expr 11.3
Round expr 3.9
RplacA expr 5.4
RplacD............... expr 5.4
RplaChar expr 6.11
RplacW. expr 5.4
RPrint. expr 10.8
} SASSOC. . . o o . expr 5.13
| SaveSystem L., expr 14.2
| Sec expr 3.11
| SECD . i expr 3.11
| Second. macro 5.5
} Selectq. macro 7.3
Set. expr 4.7
SetF. macro 4.8
Setlndx. expr 6.6
SetProp expr 4.6
SetQ. fexpr 4.6
SetSub. expr 6.6
SetSubSeq expr 6.7
Shut. macro 10.19
Sin. ... expr 3.10
SinD........ expr 3.10
Size e expr 6.6
Spaces. expr 10.6
Sart. expr 3.13
Standard!-CharP. e expr 6.8
StandardLisp. expr 11.3
StdError expr 12.10
StdTrace. expr 13.7
Step. expr 13.3
String!-Capitalize expr 6.13
String!-CharP expr 6.8
String!-DownCase expr 6.13
String!-Equal expr 6.11
String!-GreaterP. expr 6.12
String!-Left!-Trim. expr 6.13
String!-Length expr 6.14
Stringl-LessP expr 6.12
String!-Not!-Equal expr 6.12
String!-Not!-GreaterP. expr 6.12
Stringl-Not!-LessP expr 6.12
String!-Repeat expr 6.12
String!-Right!-Trim. expr 6.13

String!-to!-List. e . expr 6.13

PSL Manual
section 18.0

String!-to!-Vector. expr
String!-Trim expr
String!-UpCase. expr
Stringl<!= expr
Stringl<!>. expr
SStringl<. Lo o - .. BXpr
Stringl=, expr
Stringl>t= 0L, expr
String!>. L. expr
String2List expr
String2Vector. expr
String. nexpr
StringGenSym expr
StringP. expr
Stub. macro
Subl expr
Sub expr
SublA. expr
SubLis expr
SubSeq expr
Subst. expr
SubstiP.. expr
SubString. expr
Sys2Int. expr
Tab expr
Tan expr
TanD L expr
TConc expr
TerPri. s expr
Third macro
Throw expr
Time expr
Times2. expr
Times. macro
TopLkoop. expr
TotalCopy. expr
T e macro
TraceCount. expr
TransferSign. e expr
TrCnt. macro
Trin macro
Trout. e expr
Trst . .. e macro
TrstSome macro
TrWhen, macro
TypeError. expr

23 September 1383

Function Index
page 18.11

6.13
6.12
6.13
6.11
6.12

. 6.1

6.11
6.11
6.11
2.10
2.11
2.11, 6.2
4.3
2.7
13.14
35
6.6
5.14
5.14
6.6
5.14
5.14
6.13
2.12

10.7
3.1
3.11
57
10.6
5.5
7.19
14.4
35
3.5
1.1
6.7
13.4
13.7
3.9
13.14
13.8
13.7
13.5
13.5
13.7
12.10

Function Index
page 18.12

UnBindN. expr
UnBoundP expr
UnBr. macro
unBrAall. oo expr
UnFluid. expr
Union. expr
UnionQ. expr
Unless macro
UnQuote. fexpr
UnQuoteL. fexpr
UnReadChar. expr
unTr. macro
UnTrAll. oo oo o expr
UnTrst macro
Unwind!-All macro
Unwind!-Protect. macro
UpbV expr
UpperCaseP expr
UsageTypeError expr
User-HomeDir-String. expr
ValueCell expr
Vector2Llist. expr
Vector2String. expr
Vector nexpr
VectorP expr
When....., macro
While. macro
WriteChar. expr
WIS . . e expr
XCons i expr
YesP expr

23 September 1983

8.12
4.9, 8.12
13.10
13.10
8.12
5.8
58
7.2
8.8
8.8
10.13
13.9
13.9
13.9
7.20
7.20
6.4
6.8
12.10
143

4.9

2.11

2.1
2.11, 64
2.7

7.2

7.6
10.8
10.24
5.3
10.16

3.7

PSL Manual
section 18.0

PSL MANUAL 23 SEPTEMBER 1983 GLOBAL INDEX
SECTION 19.0 PAGE 19.1

CHAPTER 19
INDEX OF GLOBALS AND SWITCHES
The following is an alphabetical list of the PSL global variables, with the page on which

they are defined.

I$BREAKIS. global 12.9
*BackTrace switch 12.5
BREAK switch 12.5, 12.9
*BreakAll switch 13.11

BTR switch 13.12
BTRSAVE switch 13.12
*COMP switch 8.4, 15.3
I*COMPRESSING. switch 10.11, 10.14, 10.17
DEFN switch 15.2
ECHO. switch 10.22, 10.28
FEMsgP giobal 12.4

PEMsgP switch 11.2
*EOQOLINSTRINGOK. switch 10.16

*GC. . . switch 14.4
PINSTALL. switch 13.11, 13.16
MODULE. switch 15.6
*NOLINKE. switch 15.6

ORD. switch 15.6
*PCMAC switch 15.7
*PGWD switch 15.7

*PLAP switch 15.7
PrintLoadNames switch 10.20
PrintNoArgs global 13.10
*PrintNOArgs switch 13.6
I*PrintPathin. switch 10.24
*PWRDS switch 15.7

*R2L. . switch 15.6
*RAISE. switch 10.4, 10.17
I*REDEFMSG. switch 8.3
*SAVENAMES. switch 13.16
FTIME switch 11.2
*TRACE switch 13.6
I*TRACEALL switch 13.11, 13.16
*TRCOUNT. switch 13.13
*USERMODE switch 8.4
*\Verboseload switch 10.20
BreakDebuglist!* global 13.3 |
BREAKEVALUATOR!* global 12.5 |
Breakin!*. global .10.25, 12.9

BreakLevel!* global 12.5

Global Index
page 19.2

BreakOut!* global
BREAKPRINTER!®. global
BREAKREADER!® global
BrokenFns!*, global
CurrentReadMacrolndicator!® global
CurrentScanTable!®. global
Datel™ global
DFPRINTI®*, globai
EMSG!® global
ERRORFORMI*. global
ERROUT!I®. global
GCKNT!™. global
GCTimel* global
Helpint* global
HelpOut!*. global
HistoryCount!* global
Historylist!® global
IgnoredinBacktrace!®. global
INP* global
InitForms!® global
InterpreterFunctions!®. global
LispBanner!., global
LISPSCANTABLE! global
LoadDirectories!™ global
LoadExtensions!* global
MaxBreaklLevel!™ global
NIL. ... global
OPTIONS!* global
OUTI™*. global
OUTPUTBASE!*. e global
PATHINI®, . global
PPFPRINTERI* global
PrinLength global
PrinLevel global
PROMPTSTRING!* global
PROPERTYPRINTER!*. global

PUTDHOOK!® global

23 September 1983 PSL Manual
‘ section 19.0

10.25, 12.9
12.6

12.5

13.10

10.14, 10.17
10.14, 10.17, 10.30, 10.33

14.3 |
15.2 |

12.2, 12,5
12.6
10.9, 10.26

145
14.4

10.25, 14.1
10.25, 14.1
11.3
113

12.7
10.24, 10.25
11.2
12.7

14.2

10.17, 10.30
10.20, 10.21
10.20, 10.21
12.5

4.11

10.20
10.24, 10.25
10.4, 10.10

10.23

13.17

10.11
10.11
10.16
13.18
13.16

PSL Manual 23 September 1_983 ' . Global Index

section 19.0 page 19.3
RandomSeed global 3.14
RLISPSCANTABLE!™ global 10.17, 10.31
SPECIALCLOSEFUNCTION!® global 1029 T
SPECIALRDSACTION!* global 10.24, 10.26
SPECIALREADFUNCTION!* global 10.29
SPECIALWRITEFUNCTION!® global 10.29
SPECIALWRSACTION!™. global 10.24, 10.26
STDINMY* global 10.24, 10.25
STDOUT!™. global 10.24, 10.25
STUBPRINTER!™ global 13.18
STUBREADER!®* giobal 13.18
T o global 4.11
ThrowSignall®*. global 7.19
ThrowTag!® globali 7.19
TOKTYPE™ global 10.14, 10.15, 10.32
ToploopEvall® global 11.1, 12.9
ToplLooplLevel!®. global 11.2
TopLoopName!* global 11.2
TopLoopPrintt*. global 11.1, 12.9
TopLoopRead!®. global 11.1, 12.9
TracedFnsi® global 13.6
TRACEMAXLEVEL!™ global 13.8
TRACEMINLEVEL!®*. global 13.8
TRACENTRYHOOK!™, global 13.17
TRACEXITHOOK!™ global 13.17
TRACEXPANDHOOK!* global 13.17
TREXPRINTERI*, global 13.18
TRINSTALLHOOK!*. global 13.17
TRPRINTERI*. global 13.18
TRSPACE!™ global 13.18

The Portable Standard LISP Users Manual

Part 2: Utilities

by
The Utah Symbolic Computation Group

Department of Computer Science
University of Utah
Salt Lake City, Utah 84112

Version 3.2: 16 March 1984

Abstract

This manual describes the primitive data structures, facilities and functions present in the
Portable Standard Lisp (PSL) system. It describes the implementation details and
functions of interest to a PSL programmer. Except for a small number of hand-coded
routines for 1/0 and efficient function calling, PSL is written entirely in itself, using a
machine-oriented mode of PSL, called SYSLisp, to perform word, byte, and efficient
integer and string operations. PSL is compiled by an enhanced version of the Portabie
Lisp Compiler, and currently runs on the DEC-20, VAX, and MC&68000.

Copyright (c) 1982 W. Galway, M. L. Griss, B. Morrison, and B. Othmer

Work supported in part by the Hewlett Packard Company, the International Business
Machines Corporation and the National Science Foundation under Grant Numbers
MCS80-07034 and MCS82-04247.

PSL MANUAL 16 MARCH 1984

PREFACE

Part 2 of The Portable Standard Lisp User’s Manual contains information about various
utilities. It includes two chapters describing some of the many utility packages available
on the utility directory. Many of these are not documented. A list of these
undocumented utilities is given in Chapter 22. An objects package is described in
Chapter 23.

Chapter 24 describes three editors that are no longer widely used: a simple structure
editor; EMODE, an EMACS-like screen editor; and a full structure editor adapted from UCI
Lisp. Most PSL users now make use of NMODE, a screen editor based on EMODE. lts
documentation is available separately.

PSL gives the user the option of using an Algol-like syntax called RLisp. Chapter 25
describes the syntax of RLisp. Chapter 26 describes two parser writing tools: an
extensible table-driven parser that is used for the RLisp parser, and the MINI parser.

Sections 1.2 and 1.3 and Chapter 3 were contributed by Cris Perdue, Alan Snyder, and
other members of the Hewlett—-Packard Research Center in Palo Alto.

PSL Manual: Part 2 6 December 1983
Table of Contents

TABLE OF CONTENTS

~ -CHAPTER 1. MAJOR UTILITIES

1.1. Introduction .
1.2. Fast Numeric Operators .
1.2.1. Introduction .
1.2.2. Common LISP operators .
1.2.3. Operators Not in Common LISP
1.2.4. The Fast-integers Switch
1.2.5. Cautions .
1.3. Vector Operations.
1.3.1. Introduction
1.3.2. Vector Operations. .
1.3.3. The Fast-Vectors Switch.
1.3.4. Cautions . . .
1.4. RCREF - Cross Reference Generator for PSL Flles .
1.4.1. Restrictions.
1.4.2. Usage .
1.4.3. Options
1.5. Picture RLISP .
1.6. DefStruct.
1.6.1. Options
1.6.2. Slot Options
1.6.3. A Simple Example.
1.7. Bignums . . .
1.7.1. BigNum Structure and Constants" .
1.7.2. The Functions in BigBig .

CHAPTER 2. MISCELLANEOUS UTILITIES

2.1. Introduction

2.2. Simulating a Stack

2.3. DefConst.

2.4. Hashing Cons.

2.5. Graph-to-Tree .

2.6. Inspect Utility.

2.7. If_System.

2.8. Profiler for Complled Functlons

2.9. Timing Function Calls .

2.10. Parenthesis Checker . .
© 2.11. A Simple Rational Function Evaluator .

2.12. Undocumented Utilities.

page i

1.1
1.1
1.1
1.2
1.3
1.4
1.5
1.5
15
1.5
1.6
1.6
1.7
1.8
1.8
1.8
1.9
1.17
1.19
1.20
1.21
1.25
1.25
1.26

2.1
21
2.2
2.2
23
2.4
2.5
25
2.8
29
29
2.10

PSL MANUAL: PART 2

6 DECEMBER 1983

TABLE OF CONTENTS

3.1.

3.2.

3.3.
3.4.
3.5.
3.6.
3.7.

4.1.

4.2.

4.3.

5.1.
5.2.

5.3.

CHAPTER 3. THE OBJECTS MODULE

Introduction
3.1.1. Defflavor .

- 3.1.2. Creating Objects .

3.1.3. Methods . .

3.1.4. Sanctity of Objects .

Reference Information.

3.2.1. Loading the Module .

3.2.2. Defflavor .

3.2.3. Defmethod . . .
3.2.4. Creating New lnstances of Flavors .
Operating on Objects .

Useful Functions on Objects .

Debugging Information .
Declare-Flavor and Undeclare- Flavor
Representation Information

CHAPTER 4. EDITORS

A Mini Structure—-Editor .

The EMODE Screen Editor .

4.2.1. Windows and Buffers in Emode
Introduction to the Fuil Structure Editor.
4.3.1. Starting the Structure Editor .
4.3.2. Structure Editor Commands .

CHAPTER 5. RLISP SYNTAX

Motivation for RLISP Interface to PSL.

An Introduction to RLISP. .

5.2.1. LISP equivalents of some RLISP constructs .

An Overview of RLISP and LISP Syntax Correspondence .
5.3.1. Function Call Syntax in RLISP and LISP .

5.3.2. RLISP Infix Operators and Associated LISP Functlons.

5.3.3. Referencing Elements of Vectors in RLISP.
5.3.4. Differences between Parse and Read .
5.3.5. Procedure Definition.

5.3.6. Compound Statement Groupmg

5.3.7. Blocks with Local Variables

5.3.8. The If Then Else Statement

5.3.9. Case Statement.

5.4. Looping Statements .

5.4.1. While Loop .
5.4.2. Repeat Loop
5.4.3. Next and Exit .
5.4.4. For Each Loop
5.4.5. For Loop .

PAGE I

3.1
3.2
3.2
33
3.3
3.3
3.3
34
3.5
3.6
3.7
3.9
3.9
3.9
3.10

4.1
4.2
4.5
4.5
4.5
4.6

5.1
5.2
5.2
5.3
53
53
55
5.5
5.6
57
5.7
5.8
5.9
5.9
5.10
5.10
5.10
5.10
511

PSL Manual: Part 2 6 December 1983
Table of Contents

5.4.6. Loop Examples .

5.5. RLISP Specific Input/Output . .
5.5.1. RLISP File Reading Functions.
5.5.2. RLISP File Output . .

.5.6. Transcript of ‘a Short Session- wuth RLISP

CHAPTER 6. PARSER TOOLS

6.1. Introduction .

6.2. The Table Driven Parser .
6.2.1. Flow Diagram for the Parser .
6.2.2. Associating the Infix Operator with a Functlon.
6.2.3. Precedences .
6.2.4. Special Cases of 0 <- O and O 0 .
6.2.5. Parenthesized Expressions .
6.2.6. Binary Operators in General . .
6.2.7. Assigning Precedences to Key Words.
6.2.8. Error Handling
6.2.9. The Parser Program for the RLISP Language
6.2.10. Defining Operators .

6.3. The MINI Translator Writing System
6.3.1. A Brief Guide to MINI .
6.3.2. Pattern Matching Rules
6.3.3. A Small Example
6.3.4. Loading Mini .
6.3.5. Running Mini .
6.3.6. MINI Error messages and Error Recovery .
6.3.7. MINI Self-Definition .
6.3.8. The Construction of MINI
6.3.9. History of MINI Development.

6.4. BNF Description of RLisp Using MINI .

CHAPTER 7. INDEX OF CONCEPTS
CHAPTER 8. INDEX OF FUNCTIONS
CHAPTER 9. INDEX OF GLOBALS AND SWITCHES

page iii

5.11
5.12
5.13
5.13
5.14

6.1
62
6.2
6.4
6.4
6.5
6.5
6.6
6.6
6.6
6.7
6.7
6.9
6.9

6.11

6.11

6.11

6.12

6.12

6.12

6.14

6.15

6.16

PSL MANUAL 13 DECEMBER 1983 MAJOR UTILITIES
SECTION 1.0 PAGE 1.1

CHAPTER 1
MAJOR UTILITIES

< TAsdntroduction. L Lo 0L L L 1.1
1:2. Fast-Numeric Operators .. 1.1
1.2.1. Introduction L 1.1
1.22. Common LISP operators 1.2
1.23. Operators Not in Common LISP . .- 1.3
1.2.4. The Fast-integers Switch 1.4
1.25. Cautions L. 1.5
1.3.Vector0perations........................... 15
1.3.1. Introduction 000 1.5
1.3.2. Vector Operations. 1.5
1.3.3. The Fast-Vectors Switch. 1.6
1.3.4. Cautions 1.6
1.4. RCREF - Cross Reference Generator for PSL Files 1.7
1.4.1. Restrictions. 1.8
1.4.2.Usage.............................-1.8
1.43. Options L 1.8
1.5. Picture RLISP 1.9
1.6. DefStruct. 1.17
1.6.1. Options 1.19
1.6.2. Slot Options 1.20
1.63. A Simple Example. 1.21
1.7.Bignumso L 1.25
1.7.1. BigNum Structure and “Constants” 1.25
1.7.2. The Functions in BigBig 1.26

1.1. Introduction

This chapter describes some of the larger utility packages available in PSL. Its purpose
is to record the existence and capabilities of a number of tools. More information on
existing packages can sometimes be found by looking at the current set of HELP files (in
PH: on the DEC-20, $ph on the VAX).

1.2. Fast Numeric Operators

1.2.1. Introduction

The library module NUMERIC-OPERATORS defines a set of arithmetic functions that are

a superset of the numeric operators defined by the Common LISP compatibility package.
-The operators are described in full detail here. All the operators in this package share the
" ‘characteristic of a short name made of non-alphabetic characters, such as “+". They also
all cause the compiler to generate very efficient integer arithmetic code for their

Major Utilities 13 December 1983 PSL Manual
page 1.2 section 1.2

occurrences when the switch "fast-integers” is turned on.

This module also modifies the FOR macro to use the numeric operators to implement
the FROM clause; thus, FOR statement FROM clauses will use fast integer arithmetic when
the FAST-INTEGERS:switch-is-on.

The consequences of turning on the “fast-integers” switch are discussed in a separate
section, below. The individual descriptions of the operators describe behavior with that
switch off. Note that when we say certain argument values are “incorrect”, we mean that
the result is undefined. The impiementation may or may not check for that situation and
an error may or may not be signalled.

1.2.2. Common LISP operators

(= X:number Y:number): number expr

Numeric Equal. True if and only if the two arguments are numbers of the
same type and same value. Unlike the Common LISP operator, no vtvpe
coercion is done, no error is signalled if one or both arguments are non-
numeric, and only two arguments are permitted. Instead, it is merely
incorrect to supply a non—-numeric argument.

(/= X:number Y:number): number expr

Numeric Not Equal. True if X and Y are numbers of equal type and value;
NIL if X and Y are numbers of unequal type or value. it is incorrect to
supply a non-numeric argument. Agrees with the Common LISP operator if
given two numeric arguments of the same type.

(< X:number Y:number): number expr

Numeric Less Than. True if X is less than Y, regardless of type. An error is
signalled if either argument is not numeric. Agrees with Common LISP if
two arguments are supplied.

(> X:number Y:number): number expr

Numeric Greater Than. True if X is greater than Y, regardless of type. An
error is signalled if either argument is not numeric. Agrees with Common
LISP if two arguments are supplied.

(<= X:number Y:number): number expr

Numeric Less Than or Equal. True if X is less than or equal to Y, regardiess
--of numeric type.- An error is signalled if either argument is not numeric.
Agrees- with Common. LISP-if two-arguments are supplied.

PSL Manual 13 December 1983 Major Utilities
section 1.2 page 1.3

(>= X:number Y:number): number

Numeric Greater Than or Equal. True if X is greater than or equal to Y,
regardless of numeric type. An error is signalled if either argument is not
‘numeric. -Agrees ‘with Common-LISP if two- arguments are supplied.

(+ [N:number]): number

Numeric Addition. The value returned is the sum of all the arguments. The
arguments may be of any numeric type. An error is signalled if any
argument is not numeric. If supplied no arguments, the value is 0. This is
defined to agree with the definition of the Common LISP operator except
that this is a macro.

(- N:number [N:numberl): number

Numeric Minus or Subtraction. If given one argument, returns the negative
of that argument. If given more than one argument, returns the resuit of
successively subtracting succeeding arguments from the first argument.
Signals an error if no arguments are supplied or if any argument is non-
numeric.” Agrees with the Common LISP operator except in that this
operator is a macro.

(* [N:number]): number

Numeric Multiplication. The value returned is the sum of all the arguments.
The arguments may be of any numeric type. An error is signalled if any
argument is not numeric. If supplied no arguments, the value is 1. This is
defined to agree with the definition of the Common LISP operator except
that this is a macro. :

(/ N:number [N:numberl): number

Numeric Reciprocal or Division. If given one argument, returns the
reciprocal of that argument. If given more than one argument, returns the
result of successively subtracting succeeding arguments from the first
argument. Signals an error if no arguments are supplied or if any argument
is non—numeric. Agrees with the Common LISP operator except in that this
operator is a macro.

1.2.3. Operators Not in Common LISP

(~= X:number Y:number): number

‘Numeric Not Equai. Same as /=.

expr

macro

macro

macro

macro

Major Utilities 13 December 1983
page 1.4

(// X:integer Y:integer): integer

Integer Remainder. Same as Remainder.

~(~ X:integer): integer

Integer Bitwise Logical Not. Same as LNOT.

(& X:integer Y:integer): integer

Integer Bitwise Logical And. Same as LAnd.

(| X:integer Y:integer): integer

Integer Bitwise Logical Or. Same as LOr.

(* X:integer Y:integer): integer

Integer Bitwise Logical Xor. Same as LXOR.

(<< X:integer Y:integer): integer

Integer Bitwise Logical Left Shift. Same as LShift.

{>> X:integer Y:integer): integer

Integer Bitwise Logical Right Shift. Same as (LShift X (Minus Y)).

1.2.4. The Fast-Integers Switch

Fast-Integers [Initially:]

PSL Manual
section 1.2

expr

switch

At compilation time the switch FAST-INTEGERS controls generation by the
compiler of efficient, unchecked, inline machine code for occurrences of
these operators. When the switch is on, uses of these operators will
compile into appropriate machine instructions of the target machine. The
arguments are assumed to be integers in the "INUM” range, no larger than
about plus or minus 16 million on the HP9836. No checking of argument
types is done, nor is the value returned checked for being in the legal
range. Floating point operands are NOT handled by code compiled with the
FAST-INTEGERS switch turned on.

PSL Manual 13 December 1983 Major Utilities
section 1.2 page 1.5

1.2.5. Cautions

No checking of either arguments or results is done. The code that is generated is fast

and can be intermixed with other LISP arithmetic operations because a LISP number

~ within -the “INUM” range-is represented the .same-way that the host computer represents

- that number. An out of range result of one of these “fast operations” should be thought
of as a “garbage” value. .

A "garbage” value can cause the system to damage itself when treated as a tagged
item. For example, the item might appear to be a pointer to a pair. If passed to a
printing routine or seen by the garbage collector it could cause machine exceptions for
an illegal memory reference or attempt to access an “odd address” (operand alignment
error). A copying or compacting garbage collector might relocate the value.

Note that the * and << operators are particularly likely to be dangerous in this mode
because they can produce large results from small operands.

1.3. Vector Operations

1.3.1. Introduction

Here we describe the library modules SLOW-VECTORS and FAST-VECTORS. These
modules provide a set of operations on vectors that can be compiled into efficient in-line
machine code. The functions defined here are used extensively in the NMODE editor and
other modules.

The functionality provided here overlaps what is provided in some other ways. The
functions provided here have well-chosen names and definitions, they provide the option
of generating efficient code, and they are consistent with the esthetic preferences of our
community. '

In many cases one just loads FAST-VECTORS, which makes available the facilities of
SLOW-VECTORS for the use of interpretive code. The FAST-VECTORS module adds no
new functions. It only sets up generation of efficient code for these operations by the
compiler, controllable by a switch. To use these functions, load either module. To permit
generation of very efficient code, load FAST-VECTORS.

1.3.2. Vector Operations

(VECTOR-FETCH V:vector I:integer): any ‘ expr

Accesses an element of a PSL vector. Vector indexes start with 0. The
thing stored in that position of the vector is returned.

Major Utilities 13 December 1983 PSL Manual

page 1.6 section 1.3
(VECTOR-STORE V:vector I:integer X:any): any expr

Stores into a PSL vector. Vector indexes start with 0.

" (VECTOR-SIZE V:vector): integer ' expr

Returns the number of elements in a PSL vector. Since indexes start with
index 0, the size is one larger than the greatest legal index. See also just
below.

(VECTOR-UPPER-BOUND V:vector): integer expr

Returns the greatest legal index for accessing or storing into a PSL vecTor.
See also just above.

(VECTOR-EMPTY? V:vector): boolean expr

True if the vector has at least one element, otherwise NIL.

1.3.3. The Fast-Vectors Switch

Fast-vectors [Initially:] switch

At compilation time the switch FAST-INTEGERS controls generation by the
compiler of efficient, unchecked, inline machine code for occurrences of
these operations. When the switch is on, uses of these operators will
compile into appropriate machine instructions of the target machine. The
switch is initially turned on when the module FAST-VECTORS is loaded, but
the switch should be explicitly turned on and off within source files. A
request to “(load FAST-VECTORS)” does not necessarily mean that any
module will be loaded -- library modules are only loaded in response to the
first request for a load.

1.3.4. Cautions

The types of the arguments are not checked. Integer arguments are assumed to be
integers in the “INUM” range, no larger than about plus or minus 16 million on the
HP9836. Vector arguments are assumed to be valid Lisp vecrtors. Range checking of
vector indexes is not done.

All this means that it is possible to access or store into memory that is protected, does
not exist, or at least does not contain an element of a vector. This is especially likely to
happen if a non-integer is used as the vector index in one of these operations.

- . Storing.into arbitrary memory- locations .is clearly-very destructive. Accessing “garbage”
~-values obtained from erroneous-vector-access is also -dangerous, aside from causing your
code to get incorrect results.

PSL Manual 6 December 1983 Major Utilities
section 1.3 page 1.7

A "garbage” value can cause the system to damage itself when treated as a tagged
item. For example, the item might appear to be a pointer to a pair. If passed to a
printing routine or seen by the garbage collector it could cause machine exceptions for
an illegal memory reference or attempt to access an “odd address” (operand alignment
- error).- A copying or compacting garbage collector -might relocate the value.

1.4. RCREF - Cross Reference Generator for PSL Files

RCREF is a Standard Lisp program for processing a set of Standard Lisp function
definitions to produce:

a. A “Summary” showing:

i. A list of files processed.
ii. A list of “entry points” (functions which are not called or are called only
by themselves).
iii. A list of undefined functions (functions called but not defined in this set
of functions).
iv. A list of variables that were used non-locally but not declared GLOBAL
or FLUID before their use.
v. A list of variables that were declared GLOBAL but used as FLUIDs (i.e.
bound in a function).
vi. A list of FLUID variables that were not bound in a function so that one
might consider declaring them GLOBALs.
vii. A list of all GLOBAL variables present.
viii. A list of all FLUID variables present.
ix. A list of all functions present.

b. A “global variable usage” table, showing for each non-local variable:

i. Functions in which it is used as a declared FLUID or GLOBAL.
ii. Functions in which it is used but not declared before.

iii. Functions in which it is bound.

iv. Functions in which it is changed by SetQ.

c. A "function usage” table showing for each function:

i. Where it is defined.

ii. Functions which call this function.
iii. Functions called by it.

iv. Non-local variables used.

The output is alphabetized on the first seven characters of each function name.

“RCREF -also checks that functions are called with the correct number of arguments.

Major Utilities . ° 6 December 1983 PSL Manual
page 1.8 section 1.4

1.4.1. Restrictions

Algebraic procedures in Reduce are treated as if they were symbolic, so that algebraic
constructs actually appear as calls to symbolic functions, such as AEval.

~SYSLisp procedures are not correctly analyzed.

1.4.2. Usage

RCREF should be used in PSL:RLisp. To make a file FILE.CRF which is a cross reference
listing for files FILE1.EX1 and FILE2.EX2 do the following in RLisp:

@PSL:RLISP
LOAD RCREF; % RCREF is now autoloading, so this may be omitted.

OUT "file.crf"; % later, CREFOUT ...
ON CREF;

IN "filel.ex1","file2.ex2";

OFF CREF;

SHUT "file.crf"; % later CREFEND

To process more files, more IN statements may be added, or the IN Statement may be
changed to include more files.

1.4.3. Options

! *CREFSUMMARY [Initially: NIL] switch

If the switch CREFSUMMARY is ON then only the summary (see 1 above) is
produced.

Functions with the flag NOLIST are not examined or output. Initially, all Standard LISP
functions are so flagged. (In fact, they are kept on a list-NOLIST!¥, so if you wish to see
references to ALL functions, then CREF should be first loaded with the command LOAD
RCREF, and this variable then set to NIL). (RCREF is now autoloading.)

NOLIST!#* [Initially: the following list] : global

PSL Manual 6 December 1983 -Major Utilities
section 1.4 page 1.9

(AND COND LIST MAX MIN OR PLUS PROG PROG2 PROGN TIMES LAMBDA ABS
ADD1 APPEND APPLY ASSOC ATOM CAR CDR CAAR CADR CDAR CDDR CAAAR
CAADR CADAR CADDR CDAAR CDADR CDDAR CDDDR CAAAAR CAAADR CAADAR
CAADDR CADAAR CADADR CADDAR CADDDR CDAAAR CDAADR CDADAR CDADDR
-~ CDDAAR CDDADR -CDDDAR CDDDDR - CLOSE:CODEP COMPRESS CONS CONSTANTP
- DE-DEFLIST - DELETE DF DIFFERENCE DIGIT DIVIDE DM EJECT EQ EQN
EQUAL ERROR ERRORSET EVAL EVLIS EXPAND EXPLODE EXPT FIX FIXP FLAG
FLAGP FLOAT FLOATP FLUID FLUIDP FUNCTION GENSYM GET GETD GETV
GLOBAL GLOBALP GO GREATERP IDP INTERN LENGTH LESSP LINELENGTH
LITER LPOSN MAP MAPC MAPCAN MAPCAR MAPCON MAPLIST MAX2 MEMBER
MEMQ MINUS MINUSP MIN2 MKVECT NCONC NOT NULL NUMBERP ONEP OPEN
PAGELENGTH PAIR PAIRP PLUS2 POSN PRINC PRINT PRIN1 PRIN2 PROG2
PUT PUTD PUTV QUOTE QUOTIENT RDS READ READCH REMAINDER REMD
REMFLAG REMOB REMPROP RETURN REVERSE RPLACA RPLACD SASSOC SET
SETQ STRINGP SUBLIS SUBST SUB1 TERPRI TIMES2 UNFLUID UPBV VECTORP
WRS ZEROP)

It should also be remembered that in RLisp any macros with the flag EXPAND or, if
FORCE is on, without the flag NOEXPAND are expanded before the definition is seen by
the cross-reference program, so this flag can also be used to select those macros you
require expanded and those you do not. The use of ON FORCE; is highly recommended
for CREF.

1.5. Picture RLISP
[??2? ReWrite ?7?]

Picture RLisp is an Algol-like graphics language for Teleray, HP2648a and Tektronix, in
which graphics Model primitives are combined into complete Models for display. PRLISP
is a 3D version; PRLISP2D is a faster, smaller 2D version which also drives more
terminals. Two demonstration files, PR-DEMO.RED and PR-DEMO.SI, are available on PU.
See the help files PH:PRLISP.HLP and PRLISP2D.HLP.

Model primitives include:

P:={x,y,z}; A point (y, and z may be omitted, default to 0).

PS:=P1_P2_ .. Pn;
A Point Set is an ordered set of Points (Polygon).

G := PS1 & PS2 & ... PSn;
A Group of Polygons.

Point Set Modifiers
alter the interpretation of Point Sets within their scope.

. BEZIER() causes the point-set.to be interpreted as the specification points for a BEZIER
curve, open pointset.

Major Utilities 6 December 1983 PSL Manual
page 1.10 ' section 1.5

BSPLINE() does the same for a Bspline curve, closed pointset.

TRANSFORMS:
Mostly return a transformation matrix.

- Translation:Move ' the: specified - amount ~along the -specified axis. - XMOVE(deltaX);
YMOVE(deltaY); ZMOVE(deltaZ); MOVE(deltaX, deitaY, deltaz);

Scale: Scale the Model SCALE (factor) XSCALE(factor); YSCALE(factor); ZSCALE(factor);
SCALE1(x.scale.factor, vy.scale.factor, 2.scale.factor); SCALE<Scale factor>;.
Scale along all axes.

Rotation: ROT(degrees); ROT(degrees, point.specifying.axis); XROT(degrees);
YROT(degrees); ZROT(degrees);

Window (z.eye,z.screen):
The WINDOW primitives assume that the viewer is located along the z axis
looking in the positive z direction, and that the viewing window is to be
centered on both the x and vy axis.

Vwport(leftclip,rightclip,topclip,bottomclip):
The VWPORT, which specifies the region of the screen which is used - for
display.

'REPEATED (number.of.times, my.transform):
The Section of the Model which is contained within the scope of the Repeat
Specification is replicated. Note that REPEATED is intended to duplicate a
sub-image in several different places on the screen: it was. not designed for
animation. _ ,

~ldentifiers of other Models

the Model referred to is displayed as if it were part of the current Model for
dynamic display.

Calls to PictureRLISP Procedures

This Model primitive allows procedure calls to be imbedded within Models.
When the Model interpreter reaches the procedure identifier it calls it, passing
it the portion of the Model below the procedure as an argument. The current
transformation matrix and the current pen position are available to such
procedures as the values of the global identifiers GLOBALL.TRANSFORM and
HEREPOINT. If normal procedure call syntax, i.e. proc.name (parameters), is
used then the procedure is called at Model-building time, but if only the
procedure’s identifier is used then the procedure is imbedded in the Model.

ERASE() Clears the screen and leaves the cursor at the origin.
SHOW(pict) Takes a picture and displays it on the screen.

ESHOW (pict)
Erases the whole screen and display “pict”.

PSL Manual 6 December 1983 Major Utilities
section 1.5 page 1.11

HPLINIT(), TEKLINIT(), TELLINIT()
Initializes the operating system’s view of the characteristics of HP2648A
terminal, TEKTRONIX 4006-1 (also ADM-3A with Retrographics board, and
Teleray—-1061).

For example, the Model

(A_B_C & {1,2} _B) | XROT (30) | 'TRAN ;
% .

% PictureRLISP Commands to SHOW lots of Cubes

%

% Outline is a Point Set defining the 20 by 20
% square which is part of the Cubeface

%
Outline := { 10, 10} _ {-10, 10} _

% Cubeface also has an Arrow on it

A
Arrow := {0,-1} _ {0,2} & ¢{-1,1} _ {0,2} _ {1,1};

% We are ready for the Cubeface

Cubeface := (Outline & Arrow) | 'Trang;

% Note the use of static clustering to keep objects
% meaningful as well as the quoted Cluster

% to the as yet undefined transformation Tranz,

% which results in its evaluation being

%

deferred until SHOW time

% and now define the Cube

Cube t= Cubeface
& Cubeface | XROT (180) % 180 degrees
& Cubeface | YROT (90)
& Cubeface | YROT (-90)
& Cubeface | XROT (90)
& Cubeface | XROT (-90);

Major Utilities 6 December 1983 PSL Manual
page 1.12 section 1.5

% In order to have a more pleasant look at

% the picture shown on the screen we magnify
% cube by 5 times.

-BigCube := Cube | SCALE 5;

% Set up initial Z Transform for each cube face

%
Tranz := ZMOVE (10); % 10 units out

% .
% GLOBAL!.TRANSFORM has been treated as a global variable.

% GLOBAL!.TRANSFORM should be initialized as a perspective

% transformation matrix so that a viewer can have a correct

% look at the picture as the viewing location changed.

% For instance, it may be set as the desired perspective

% with a perspective window centered at the origin and

% of screen size 60, and the observer at -300 on the z axis.

% Currently this has been set as default perspective transformation.

% Now draw cube

%
SHOW BigCube;

%

% Draw it again rotated and moved left
% .
SHOW (BigCube | XROT 20 | YROT 30 | ZROT 10);

% Dynamically expand the faces out

%
Tranz = ZMOVE 12;

"
SHOW (BigCube | YROT 30 | ZROT 10);

% Now show 5 cubes, each moved further right by 80

%

Tranz e ZMOVE 10;

%

SHOW (Cube | SCALE 2.5 | XMOVE (-240) | REPEATED(5, XMOVE 80));

PSL Manual 6 December 1983 Y . Major Utilities
section 1.5 page 1.13

%

% Now try pointset modifier.

% Given a pointset (polygon) as control points either a BEZIER or a

% BSPLINE curve.can .be drawn.

%

Cpts := {0,0} _ {70,-60} _ {189,-69} _ {206,33} - {145,130} _ {48,130}
_ {o,84} $

%
% Now draw Bezier curve

% Show the polygon and the Bezier curve
%

S

HOW (Cpts & Cpts | BEZIER());

% Now draw Bspline curve

% Show the polygon and the Bspline curve
%

SHOW (Cpts & Cpts | BSPLINE());

% Now work on the Circle

% Given a center position and a radius a circle is drawn
%

SHOW ({10,10} | CIRCLE(50));

%
% Define a procedure which returns a model of
% a Cube when passed the face to be used
%
Symbolic Procedure Buildcube;
List 'Buildcube;
% put the name onto the property list
Put('buildcube, 'pbintrp, 'Dobuildcube);
Symbolic Procedure Dobuildcube Face$
Face & Face | XROT(180)

& Face | YROT(90)

& Face | YROT(-90)

& Face | XROT(90)

& Face | XROT(-90) ;
% just return the value of the one statement

Major Utilities 6 December 1983 : PSL Manual
page 1.14 section 1.5

% Use this procedure to display 2 cubes, with and
% without the Arrow - first do it by calling
% Buildcube at time the Model is built -
%
P :=.Cubeface | Buildcube() | XMOVE(-15) &
- (Outline | 'Tranz) | Buildcube() | XMOVE 15;

%
SHOW (P | SCALE 5);

% Now define a procedure which returns a Model of
% a cube when passed the half size parameter

Symbolic Procedure Cubemodel;
List 'Cubemodel;
%put the name onto the property list
Put('Cubemodel, 'Pbintrp, 'Docubemodel) ;
Symbolic Procedure Docubemodel HSize;
<< if idp HSize then HSize := eval HSize$
{ HSize, HSize, HSize}
{-HSize, HSize, HSize}
{-HSize, -HSize, HSize}
{ HSize, -HSize, HSize}
{ HSize, HSize, HSize}
{ HSize, HSize, -HSize}
{-HSize, HSize, -HSize}
{-HSize, -HSize, -HSize}
{ HSize, -HSize, -HSize}

{ HSize, HSize, -HSize} &
{-HSize, HSize, -HSize} _
{-HSize, HSize, HSize} &
{-HSize, -HSize, -HSize} _
{-HSize, -HSize, HSize} &

{ HSize, -HSize, -HSize} _
{ HSize, -HSize, HSize} >>;

PSL Manual 6 December 1983 Major Utilities
section 1.5 page 1.15

% Imbed the parameterized cube in some Models
%
His!.cube := 'His!.size | Cubemodel();
Her!.cube := 'Her!.size | Cubemodel();
‘R := His!.cube | XMOVE (60) &

" Her!.cube | XMOVE (-60) ;

% Set up some sizes and SHOW thenm

His!.size := 50;
Her!.size := 30;

%

SHOW R ;

%

% Set up some different sizes and SHOW them again
%

His!.size
Her!.size

%
SHOW R;

%

% Now show a triangle rotated 45 degree about the z axis.
Rotatedtriangle := {0,0} _ {50,50} _
{100,0} _ {0,0} | Zrot (45);
%
SHOW Rotatedtriangle;

Major Utilities 6 December 1983 PSL Manual
page 1.16 ' section 1.5

%
% Define a procedure which returns a model of a Pyramid
% when passed 4 vertices of a pyramid.
“-% Procedure Second,Third, Fourth and Fifth are primitive procedures
% written in the source program which return the second, the third,
% the fourth and the fifth element of a list respectively.
% This procedure simply takes 4 points and connects the vertices to
% show a pyramid. .
Symbolic Procedure Pyramid (Point#4); %.point4 is a pointset
Pointl &
Third Point4 _
Fifth Point4 _
Second Point4 _
Fourth Point4 ;

% Now give a pointset indicating 4 vertices build a pyramid
% and show it

%

My!.vertices := {-40,0} _ {20,-40} _ {90,20} _ {70,100};
My!.pyramid := Pyramid Vertices;

%

SHOW (My!.pyramid | XROT 30);

%
% A procedure that makes a wheel with "count"
% spokes rotated around the z axis.
% 1in which "count" is the number specified.
Symbolic Procedure Dowheel(spoke,count)$
begin scalar rotatedangle$
count := first count$
rotatedangle := 360.0 / count$
return (spoke | REPEATED(count, ZROT rotatedangle))

end$
%
% Now draw a wheel consisting of 8 cubes
%

Cubeonspoke := (Outline | ZMOVE 10 | SCALE 2) | buildcube();
Eight!.cubes := Cubeonspoke | XMOVE 50 | WHEEL(8);

P .

SHOW Eight!.cubes;

PSL Manual 6 December 1983 ‘Major Utilities
section 1.5 page 1.17

%
%Draw a cube in which each face consists of just
% a wheel of 8 Qutlines
%
- -Flat!.Spoke := outline | XMOVE 25%
A! .Fancy!.Cube := Flat!.Spoke | WHEEL(8) | ZMOVE .50 | Buildcube()$
%
SHOW A!.Fancy!.Cube;

%

% Redraw the fancy cube, after changing perspective by
% moving the observer farther out along Z axis

%

GLOBAL! .TRANSFORM := WINDOW(-500,60);

,

SHOW A!.Fancy! .Cube;

%

% Note the flexibility resulting from the fact that
% both Buildcube and Wheel simply take or return any
% Model as their argument or value

The current version of PictureRLISP runs on HP2648A graphics terminal and TEKTRONIX
4006-1 computer display terminal. The screen of the HP terminal is 720 units long in the
X direction, and 360 units high in the Y direction. The coordinate system used in HP
terminal places the origin in approximately the center of the screen, and uses a domain of
-360 to 360 and a range of -180 to 180. Similarly, the screen of the TEKTRONIX terminal
is 1024 units long in the X direction, and 780 units high in the Y direction. The same
origin is used but the domain is -512 to 512 in the X direction and the range is -390 to
390 in the Y direction.

Procedures HPLINIT and TEKLINIT are used to set the terminals to graphics mode and
initiate the lower level procedures on HP and TEKTRONIX terminals respectively. Basically,
INIT procedures are written for different terminals depending on their specific
characteristics. Using INIT procedures keeps terminal device dependence at the user’s
level to a minimum.

1.6. DefStruct

Load DEFSTRUCT to use the functions described below, or FASTI-DEFSTRUCT to use
those functions but with fast vector operations used. DefStruct is similar to the Spice
(Common) Lisp/Lisp machine/Maclisp flavor of struct definitions, and is expected to be
subsumed by the Mode package. (Note: the MacLisp version is available in PSL: load
NSTRUCT.) It is implemented in PSL' as a function which builds access macros and fns

lDefstruct was implemented by Russ Fish.

Major Utilities : 6 December 1983 PSL Manual
page 1.18 : section 1.6

for “typed” vectors, including constructor and alterant macros, a type predicate for the
structure type, and individual selector/assignment fns for the elements. DefStruct
understands a keyword-option oriented structure specification. DefStruct is now
autoloading.

- First a few miscellaneous-functions-on types, before getting into. the depths of defining
DefStructs:

(DefstructP NAME:id): extra-boolean expr

This is a predicate that returns non-NIL (the Defstruct definition) if NAME is
a structured type which has been defined using Defstruct, or NIL if it is not.

(DefstructType S:struct): id : expr

This returns the type name field of an instance of a structured type, or NIL
if S cannot be a Defstruct type.

(SubTypeP NAME1:id NAME2:id): boolean expr

This returns true if NAME1 is a structured type which has been !'Included in
the definition of structured type NAME2, possibly. through intermediate
structure definitions. (In other words, the selectors of NAME1 can be
applied to NAME2.) ‘

Now the function which defines the beasties, in all its gory glory:

(Defstruct NAME-AND-OPTIONS:{id,list} [SLOT-DESCS:{ id,list}]): id fexpr
Defines a record-structure data type. A general call to Defstruct looks like

this: {(in RLisp syntax)

(defstruct (struct-name option-1 option-2 ...)
slot-description-1
slot-description-2

oo

The name of the defined structure is returned.
Slot-descriptions are:

(slot-name default-init slot-option-1 slot-option-2 ...)

Struct-name and slot-name are ids. If there are no options following a name in a spec,‘
it can be a bare id with no option argument list. The default-init form is optional and
. may~be omitted. The default-init form is evaluated EACH TIME a structure is to be
constructed and the value is used as the initial value of the siot. ~Options are either a

PSL Manual 6 December 1983 . Major Utilities
section 1.6 page 1.19

keyword id, or the keyword followed by its argument list. Options are described below.

A call to a constructor macro has the form:

---- (MakeThing (slot-name-1 value-expr<1)
--(slot-name-2 value-expr-2)

ces)

The slot-name:value lists override the default-init values which were part of the structure
definition. Note that the slot-names look like unary functions of the value, so the parens
can be left off. A call to MakeThing with no arguments of course takes all of the default
values. The order of evaluation of the default-init forms and the list of assigned values is
undefined, so code should not depend upon the ordering.

Implementors Note: Common/LispMachine Lisps define it this way, but Is this necessary?
It wouldn’t be too tough to make the order be the same as the struct defn, or the
argument order in the constructor call. Maybe they think such things should not be
advertised and thus constrained in the future. Or perhaps the theory is that constructs
such as this can be compiled more efficiently if the ordering is flexible?? Also, should the
overridden default-init forms be evaluated or not? | think not.

The alterant macro calls have a similar form:

(AlterThing thing
(slot-name~1 value-expr-1)
(slot-name-2 value-expr-2)

ces)

The first argument evaluates to the struct to be altered. (The optional parens were left
off here.) This is just a muiltiple-assignment form, which eventually goes through the slot
depositors. Remember that the slot-names are used, not the depositor names. (See
I:Prefix, below.) The altered structure instance is returned as the value of an Alterant
macro. ’

Implementators note: Common/LispMachine Lisp defines this such that all of the slots
are altered in parallel AFTER the new value forms are evaluated, but still with the order of
evaluation of the forms undefined. This seemed to lose more than it gained, but
arguments for its worth will be entertained.

1.6.1. Options

Structure options appear as an argument list to the struct-name. Many of the options
themselves take argument lists, which are sometimes optional. Option ids all start with a
colon (), on the theory that this distinguishes them from other things.

By default, the names of the constructor, alterant.and. predicate macros. are MakeName,
- AlterName -and NameP. -“Name” is: the struct-name.. .. The l:Constructor, :Alterant, and
I:Predicate options can be used to override the default names. Their argument is the

Major Utilities : 6 December 1983 PSL Manual
page 1.20 section 1.6

name to use, and a name of NIL causes the respective macro not to be defined at all.

The !:Creator option causes a different form of constructor to be defined, in addition to
the regular "Make” constructor (which can be suppressed.) As in the l:Constructor option
--above, -an--argument-supplies: the-name-of the macro, -but the-default name in this case is

“-CreateName. .. A.call to a Creator macro has the form:

(Cr:eateThing slot-value-1 slot-value-2 ...)

All of the slot-values of the structure must be present in the order they appear in the
structure definition. No checking is done, other than assuring that the number of values
is the same as the number of slots. For obvious reasons, constructors of this form are
not recommended for structures with many fields, or which may be expanded or modified.

Slot selector macros may appear on either the left side or the right side of an
assignment. They are by default named the same as the slot-names, but can be given a
common prefix by the !:Prefix option. If I:Prefix does not have an argument, the structure
name is the prefix. If there is an argument, it should be a string or an id whose print
name is the prefix.

The !:Iinclude option allows building a new structure definition as an extension of an old
one. The required argument is the name of a previously defined structure type. The
.access functions for the slots of the source type also works on instances of the new
type. This can be used to build hierarchies of types. The source types contain generic
information in common to the more specific subtypes which l:include them.

The !includelnit option takes. an argument list of “slot-name(default-init)” pairs, like
slot—-descriptors without slot-options, and files them away to modify the default-init
values for fields inherited as part of the l:included structure type.

1.6.2. Slot Options

Slot-options include the !:Type option, which has an argument' declaring the type of the
slot as a type id or list of permissible type ids. This is not enforced now, but anticipates
the Mode system structures.

The l:UserGet and !:UserPut slot-options allow overriding the simple vector reference
and assignment semantics of the generated selector macros with user-defined functions.
The !:UserGet FNAME is a combination of the slot-name and a !:Prefix if applicable. The

. I:UserPut FNAME is the same, with "Put” prefixed. One application of this capability is
building depositors which handle the incremental maintenance of parallel data structures
as a side effect, such as automatically maintaining display file representations of objects
which are resident in a remote display processor in parallel with modifications to the Lisp
structures which describe the objects. The Make and Create macros bypass the
depositors, while Alter uses them. g

PSL Manual

section

1.6

6 December 1983 Maijor Utilities
page 1.21

16.3. A Simple Example

(input lines have a “> “ prompt at the beginning.)

- > % This example is in Rlisp syntax

> % (Do-definitions twice to see what functions were defined.)
> macro procedure TWICE u; list('PROGN, second u, second u);
TWICE

> % A definition of Complex, structure with Real and Imaginary parts.
> % Redefine to see what functions were defined. Give 0 Init values.
> TWICE
> Defstruct(Complex(!:Creator(Complex)), R(0), I(0));

*%k%
%%
*%%
*%¥
*%%
*%%
*¥¥
*%%
*%%

Function
Function
Function
Function
Function
Function
Function
Functien

Defstruct

COMPLEX

'MAKECOMPLEX' has been redefined
'ALTERCOMPLEX' has been redefined
'COMPLEXP' has been redefined
'COMPLEX' has been redefined

'R' has been redefined

'PUTR' has been redefined

'I' has been redefined

'PUTI' has been redefined
'COMPLEX' has been redefined

Major Utilities - 6 December 1983 PSL Manual
page 1.22 section 1.6

> CO := MakeComplex(); % Constructor with default inits.
[COMPLEX 0 0]

> ComplexP CO;% Predicate.
T

> C1:=MakeComplex(R 1, I 2); % Constructor with named values.
[COMPLEX 1 2]

> R(C1); I(C1);% Named selectors.
1
2

> C2:=Complex(3,U4) % Creator with positional values.
[COMPLEX 3 4] |

> AlterComplex(C1, R(2), I(3)); % Alterant with named values.
[COMPLEX 2 3]

> C1;
[COMPLEX 2 3]

> R(C1):=5; I(C1):=6; % Named depositors.
5
6

> C1;
[COMPLEX 5 6]

> % Show use of Include Option. (Again, redef to show fns defined.)
> TWICE '

> Defstruct(MoreComplex(!:Include(Complex)), Z(99));

#%% Function 'MAKEMORECOMPLEX' has been redefined

#%% Function 'ALTERMORECOMPLEX' has been redefined

#%¥% Function 'MORECOMPLEXP' has been redefined

#¥%¥ Function 'Z' has been redefined

*¥% Function 'PUTZ' has been redefined

*%% Defstruct 'MORECOMPLEX' has been redefined

MORECOMPLEX

PSL Manual 6 December 1983 : . Major Utilities
section 1.6 page 1.23

> MO := MakeMoreComplex();
[MORECOMPLEX 0 0 99]

> M1 := MakeMoreComplex(R 1, 1 2, Z 3);
- ~[MORECOMPLEX 1 2 3]

> R C1;
5

> R M1;
1

> % A more complicated example: The structures which are used in the
> % Defstruct facility to represent defstructs. (The EX prefix has
> % been added to the names to protect the innocent...)

> TWICE% Redef to show fns generated.

> Defstruct(

> EXDefstructDescriptor(!:Prefix(EXDsDesc), !:Creator),
>DsSize(!:Type int), % (Upper Bound of vector.)

>Prefix(!:Type string),

>SlotAlist(!:Type alist), % (Cdrs are SlotDescriptors.)
>ConsName(!:Type fnld),

>AltrName(!:Type fnld),

>PredName(!:Type fnld),

>CreateName(!:Type fnld),

>Include(!:Type typeid),

>InclInit(!:Type alist)

>);

Major Utilities
page 1.24

¥%¥% Function
*¥%#% Function
¥%¥%¥ Function
¥¥ Function
¥%%¥ Function™

o¥%%%_Function™

%% Function
*%¥¥ Function
¥%% Function
¥%¥¥ Function
*¥%¥¥ Function
¥¥%¥ Function
¥¥%¥ Function
¥%%¥ Function
¥¥¥ Function
*¥%¥% Function
¥%¥ Function
¥%¥% Function
#¥%%* Function
¥%¥¥ Function
¥%¥% Function
¥%¥%¥ Function
*¥%¥ Defstruct

6 December 1983 PSL Manual

section 1.6

'"MAKEEXDEFSTRUCTDESCRIPTOR' has been redefined
'ALTEREXDEFSTRUCTDESCRIPTOR' has been redefined
'EXDEFSTRUCTDESCRIPTORP' has been redefined
'CREATEEXDEFSTRUCTDESCRIPTOR' has been redefined
'EXDSDESCDSSIZE' has been redefined
'PUTEXDSDESCDSSIZE' has been redefined
'EXDSDESCPREFIX' has been redefined
'PUTEXDSDESCPREFIX' has been redefined
'EXDSDESCSLOTALIST' has been redefined
'"PUTEXDSDESCSLOTALIST' has been redefined
'EXDSDESCCONSNAME' has been redefined
'PUTEXDSDESCCONSNAME' has been redefined
'EXDSDESCALTRNAME' has been redefined
'PUTEXDSDESCALTRNAME' has been redefined
'EXDSDESCPREDNAME' has been redefined
'PUTEXDSDESCPREDNAME' has been redefined
'EXDSDESCCREATENAME' has been redefined
'PUTEXDSDESCCREATENAME' has been redefined
'EXDSDESCINCLUDE' has been redefined
'PUTEXDSDESCINCLUDE' has been redefined
'EXDSDESCINCLINIT' has been redefined
'"PUTEXDSDESCINCLINIT' has been redefined
'EXDEFSTRUCTDESCRIPTOR' has been redefined

EXDEFSTRUCTDESCRIPTOR

> TWICE% Redef to show fns generated.

> Defstruct(
>

>S1lotNum(
>InitForm(

EXSlotDescriptor(!:Prefix(EXSlotDesc), !:Creator),

!:Type int),
1:Type form),

>SlotFn(!:Type fnld), % Selector/Depositor id.

>SlotType(
>UserGet(
>UserPut(
>);

1:Type type), % Hm...
!:Type boolean),
!:Type boolean)

PSL Manual

section

*%%
REX
*%%
K1l
eI
CRER
%%
*E%
£k
#R%
®it#
%%¥
®i¥
®R%
*%%
*k%
*x%

1.6

Function
Function
Function
Function

‘Function

Function
Function
Function
Function
Function
Function
Function
Function
Function
Function
Function

Defstruct

‘6 December 1983

Major Utilities
page 1.25

'MAKEEXSLOTDESCRIPTOR' has been redefined
'ALTEREXSLOTDESCRIPTOR' has been redefined
'EXSLOTDESCRIPTORP' has been redefined
'CREATEEXSLOTDESCRIPTOR' has been redefined

“TEXSLOTDESCSLOTNUM!' “has been redefined
'PUTEXSLOTDESCSLOTNUM!

has been redefined
'EXSLOTDESCINITFORM' has been redefined
'PUTEXSLOTDESCINITFORM' has been redefined
'EXSLOTDESCSLOTFN' has been redefined
'PUTEXSLOTDESCSLOTFN' has been redefined
'EXSLOTDESCSLOTTYPE' has been redefined
' PUTEXSLOTDESCSLOTTYPE' has been redefined
'EXSLOTDESCUSERGET' has been redefined
'"PUTEXSLOTDESCUSERGET' has been redefined
'EXSLOTDESCUSERPUT' has been redefined
'PUTEXSLOTDESCUSERPUT' has been redefined
'EXSLOTDESCRIPTOR' has been redefined

EXSLOTDESCRIPTOR

> END;

NIL

1.7. Bighums

1.7.1. BigNum Structure and “Constants”

Load BIG to get the bignum pac:kage.2 The current PSL bignum package was written

using vectors of "Big Digits” or "Bigits”. The first element of each vector is either BIGPOS
or BIGNEG, depending whether the number is positive or negative. A bignum of the form

[BIGPOS a b ¢ d]
has a value of
a + b * bbase!* + ¢ ¥ bbase!” ** 2 + d * bbasel® ** 3

BBase!® is a fluid variable which varies from one machine to another.
‘the DEC-20, it is calculated as follows:

For the VAX and

bbits!® = (n—-1)/2; bbase!* := 2 ** bbits!¥*;

" __n

n“ is the total number of bits per word on the given machine. On the DEC-20, n is 36,

ZThis section is adapted from a help file and -was written by Beryl Morrison.

Major Utilities ' - 6 December 1983 . PSL Manual

page 1.26

section 1.7

SO bbits!® is 17 and bbase!* is 131072. On the VAX, n is 32, so bbits!* is 15 and bbase!*

is 32768.

»1.7.2. The Functions in BigBig

The functions defined by BigBig for bignums are as follows:

BLOr

BLXOr

BLANd

BLNot

BLShift

BMinus

BMiﬁusP

BPlus2

Takes two BigNum arguments, returning a bignum. Calls BSize, GtPos,
PoslifZero.

Takes two BigNum arguments, returning a bignum. Calls BSize, GtPos,
TrimBigNum 1.

Takes two BigNum arguments, returning a bignum. Calls BSize, GtPos,
TrimBigNum 1.

Takes one BigNum argument, returning a bignum. Calls BMinus, BSmaliAdd.

Takes two BigNum arguments, returning a bignum. Calls BMinusP, BQuotient,
BTwoPower, BMinus, BTimes2.

Takes one BigNum argument, returning a bignum. Calls BZeroP, BSize,
BMinusP, GtPos, GtNeg. -

Takes one BigNum argument, returning a bignum or NIL.

Takes two BigNum arguments, returning a bignum. Calls BMinusP,
BDifference2, BMinus, BPlusA2.

‘BDifference BZeroP, BMinus, BMinusP, BPlusA2, BDifference?.

BTimes2

‘BDivide

BGreaterP

BlLessP

BAdd1

BSub1

Takes two BigNum arguments, returning a bighum. Calls BSize, BMinusP
GtPos, GtNeg, BDigitTimes2, PosifZero, TrimBigNum1.

7

Takes two BigNum arguments, returning a pair of bignums. Calis BSize, GtPos,
BSimpleDivide, BHardDivide.

Takes two BigNum arguments, returning a bignum or NIL. Calls BMinusP,
BDifference.

Takes two BigNum arguments, returning a bignum or NIL. Calls BMinusP,
BDifference.

 Takes a BigNum argument, returning a bignum. Calls BSmallAdd.

Takes a BigNum argument, returning a bignum. Calls BigSmallDiff.

FloatFromBigNum

Takes ‘a- bignum, returning a float. Calls BZeroP, BGreaterP, BlLessP, BSize,
BMinusP.

PSL Manual 6 December 1983 Major Utilities
section 1.7 page 1.27

BChannelPrin2
Calls BigNumP, NonBigNumError, BSimpleDivide, BSize, BZeroP.

BRead Calls GtPos, BReadAdd, BMinus.

BigFromFloat
Takes a float and converts to a bignum. Calls BNum, BPlus2, BTimes2,
BTwoPower, FloatFromBigNum, BMinus, PosifZero.

The following functions are support functions for those given above.

SetBits Takes as an argument the total number of bits per word on a given machine;
sets some fluid variables accordingly. NOTE: FloatHi!* must be changed
separately from this procedure by hand when moving to a new machine both
in bigbig.red and in bigface.red. Calls TwoPower, BNum, BMinus, BSub]l,
BTwoPower, BAdd1. ‘

BigNumP Checks if the argument is a bignum. Calls no special functions.

NonBigNumeError
Calls no special functions.

BSize Gives size of a bignum, i.e. total number of bigits (the tag “BIGPOS” or
“BIGNEG” is number 0). Calls BigNumP.

PoslfZero Takes a bignum; if it is a negative zero, it is converted to a positive zero.
Calls BPosOrNegZeroP, BMinusP.

BPosOrNegZeroP ;
Takes a BigNum; checks if magnitude is zero. Calls BSize.

GtPos Takes an inum/fixnum. Returns a vector of size of the argument; first (i.e.0th)
element is BIGPOS, others are NIL.

GtNeg Takes an inum/fixnum. Returns a vector of size of the argument; first (i.e.Oth)
element is BIGNEG, others are NIL.

TrimBigNum
Takes a BigNum as an argument; truncates any trailing “NIL"s. Calls BigNumP,
NonBigNumError, TrimBigNum1, BSize.

TrimBigNum1
Does dirty work for TrimBigNum, with second argument the size of the
BigNum.

Big2Sys Calls BLessP, BGreaterP, BSize, BMinusP.
TwoPower Takes and returns a fix/inum. 2%%n.

BTwoPowerTakes a fix/inum or bignum, returns a bignum of value 2**n. Calls BigNumP,
Big2Sys, GtPos, TwoPower, TrimBigNum1.

Major Utilities 6 December 1983 _ PSL Manual
page 1.28 section 1.7

BZeroP Checks size of BigNum (0) and sign. Calls BSize, BMinusP.

BOneP Calls BMinusP, BSize.

BAbsCalls BMinusP, BMinus.

BGeq | Calls BLessP.

Bleq Calls BGreaterP.

BMax Calls BGeq.

BMin Calls BlLeq.

BExpt Takes a BigNum and a fix/inum. Calls Int2B, BTimes2, BQuotient.

AddCarry Support for trapping the carry in addition.

BPlusA2 Does the dirty work of addition of two BigNums with signs pre-checked and
identical. Cails BSize, GtNeg, GtPos, AddCarry, PoslfZero, TrimBigNum 1.

SubCarry Mechanism to get carry in subtractions.

BDifference2
Does the dirty work of subtraction with signs pre-checked and identical. Calls
BSize, GtNeg, GtPos, SubCarry, PoslfZero, TrimBigNum 1.

‘BDigitTimes2
Multiplies the first argument (BigNum) by a single Bigit of the second BigNum
argument. Returns the partially completed result. Calls no special functions.

BSmallTimes2
Takes a BigNum argument and a fixnum argument, returning a bignum. Calis
GtPos, BMinusP, GtNeg, PosifZero, TrimBigNum1.

BQuotient - Takes two BigNum arguments, returning a bignum. Calls BDivide.

BRemainder
Takes two BigNum arguments, returning a bignum. Calls BDivide.

BSimpleQuotient
Calls BSimpileDivide.

BSimpieRemainder
Calis BSimpleDivide.

BSimpleDivide
Used to divide a BigNum by an inum. Returns a dotted pair of -quotient and
remainder, both being bignums. Calls BMinusP, GtPos, GtNeg, PoslfZero,
TrimBigNum 1.

BHardDivide

PSL Manual 6 December 1983 Major Utilities
section 1.7 page 1.29

Used to divide two “true” BigNums. Returns a pair of bignums. Algorithm
taken from Knuth. Calls BMinusP, GtPos, GtNeg, BAbs, BSmallTimes2, BSize,
BDifference, BPlus2, TrimBigNum1, BSimpleQuotient, PosifZero.

.- BReadAdd Calls-BSmaliTimes2, BSmallAdd.

BSmallAdd Adds an - inum to a BigNum, returning a bignum. Calls BZeroP, BMinusP,
BMinus, BSmallDiff, BSize, GtPos, AddCarry, PoslfZero, TrimBigNum1.

BNum Takes an inum and returns a BigNum of one bigit; test that the inum is less
than bbase!* is assumed done. Calls GtPos, GtNeg.

BSmallDiff Calls BZeroP, BMinusP, BMinus, BSmallAdd, GtPos, SubCarry, PoslfZero,
TrimBigNum 1.

Int2B Takes a fix/inum and converts to a BigNum. Calls BNum, BRead.

PSL MANUAL : 6 DECEMBER 1983 MISCELLANEOUS UTILITIES
SECTION 2.0 ' PAGE 2.1

CHAPTER 2
MISCELLANEOUS UTILITIES

S22 00 0Introduction L. L L L L L e e e e 2.1
- -2.2. Simulating'a Stack 0oL L 2.1
2.3.‘DefConst.....................'.......... 2.2
2.4, Hashing Cons. 2.2
25. Graph=to-Tree 2.3
2.6. Inspect Utility. L 2.4
2.7. If_System. 25
2.8. Profiler for Compiled Functions. 2.5
2.9. Timing Function Calls 2.8
2.10. Parenthesis Checker 2.9
2.11. A Simple Rational Function Evaluator 29
2.12. Undocumented Utilities., 2.10

2.1. Introduction

This chapter describes an assortment of utility packages. It also provides a list of many
of the undocumented packages that reside on the utility directory with some indication of
their purposes.

2.2. Simulating a Stack

The following macros are in the USEFUL package. They are convenient for adding and
deleting things from the head of a list.

(Push ITM:any STK:list): any macro
(PUSH ITEM STACK)
is equivalent to

(SETF STACK (CONS ITEM STACK))

(Pop STK:1list): any macro
(POP STACK)
does

(SETF STACK (CDR STACK))

Misceilaneous Utilities . 6 December 1983 . PSL Manual
page 2.2 section 2.2

and returns the..item popped off STACK. An . additional argument may be
supplied to Pop, in which case it is a variable which is SetQd to the popped
value.

2.3. DefConst

(DefConst [U:id V:number]): Undefined macro

DefConst is a simple means for defining and using symbolic constants, as
an alternative to the heavy-handed NEWNAM or DEFINE facility in
Reduce/RLisp. Constants are defined thus:

(DefConst FooSize 3)
or as sequential pairs:

(DEFCONST FOOSIZE 3
BARSIZE 4)

~{Const U:id): number . macro

They are referred to by the macro Const, so
(CONST FOOSIZE)

would be replaced by 3.

2.4. Hashing Cons

HCONS is a loadable module. The HCons function creates unique dotted pairs. In other
words, (HCons A B) Eq (HCons C D) if and only if AEq C and B Eq D. This allows rapid
tests for equality between structures, at the cost of expending more time in creating the
structures. The use of HCons may also save space in cases where lists share common
substructure, since only one copy of the substructure is stored.

Heons works by keeping a pair_hash table of all pairs that have been created by HCons.
(So the space advantage of sharing substructure may be offset by the space consumed
by table entries.) This hash table also allows the system to store property lists for
pairs—-in the same way that Lisp has property lists for identifiers.

Pairs created by HCons should not be modified with RplacA and RplacD. Doing so will
make the pair hash table inconsistent, as well as being very likely to modify structure
shared with something that you don’t wish to change. Also note that large numbers may

--be equal without being eq, so the HCons of two large numbers may not be Eq to the
". HCons of two . other numbers that appear to be the same. (Similar warnings hold for
strings and vectors.)

PSL Manual : 6 December 1983 . . . Miscellaneous Utilities
section 2.4 page 2.3

‘The following “user” functions are provided by HCONS:

(HCons [U:anyl): pair macro

-~ The-HCons macro-takes one or more—-arguments and returns their "hashed
---cons”-(right associatively). - With- two arguments this corresponds to a call
of Cons.

(HList [U:anyl): list nexpr

HList is the "HCONS version” of the List function.

(HCopy U:any): any ‘ macro

HCopy is the HCONS version of the Copy function. Note that HCopy serves a
very different purpose than Copy, which is usuaily used to copy a structure
so that destructive changes can be made to the copy without changing the
original. HCopy only copies those parts of the structure which haven't
already been “Consed together” by HCons.

(HAppend U:list V:list): list expr

The HCons version of Append.

(HReverse U:list): list exor
The HCons version of Reverse.

The following two functions can be used to “Get” and “Put” properties for pairs or
identifiers. The pairs for these functions must be created by HCons. These functions are
known to the SetF macro.

(Extended-Put U:{id,pair} IND:id PROP:any): any expr
(Extended-Get U:{id,pair} IND:any): any expr

2.5. Graph-to-Tree

GRAPH-TO-TREE is a loadable module. PrintX obtained by loading DEBUG also prints
circular lists. ,

(Graph-to-Tree A:form): form : expr

--The- function. Graph-to-Tree--copies an arbitrary. s—-expression, removing
-~circularity. - It-does NOT show non-circular shared -structure. Places where
a substructure is Eq to one of its ancestors are replaced by non-interned

Miscellaneous Utilities -6 December 1983 PSL Manual
page 2.4 section 2.5

ids of the form <n> where n is a small integer. The parent is replaced by
a two element list of the form (<n>: u) where the n's match, and u is the
(de-circularized) structure. This is most useful in adapting any printer for
. use with circular structures. -

(CPrint A:any): NIL ’ expr

The function CPrint, also defined in the module GRAPH-TO-TREE, is simply
(PrettyPrint (Graph-to-Tree X)).

Note that GRAPH-TO-TREE is very embryonic. It is MUCH more inefficient than it needs
to be, heavily consing. A better implementation would use a stack (vector) instead of
lists to hold intermediate expressions for comparison, and would not copy non-circular
structure. In addition facilities should be added for optionally showing shared structure,
for performing the inverse operation, and for also editing long or deep structures. Finally,
the output representation was chosen at random and can probably be improved, or at
least brought in line with CL or some other standard.

2.6. Inspect Utility

INSPECT is a loadable module. Currently INSPECT does not work in Lisp syntax.

(Inspect FILENAME:string): expr

This is a simple utility which scans the contents of a source file to tell what
functions are defined in it. It will be embellished slightly to permit the on-
line querying of certain attributes of files. Inspect reads one or more files,
printing and collecting information on defined functions. '

Usage:

(LOAD INSPECT)

(INSPECT "file-name") % Scans the file, and prints proc
% names. It also
% builds the lists ProcedureList!#
% FileList!* and ProcFileList!#*

% File-Name can DSKIN other files

On the Fly printing is controlled by !*Printinspect, default is T. Other lists built include
FileList!* and ProcFileList!*, which is a list of (procedure . filename) for multi-file
processing.

For more complete process, do:

PSL Manual 6 December 1983 Miscellaneous Utilities
section 2.6 page 2.5

(LOAD INSPECT)
(OFF PRINTINSPECT)
(INSPECTOUT)
(DSKIN ...)

.. (DSKIN ...)
(INSPECTEND)

2.7. If_System

(If_System): any macro

This is a compile-time conditional macro for system-dependent code.
FALSE-CASE can be omitted and defaults to NIL. SYS-NAME must be a
member of the fluid variable System_List!¥ For the Dec-20,
System_List!* is (Dec20 PDP10 Tops20 KL10). For the VAX it is (VAX
Unix VMUnix). Load IF_SYSTEM to use this macro. An example of its use
follows.

(de mail ()
(if_system tops20 (runfork "SYS:MM.EXE")
(if_system unix (system "/bin/mail")
(stderror "Mail command not implemented"))))

2.8. Profiler for Compiled Functions

Load PROFILE to get a module that allows one to determine run times for combiled PSL
functions.! This version does not yet try to account for overhead of PROFILE itself.

USAGE: After loading PROFILE module:

PRINT!-PROFILE(); will display default table, sorted alphabetically
This takes :KEYWORD options, any pair can
be omitted
e.g. PRINT!-PROFILE(!:MINCALLS,1, % only show if called at least once
! :MINTIME, 10, % only show if time > 10 ms
! :NAMES, ' (FOO FEE FUM));
PROFILE fnlist; Explicitly profiles functions in fnlist
UNPROFILE fnlist; Explicitly unprofiles functions in fnlist
UNPROFILE '!:ALL; Explicitly unprofiles ALL profiled functions

CLEAR!-PROFILE fnlistj;Resets all counters for functions on FNLIST
CLEAR!-PROFILE '!:ALL; Resets ALL

ON PROFILE; will cause all new PUTD's to have PROFILE code added.

‘Based on B. Hulshof's original version at RAND ~May 1983 Rewritten and optimized by M. Griss

Miscellaneous Utilities 6 December 1983 : PSL Manual

page 2.6 section 2.8

OFF PROFILE; will stop this redefinition, but will NOT change
already profiled code

A log of Profile’s use on the Dec20 follows:

PSL Manual '> 6 December.1983
section 2.8

RLisp
[Keeping rlisp]
Extended 20-PSL 3.1 RLisp, 15-Jun-83
[1] load "pnew:profile";
. NIL
(2] on profile;
NIL
[3] in "<griss>profile-fns.red";
% Profile-fns.red

procedure top N;

<<subcall N; subcall N>>;
*¥%¥%¥ (TOP): base 1324652, length 10 words
TOP

procedure subcall N;

for i:=1:n do fact N;
*%% (SUBCALL): base 1324672, length 10 words
SUBCALL

procedure faci1 n;

if n<=1 then 1 else n¥*fac2(n-1);
*%¥%¥ (FAC1): base 1324711, length 10 words
FAC1

procedure fac2 n;

if n<=1 then 1 else n*fac1(n-1);
*%% (FAC2): base 1324726, length 10 words
FAC2

End;

NIL

(4] off profile;
NIL

(5] on time;

NIL

TIME: 1101 MS
(6] top 20;

NIL '
TIME: 1662 MS
[7] print!-profile();

Miscellaneous Utilities
page 2.7

Miscellaneous Utilities 6 December 1983 . PSL Manual

page 2.8 . section 2.8

function calls time (ms) tree-time (ms)
FAC1 400 793 1509
FAC2 400 716 1432
SUBCALL , 2 90 1599

- TOP i 1 .2 1601
Total (4 fns): 803 1601
NIL

TIME: 384 MS

2.9. Timing Function Calls

Load TIME-FNC to get code to time function calls.

Usage:

do
(timef function-name-1 function-name-2 ...)

Timef is a fexpr.

It will redefine the functions named so that timing information is
kept on these functions.

This information is kept on the property list of the function name.
The properties used are 'time' and 'number-of-calls'.

(get function-name 'time) gives you the total time in the function.
(not counting gec time).

Note, this is the time from entrance to exit.

The timef function redefines the function with an

unwind-protect, so calls that are interrupted

by *throws are counted.

(get function-name 'number-of-calls) gives you the number of times
the function is called.

To stop timing do :

(untimef function-name1 ..)

or do (untimef) for all functions.
(untimef) is a fexpr.

To print timing information do
(print-time-info function-name-1 function-name-2 ..)

or do (print-time-info) for timing information on all function names.

special variables used:
¥timed-functions* : list of all functions currently being timed.

PSL Manual 6 December 1983 . Miscellaneous Utilities
section 2.9 page 2.9

¥3ll-timed-functions : list of all functions ever timed in the
current session.

Comment: if tr is called on a called on a function that is already
--being timed, and then-untimef is called on the function, the
function-will no longer be traced.

2.10. Parenthesis Checker

PCHECK will read a Lisp syntax (.SL) file, printing some of the top-level of each S-
expression. It is meant to survey the file, and if the file has unbalanced parensthesis, will
show where things get confused.

To use:

(LOAD PCHECK)
(PCHECK "foo.s1")

2.11. A Simple Rational Function Evaluator
POLY is a simple (pedagogic) Rational Function Evaluator.

After loading POLY, run function ALGG(); or RAT(); These accept a sequence of
expressions:

<exp> ; | QUIT; (Semicolon terminator)

<exp> ::= <term> [+ <exp> | - <exp>]

<term> ::= <primary> [* <term> | / <term>]

<primary> ::= <primary0> [~ <primary0> | ' <primary0>]
~ is exponentiation, ' is derivative

<primary0> ::= <number> | <variable> | (<exp>)

It includes a simple parser (RPARSE), 2 evaluators (RSIMP x) and (PRESIMP), and 2
prettyprinters, (RATPRINT) and (PREPRINT)

PREFIX Format: <number> | <id> | (op argl arg2)
+ -> PLUS2

-> DIFFERENCE (or MINUS)

TIMES2

-> QUOTIENT

-> EXPT

' -> DIFF

\

>N ¥ |

Canonical Formats: Polynomial: integer | (term . polynomial)
term : (power . polynomial)
power -~ : (variable . integer)
Rational : (polynomial . polynomial)

Miscellaneous Utilities 6 December 1983 PSL Manual
page 2.10 section 2.12

2.12. Undocumented Utilities

This section lists most of the utilities available in PSL that are not documented. Consult
the sources in directory pu: on the DEC-20, $pu on the VAX, or the utility directory on
~your-system. - These modules can be loaded.

ADDR2ID Converts a code pointer to a symbol (function name)

ASSOCIATION
Mutable association lists

CLCOMP1 Incompatible Common Lisp compatibility
COMMON Compile-time and read-time support for Common Lisp compatibility
EVALHOOK Support for special evaluation

FAST-ARITH
Speed up generic arithmetic

FAST-EVECTORS
Fast-compiled evector operations

SLOW-STRINGS
Defines some string operations

FAST-STRINGS
Fast versions of the functions in SLOW-STRINGS

" STRINGX Some useful string functions

STRING-INPUT
Input from strings

STRING-SEARCH
General purpose searches for substrings

UN-RLISP Translates a program written in RLisp syntax into Lisp syntax
UTIL General utility/support functions

EXTENDED-CHAR
Nine-bit terminal input characters

HASH Hash table package

HEAP-STATS
Part of heap statistics gathering package

‘H-STATS-1Part of heap.statistics-gathering package

PARSE-COMMAND-STRING

PSL Manual' 7 6 December 1983 Miscellaneous Utilities

section 2.12
Parse command 'string given at invocation of PSL

PROGRAM-COMMAND-INTERPRETER
Redefine startup routine to read command given at invocation of PSL

"PATHNAMEX
Useful functions involving pathnames

PSL-INPUT-STREAM
File input stream objects

PSL-QUTPUT-STREAM
File output stream objects

page 2.11

- PsL MANUAL 6 DECEMBER 1983 THE OBJECTS MODULE
SECTION 3.0 PAGE 3.1

CHAPTER 3
THE OBJECTS MODULE

3. Introduction . oL L oL L L L L e e, 3.1
311 Defflavor L L L Lo L e 3.2
3.1.2. Creating Objects 32
3.1.3. Methods L oL, 33
3.1.4. Sanctity of Objects 3.3

3.2. Reference Information. 33
3.2.1. Loading the Module 3.3
3.22. Defflavor L, 34
3.2.3. Defmethod e e e e e e 35
3.2.4. Creating New Instances of Flavors e e e e e, 3.6

3.3. Operating on Objects 3.7

3.4. Useful Functions on Objects .. 3.9

3.5. Debugging Information . . . e e e e e 3.9

3.6. Declare-Flavor and Undeclare—Flavor e e e e e e e 3.9

3.7. Representation Information, 3.10

3.1. Introduction

' The OBJECTS module provides simple support for object-oriented programming in
PSL. It is based on the “flavors” facility of the Lisp Machine, which is the source of its
terminology. The Lisp Machine manual contains a much longer introduction to the idea of
object oriented programming, generic operations, and the flavors facility in particular.
This discussion goes over the basics of using flavored objects once briefly to give you an
idea of what is involved, then goes into details.

A datatype is known as a flavor (don’t ask). The definition of a flavor can be thought of
in two parts: the DEFFLAVOR form (“flavor definition”), plus a set of DEFMETHOD forms
{("method definitions”) for operating on objects of that flavor.

With the objects package the programmer completely controls what operations are to
be done on objects of each flavor, so this is a true object-oriented programming facility.
Also, all operations on flavored objects are automatically "generic” operations. This
means that any programs you write that USE flavored objects have an extra degree of
built.-in generality.

What does it mean to say that operations on flavored objects are generic? This means
that the operations can be done on an object of any flavor, just so long as the operations
are defined for that flavor of object. The same operation can be defined for many flavors,
and whenever the operation is invoked, what is actually done will depend on the flavor of

]This chapter is adapted from the file ph:objects.doc which was written by Cris Perdue and Alan Snyder

The Objects Module - 6 December 1983 PSL Manual
page 3.2 section 3.1

the object it is being done to.

We may wish to write a scanner that reads a sequence of characters. out of some
object and processes them. It does not need to assume that the characters are coming

- .. from a. file, . or even from-an 1/Q-channel.

Suppose the scanner gets a character by invoking the GET-CHARACTER operation. In
this case any object of a flavor with a GET-CHARACTER operation can be passed to the
scanner, and the GET-CHARACTER operation defined for that object’s flavor will be done
to fetch the character. This means that the scanner can get characters from a string, or
from a text editor’'s buffer, or from any object at all that provides a GET-CHARACTER
operation. The scanner is automatically general.

3.1.1. Defflavor

A flavor definition looks like:
(defflavor flavor-name (var! var2 ...) () option1 option2 ...)
‘Example:

(defflavor complex-number
(real-part
(imaginary-part 0.0))
() ‘
gettable-instance-variables
initable-instance-variables

)

A flavor definition specifies the fields, components, or in our terminology, the “instance
variables” that each object of that flavor is to have. The mention of the instance variable
imaginary-part indicated that by defauit the imaginary part of a complex number will be
initialized to 0.0. There is no default initialization for the real-part.

Instance variables may be strictly part of the implementation of a flavor, totally invisible
"to users. Typically though, some of the instance variables are directly visible in some
way to the user of the object. The flavor definition may specify “initable-instance-
variables”, “gettable-instance-variables”, and “settable-instance-variables”. None, some
of, or all of the instance variables may be specified in each option.

3.1.2. Creating Objects

The function MAKE-INSTANCE provides a convenient way to create objects of any flavor.
The flavor of the object to be created and the initializations to be done are given as
-- parameters in-a-way that is fully-independent of the internal representation of the object.

PSL Manual - 6 December 1983 The Objects Module
section 3.1 page 3.3

3.1.3. Methods

The function “=>", whose name is intended to suggest the sending of a message to an
object, is usually used to invoke a method.

Examples:

(=> my-object zap)
(=> thingl set-location 2.0 3.4)

The first “argument” to => is the object being operated on: my-object and thing1 in the
examples. The second "argument” is the name of the method to be invoked: zap and set-
location. The method name IS NOT EVALUATED. Any further arguments become
arguments to the method. (There is a function SEND which is just like => except that the
method name argument is evaluated just like everything else.)

Once an object is created, all operations on it are performed by “methods” defined for
objects of its flavor. The flavor definition itself also defines some methods. For each
"gettable” instance variable, a method of the same name is defined which returns the
current value of that instance variable. For "settable” instance variables a method named
“set-<variable name>" is defined. Given a new value for the instance variable, the
method sets the instance variable to have that value.

3.1.4. Sanctity of Objects

Most Lisps and PSL in particular leave open the possibility for the user to perform illicit
operations on Lisp objects. Objects defined by the objects package are represented as
ordinary Lisp objects (evectors at present), so in a sense it is quite easy to do illicit
operations on them: just operate directly on its representation (do evector operations).

On the other hand, there are major practical pitfalls in doing this. The representation of
a flavor of objects is generated automatically, and there is no guarantee that a particular
flavor definition will result in a particular representation of the objects. There is also no
guarantee that the representation of a flavor will remain the same over time. It is likely
that at some point evectors will no longer even be used as the representation. ‘

In addition, using the objects package is quite convenient, so the temptation to operate
on the underlying representation is reduced. For debugging, one can even define a
coupie of extra methods “on the fly” if need be.

3.2. Reference Information

3.2.1. Loading the Module

NOTE: THIS FILE DEFINES-BOTH MACROS AND ORDINARY LISP FUNCTIONS. IT MUST BE
~LOADED BEFORE ANY OF THESE FUNCTIONS ARE USED. - The recommended way of doing

The Objects Module : 6 December 1983 PSL Manual
page 3.4 section 3.2

this is to put the expression
(BothTimes (load objects))

at the -beginning of your source file. -This will cause the:package to be loaded at both
compiie and load time.

3.2.2. Defflavor

The macro DEFFLAVOR is used to define a new flavor of object.

(defflavor name:id instance-variables:list
mixin-flavors:NIL [option:form]): id-list macro

Examples:

(defflavor complex-number (real-part imaginary-part) ()
gettable-instance-variables
initable-instance-variables

)

(defflavor complex-number ((real-part 0.0)
(imaginary-part 0.0)
)
()

gettable-instance-variables
(settable-instance-variables real-part)

)

The INSTANCE-VARIABLES form a list. Each member of the list is either a

symbol (id) or a list of 2 elements. The 2-element list form consists of a
symbol and a default initialization form.

Note: Do not use names like “IF" or "WHILE” for instance variables: they are
translated freely within method bodies (see DEFMETHOD). The translation
process is not very smart about which occurrences of the symbol for an
instance variable are actually uses of the variable, though it does
understand the nature of QUOTE. '

The MIXIN-FLAVORS list must be empty. In the Lisp Machine flavors facility,
this may be a list of names of other flavors.

Recognized options are:

PSL Manual ' -6.December 1983 The Objects Module
section 3.2 page 3.5

(GETTABLE-INSTANCE-VARIABLES var1 var2 ...)
(SETTABLE-INSTANCE-VARIABLES var1 var2 ...)
(INITABLE-INSTANCE-VARIABLES vari var2 ...)

- . GETTABLE-INSTANCE-VARIABLES ' [make all instance variables GETTABLE]
SETTABLE-INSTANCE-VARIABLES - [make all instance variables SETTABLE]
INITABLE-INSTANCE-VARIABLES [make all instance variables INITABLE]

An empty list of variables is taken as meaning all variables rather than
none, so (GETTABLE-INSTANCE-VARIABLES) is equivalent to GETTABLE-
INSTANCE-VARIABLES.

For each gettable instance variable a method of the same name is
generated to access the instance variable. If instance variable LOCATION is
gettable, one can invoke (=> <object> LOCATION).

For each settable instance variable a method with the name SET-<name>
is generated. If instance variable LOCATION is settable, one can invoke (=>
<object> SET-LOCATION <expression>). Settable instance variables are
always also gettable and initable by implication. If this feature is not
desired, define a method such as SET-LOCATION directly rather than
declaring the instance variable to be settable.

Initable instance variables may be initialized via options to MAKE-INSTANCE
or INSTANTIATE-FLAVOR. See below.

3.2.3. Defmethod

The macro DEFMETHOD is used to define a method on an existing flavor.

(defmethod name-list:id-list [arg:id [expr:form]l): id-1list macro

NAME-LIST is a two element id-list giving the flavor name on which the
method is to be used and the name of the method being defined. Each
ARG is an identifier. There may be zero or more ARGs.

Examples:

(defmethod (complex-number real-part) ()
real-part)

(defmethod (complex-number set-real-part) (new-real-part)
(setf real-part new-real-part))

The body of a method can refer to any instance variable of the flavor by
-using -the name just like -an :ordinary- variable. - They can set them using
SETF. .All occurrences of instance variables (except within evectors or

The Objects Module ' -6 December 1983 ~ PSL Manual
page 3.6 section 3.2

quoted lists) are translated to an invocation of the form (IGETV SELF n).

The body of a method can also freely use SELF much as though it were
another instance variable. SELF is bound to the object that the method
- ~vapplies to. -SELF -may-not be setq’ed or.setf’ed.

Example using SELF:

(defmethod (toaster plug-into) (socket)
(setf plugged-into socket)
(=> socket assert-as-plugged-in self))

3.2.4. Creating New Instances of Flavors

There are two ways to create a new instance of a flavor: use Make-Instance or
Instantiate-Flavor.

(make-instance flavor-name:id [instance-var:id init-val:any]): object macro

MAKE-INSTANCE takes as arguments a flavor name and an optional sequence
of initializations, consisting of alternating pairs of instance variable names
and corresponding initial values. Note that all the arguments are evaluated.
It returns an object of the specified flavor.

Examples:

(setq x (make-instance 'complex-number))
(setq y (make-instance 'complex-number 'real-part 0.0
'imaginary-part 1.0))

Initialization of a newly made object happens as follows:

Each instance variable with initialization specified in the call to make-
instance is initialized to the value given. Any instance variables not
initialized in this way, but having default initializations specified in the flavor
definition are initialized by the default initialization specified there. All other
instance variables are initialized to the symbol ¥*UNBOUND#¥.

If a method named INIT is defined for this flavor of object, that method is
invoked automatically after the initializations just discussed. The INIT
method is passed as its one argument a list of alternating variable names
and initial values. This list is the result of evaiuating the initializations
given to make-instance. For example, if we call

(make-instance 'complex-number '‘'real-part (sin 30)
: : . -'imaginary=part (cos 30))

PSL Manual 6.December 1983 The Objects Module '
section 3.2 page 3.7

then the argument to the-INIT method (if any) would be
(real-part .5 imaginary-part .866).

--.-'The INIT method may-do-anything desired to set up the desired initial state
of the object.

At present, this value passed to the INIT method is of virtually no use to
the INIT method since the values have been stored into the instance
variables already. In the future, though, the objects package may be
extended to permit keywords other than names of instance variables to be
in the initialization part of calls to make-instance. If this is done, INIT
methods will be able to use the information by scanning the argument.

(Instantiate-Flavor flavor-name:id init-list:list): object expr

This is the same as Make-Instance, except that the initialization list is
provided as a single (required) argument.

Example:

(instantiate-flavor 'complex-number
(list 'real-part (sin 30) 'imaginary-part (cos 30)))

3.3. Operating on Objects

Operations on an object are done by the methods of the flavor of the object. We say
that a method is invoked, or we may say that a message is sent to the object. The
notation suggests the sending of messages. In this metaphor, the name of the method to
use is part of the message sent to the object, and the arguments of the method are the
rest of the message. There are several approaches to invoking a method:

* => A convenient form for sending a message. Examples:
(=> r real-part)
(=> r set-real-part 1.0)
The message name is not quoted. Arguments to the method are supplied as
- arguments to =>. In these examples, r is the object, real-part and set-real-

part are the methods, and 1.0 is the argument to the set-real-part method.

* SEND Send a message in which the message is evaluated. Examples:

The Objects Module 6 December 1983 PSL Manual
page 3.8 section 3.3

(send r 'real-part)
(send r 'set-real-part 1.0)

~ vz~ 2The meanings of these two examples are the same_as the meanings of the
- previous two. Only the syntax is different: the ‘message name is quoted.

* SEND-IF-HANDLES Conditionally Send a Message (Evaluated Message Name)
Examples:

(send-if-handles r 'real-part)
(send-if-handles r 'set-real-part 1.0)

SEND-IF-HANDLES is like SEND, except that if the object defines no method to
handle the message, no error is reported and NIL is returned.

* LEXPR-SEND Send a Message (Explicit “Rest” Argument List) Examples:
(lexpr-send foo 'bar a b ¢ list)

The last argument to LEXPR-SEND is a list of the remaining arguments.

* LEXPR-SEND-IF-HANDLES This is the same as LEXPR-SEND, except that no
error is reported if the object fails to handle the message.

* LEXPR-SEND-1 - Send a Message (Explicit Argument List) Examples:
(lexpr-send-1 r 'real-part nil)
(lexpr-send-1 r 'set-real-part (list 1.0))

Note that the message name is quoted and that the argument list is passed
as a single argument to LEXPR-SEND-1.

* LEXPR-SEND-1-IF-HANDLES This is the same as LEXPR-SEND-1, except that
no error is reported if the object fails to handle the message.

* EV-SEND - EXPR form of LEXPR-SEND-1 EV-SEND is just like LEXPR-SEND-1,
except that it is an EXPR instead of a MACROQ. Its sole purpose is to be used
as a run-time function object, for example, as a function argument to a
function.

PSL Manual - 6 December 1983 The Objects Module
section 3.4 page 3.9

3.4. Useful Functions on Objects

(Object-Type object:id): id,NIL expr

- The Object-Type function returns the-type (an id)-of the specified object, or
NIL, if the argument is not an object. . At present this function cannot be
guaranteed to distinguish between objects created by the OBJECTS package
and other Lisp entities, but the only possible confusion is with vectors or
evectors.

3.5. Debugging Information

Any object may be displayed symbolically by invoking the method DESCRIBE, e.g., (=> x
describe). This method prints the name of each instance variable and its value, using the
ordinary Lisp printing routines. Flavored objects are liable to be complex and nested
deeply or even circular. This makes it often a good idea to set PRINLEVEL to a small
integer before printing structures containing objects to control the amount of output.

When printed by the standard Lisp printing routines, “flavored objects” appear as
evectors whose zeroth element is the name of the flavor.

For each method defined, there is a corresponding Lisp function named <flavor-
name>$<method-name>. Such function names show up in backtrace printouts.

It is permissible to define new methods on the fly for debugging purposes.

3.6. Declare-Flavor and Undeclare-Flavor
*** Read these warnings carefully! ek

This facility can reduce the overhead of invoking methods on particular variables, but it
should be used sparingly. It is not well integrated with the rest of the language. At
some point a proper declaration facility is expected and then it will be possible to make
declarations about objects, integers, vectors, etc., all in a uniform and clean way.

The DECLARE-FLAVOR macro allows you to declare that a specific symbol is bound to
an object of a specific flavor. This allows the flavors implementation to eliminate the
run—-time method lookup normally associated with sending a message to that variable,
which can result in an appreciable improvement in execution speed. This feature is
motivated solely by efficiency considerations and should be used ONLY where the
performance improvement is critical.

Details: if you declare the variable X to be bound to an object of flavor FOO, then
WITHIN THE CONTEXT OF THE DECLARATION (see below), expressions of the form (=> X
GORP ..) or (SEND X ‘GORP .) will be replaced by function invocations of the form
(FOO$GORP X ..). Note that there is no check made that the flavor FOO actually contains
a method GORP. If it does not, then a run-time error “Invocation of undefined function
FOO$GORP” will be reported.

The Objects Module ' 6 December 1983 PSL Manual
page 3.10 section 3.6

WARNING: The DECLARE-FLAVOR feature is not presently well integrated with the
compiler. Currently, the DECLARE-FLAVOR macro may be used only as a top-level form,
like the PSL FLUID declaration. It takes effect for all code evaluated or compiled
henceforth. Thus, if you should later compile a different file in the same compiler, the

~.declaration will still be .in effect! . THIS IS ‘A DANGEROUS CROCK, SO BE CAREFUL! To

" avoid problems, | recommend that DECLARE-FLAVOR be used only for uniquely-named
variables. The effect of a DECLARE-FLAVOR can be undone by an UNDECLARE-FLAVOR,
which also may be used only as a top-fevel form. Therefore, it is good practice to
bracket your code in the source file with a DECLARE-FLAVOR and a corresponding
UNDECLARE-FLAVOR.

Here are the syntactic details:
(DECLARE-FLAVOR FLAVOR-NAME VAR1T VAR2 ..) (UNDECLARE-FLAVOR VAR1 VAR2 .)

% Did you read the above warnings??? ***

3.7. Representation Information
(You don’t need to know any of this to use this stuff.)

A flavor-name is an ID. It has the following properties:

VARIABLE-NAMES
A list of the instance variables of the flavor, in order of their location in the
instance evector. This property exists at compile time, dskin time, and load

~ time.

INITABLE-VARIABLES
A list of the instance variables that have been declared to be INITABLE. This
property exists at dskin time and at load time.

METHOD-TABLE
An association list mapping each method name (ID) defined for the flavor to
the corresponding function name (ID) that implements the method. This
property exists at dskin time and at load time.

INSTANCE-VECTOR-SIZE
An integer that specifies the number of elements in the evector that
represents an instance of this flavor. This property exists at dskin time and at
load time. It is used by MAKE-INSTANCE.

The function that implements a method has a name of the form FLAVORSMETHOD. Each
such function ID has the following properties: '

SOURCE-CODE
A list- of the form (LAMBDA (SELF ..) ..) which is the untransformed source
-.code for the -method. This-property exists at compile time and dskin time.

PSL Manual 6 December 1983 . _ The Objects Module
section 3.7 page 3.11

Implementation Note:

A tricky aspect of the code that implements the objects package is making sure that the
right things happen at the right time. When a source file is read and evaluated (using

= ~'DSKIN), then. everything: must.happen: at once. "However, when a-source file is compiled

to produce a FASL file, then some actions must be performed at compile-time, whereas
other actions are supposed to occur when the FASL file is loaded. Actions to occur at
compile time are performed by macros; actions to occur at load time are performed by
the forms returned by macros.

Another goal of the implementation is to avoid consing whenever possible during
method invocation. The current scheme prefers to compile into (APPLY HANDLER (LIST
args...)), for which the PSL compiler will produce code that performs no consing.

PSL MANUAL 6 DECEMBER 1983 EDITOR

SECTION 4.0 PAGE 4.1
CHAPTER 4
EDITORS
. 4.1 A Mini Structure-Editor e e 4.1
4.2. The EMODE Screen Editor 4.2
4.2.1. Windows and Buffers in Emode. 4.5
4.3. Introduction to the Full Structure Editor. | 4.5
4.3.1. Starting the Structure Editor 4.5
43.2. Structure Editor Commands 4.6

4.1. A Mini Structure—-Editor

PSL and RLisp provide a fairly simple structure editor, essentially a subset of the
structure editor described below in section 4.3. This mini editor is usually resident in PSL
and RLisp, or can be LOADed. It is useful for correcting errors in input, often via the E
option in the BREAK loop. Do HELP(EDITOR) for more information.

To edit an expression, call the function Edit with the expression as an argument. The
edited copy is returned. To edit the definition of a function, call EditF with the function
name as an argument.

In the editor, the following commands are available (N indicates a non-negative integer):

P edit
Prints the subexpression under consideration. On entry, this is the entire

expression. This only prints down PLevel levels, replacing all edited
subexpressions by *** Plevel is initially 3.

PL (N) k edit
Changes PLEVEL to N.

N:integer edit-command

Sets the subexpression under consideration to be the nth subexpression of
the current one. That is, walk down to the nth subexpression.

-N:integer , edit-command

Sets the current subexpression to be the nth Cdr of the current one.

UP

®
~

Go to the subexpression you were in just before this one.

“F(S)

EDITOR 6 December 1983 ' PSL Manual
page 4.2 section 4.1

T edit

Go to the top of the original expression.

o©
=

Find the first occurrence of the S-expression S. The test isv performed by
Equal, not Eq. The current level is set to the first level in which S was
found.

(N:integer) edit-command

Delete the Nth element of the current expression.

(N:integer [ARG]) edit-command

Replace the Nth element by ARGs.

(-N:integer [ARG]) edit-command

Insert the elements ARGs before the nth element.

(R S1.S2)

Replace ail occurrences of S1 (in the tree you are placed at) by S2.

(o3
=

o
®
-

Enter a Break loop under the editor.

OK

®
=

Leave the editor, returning the edited expression.

HELP

®
Q.
=

i

Print an explanatory message.

if the editor is called from a Break loop, the edited value is assigned back to
ErrorForm!¥*.

4.2. The EMODE Screen Editor

EMODE is an EMACS-like screen editor, written entirely in PSL. To invoke EMODE, call
the function EMODE after LOADing the EMODE module. EMODE is modeled after EMACS,
so use that fact as a guide.

After starting up EMODE, you can-use one of the following commands to exit.

PSL Manual 6 December 1983 EDITOR
section 4.2 page 4.3

<Ctrl-X Ctri-Z>

“quits” to the EXEC (you can continue or start again).
<Ctrl-Z Ctrl-Z>

goes back into “normal” I/0 mode.

EMODE is built to run.on.a Teleray terminal as the default. To use some other terminal
you must LOAD in a set of different driver functions after loading EMODE. The following
drivers are currently available:

* HP2648A

* TELERAY

* VT100

* V152

* AAA [Ann Arbor Ambassador]

The sources for these files are on <PSLEMODE> {logical name PE:). It should be quite
easy to modify one of these files for other terminals. See the file PE:TERMINAL-
DRIVERS.TXT for some more information on how this works.

An important (but currently somewhat bug-ridden) feature of EMODE is the ability to
evaluate expressions that are in your buffer. Use <Meta-E> to evaluate the expression
starting on the current line. <Meta-E> (normaily) automaticaily enters two window
mode if anything is “printed” to the OQUT_WINDOW buffer, which is shown in the lower
window. If you don‘t want to see things being printed to the output window, you can set
the variable !*OUTWINDOW to NiL. (Or use the RLisp command "OFF OUTWINDOW;"))
This prevents EMODE from automatically going into two window mode if something is
printed to OUT WINDOW. You must still use the "<Ctrl-X> 1" command to enter one
window mode initiaily.

You may aiso find the <Ctri-Meta-Y> command useful. This inserts into the current
buffer the text printed as a result of the last <Meta-E>.

The function “PrintAllDispatch” prints out the current dispatch table. You muét call
EMODE before this table is set up.

While in EMODE, the <Meta-?> (meta—question mark) character asks for a command
character and tries to print information about it.

The basic dispatch table is (roughly) as follows:

Character Function Comments
<Ctrl-@> SETMARK
<Ctrl-A> ! $BEGINNINGOFLINE
<Ctrl-B> ! $BACKWARDCHARACTER
<Ctrl-D> ! $DELETEFORWARDCHARACTER
<Ctrl-E> ! $ENDOFLINE
<Ctrl-F> ! $FORWARDCHARACTER
- Linefeed 1$CRLF = ... Acts like carriage return
<Ctrl-K> : KILL _LINE : _

<Ctrl-L> FULLREFRESH

_ EDITOR
page 4.4

Return

<Ctrl-N>
<Ctrl-0>
<Ctrl-p>
<Ctrl-R>

<Ctrl-S>
<Ctrl-U>

<Ctrl-V>
<Ctrl-W>
<Ctrl-X>

<Ctrl-Y>
<Ctri-2>

escape

rubout

<Ctrl-Meta-B>
<Ctrl-Meta-F>
<Ctrl-Meta-K>
<Ctrl-Meta-Y>

<Ctrl-Meta-Z>

<Meta-Ctrl-rubout>

<Meta-<>
<Meta->>
<Meta-?>

<Meta-B>
<Meta-D>
<Meta-E>
<Meta-V>
<Meta-W>
<Meta-X>

<Meta-Y>

<Meta-Rubout>

<Ctrl-X>
<Ctrl-X>
<Ctrl-X>
<Ctrl-X>
<Ctrl-X>
<Ctrl-X>
<Ctrl-X>
<Ctrl-X>

<Ctrl-X>

<Chrl=-X>

<Ctrl-B>
<Ctrl-R>
<Ctrl-w>
<Ctrl-X>
<Ctrl-Z>

O W

6 December 1983

!$CRLF

! $FORWARDLINE
OPENLINE

! $BACKWARDLINE

DOWNWINDOW
KILL REGION
! $DOCNTRLX

INSERT KILL BUFFER
DOCONTROLMETA

ESCAPEASMETA

Backward search for string, type

-a-carriage return to terminate
- the string

Forward search for string

Repeat a command. Asks for
count (terminate with a carriage
return), then it asks for the
command character

As in EMACS, <Ctrl-X> is a
prefix for "fancier" commands
Yanks back killed text

As in EMACS, acts like
<Ctrl-Meta->

As in EMACS, escape acts like
the <Meta-> key

! $DELETEBACKWARDCHARACTER

BACKWARD SEXPR
FORWARD_SEXPR
KILL_FORWARD SEXPR

INSERT_LAST_EXPRESSION Insert the last "expression"

OLDFACE

KILL_BACKWARD_ SEXPR
! $BEGINNINGOFBUFFER

! $ENDOFBUFFER
! $HELPDISPATCH

BACKWARD WORD
KILL_FORWARD_WORD

UPWINDOW
COPY REGION
1 $DOMETAX

UNKILL _PREVIOUS

KILL BACKWARD WORD
PRINTBUFFERNANES
CNTRLXREAD
CNTRLXWRITE
EXCHANGEPOINTANDMARK

ONEWINDOW
TWOWINDOWS
CHOOSEBUFFER

OTHERWINDOW

- "WRITESCREENPHOTO

typed as the result of a
<Meta-E>

Leave EMODE, go back to
"regular" RLISP

As in EMACS, move to beginning
of buffer

As in EMACS, move to end of
buffer

Asks for a character, tries to
print information about it

Evaluate an expression
As in EMACS, move up a window

As in EMACS, <Meta-X> is another
prefix for "fancy" stuff
As in EMACS

Prints a list of buffers
Read a file into the buffer
Write the buffer out to a file

As in EMACS, exits to the EXEC
Go into one window mode

Go into two window mode

EMODE asks for a buffer name,
and then puts you in that buffer

. .Select other window
~Write a "photograph" of the

screen to a file

PSL Manual
section 4.2

PSL Manual : 6 December 1983 EDITOR
section 4.2 page 45

4.2.1. Windows and Buffers in Emode

[??? This section to be completed at a later date. ???]

4.3. Introduction to the Full Structure Editor

PSL also provides an extremely powerful form-oriented editor'. This facility allows the
user to easily alter function definitions, variable values and property list entries. It
thereby makes it entirely unnecessary for the user to employ a conventional text editor in
the maintenance of programs. This document is a guide to using the editor. Certain
features of the UCI! LISP editor have not been incorporated in the translated editor, and
we have tried to mark all such differences.

4.3.1. Starting the Structure Editor

This section describes normal user entry to the editor (with the EditF, EditP and EditV
fuunctions) and the editing commands which are available. This section is by no means
complete. In particular, material covering programmed calls to the editor routines is not
treated. Consult the UCI LISP manual for further details.

To edit a function named FOO do
*(EDITF FOO)
To edit the value of an atom named BAZ do
*(EDITV BAZ)
To edit the property list of an atom named FOOBAZ do
#(EDITP FOOBAZ)

These functions are described later in the chapter.

Warning: Editing the property list of an atom may position pointers at unprintable
structures. It is best to use the F (find) command before trying to print property lists.
This editor capability is variable from implementation to implementation.

The editor prompts with

-E-
*

You can then input any editor command. The input scanner is not very smart. |t
terminates its scan and begins processing when it sees a printable character immediately

]This version of. the UCI LISP editor was translated to to Standard LISP by Tryg Ader and Jim MacDonald of IMSSS.
Stanford, and adapted to PSL by E. Benson. The UCI LISP editor is derived from the Interlisp editor.

EDITOR 6 December 1983 PSL Manual
page 4.6 section 4.3

followed by a carriage return. Do not use escape to terminate an editor command. If the
editor seems to be repeatedly requesting input type P<ret> (print the current expression)
or some other command that ordinarily does no damage, but terminates the input
solicitation.

~-The following set of topics-makes a good “first glance” at the editor.

Entering the editor: EDITF, EDITV.

Leaving the editor: OK.

Editor's attention: CURRENT-EXP.

Changing attention: POS-INTEGER, NEG-INTEGER, 0, ~, NX, BK.
Printing: P, PP.

Modification: POS-INTEGER, NEG-INTEGER, A, B, :, N.
Changing parens: Bl, BO.

Undoing changes: UNDO.

For the more discriminating user, the next topics might be some of the following.

Searches: PATTERN, F, BF.
Complex commands: R, SW, XTR, MBD, MOVE.
Changing parens: L, LO, RI, RO.

~Undoing changes: TEST, UNBLOCK, !UNDO.

Other features should be skimmed but not studied until it appears that they may be
useful.

-4.3.2. Structure Editor Commands

Note that arguments contained in angle brackets <> are optional.

A ([ARG)) edit
This command inserts the ARGs (arbitrary LISP expressions) After the
current expression. This is accomplished by doing an UP and a (-2 exp1
exp2 .. expn) or an (N expl exp2 .. expn), as appropriate. Note the way in
which the current expression is changed by the UP.

B ([ARG]) edit

This command inserts the ARGs (arbitrary LISP forms) Before the current
expression. This is accomplished by doing an UP followed by a (-1 expl
exp2 .. expn). Note the way in which the current expression is changed by
the UP. .

PSL Manual . 6 December 1983

EDITOR
section 4.3 page 4.7
BELOW (COM, <N>) edit

This command changes the current expression in the following manner.
The edit command COM is executed. If COM is not a recognized command,

“then {_ COM) is executed-instead. Note that-COM-should cause ascent in

-~ the edit chain (i.e. should be.equivalent to. some number of zeros). BELOW
then evaluates (note!) N and descends N links in the resulting edit chain.
That is, BELOW ascends the edit chain (does repeated 0s) looking for the link
specified by COM and stops N links below that (backs off N 0s). If N is not
given, 1 is assumed.

BF (PAT, <FLG>)

Also can be used as:
BF PAT

This command performs a Backwards Find, searching for PAT (an edit
pattern). Search begins with the expression immediately before the current
expression and proceeds in reverse print order. (If the current expression is
the top level expression, the entire expression is searched in reverse print
order.) Search begins at the end of each list, and descends into each
element before attempting to match that element. If the match fails,
proceed to the previous element, etc. until the front of the list is reached.
At that point, BF ascends and backs up, etc.

The search algorithm may be slightly modified by use of a second
argument. Possible FLGs and their meanings are as follows.

T begins search with the current expression rather than with the
preceding expression at this level.

NIL or missing - same as BF PAT.

NOTE: if the variable UPFINDFLG is non-NIL, the editor does an UP after the
expression matching PAT is located. Thus, doing a BF for a function name
yields a current expression which is the entire function call. If this is not
desired, UPFINDFLG may be set to NIL. UPFINDFLG is initially T.

BF is protected from circular searches by the variable MAXLEVEL. |If the total
number of Cars and Cdrs descended into reaches MAXLEVEL (initially 300),
search of that tail or element is abandoned exactly as though a complete
search had failed.

BI (N1, N2)

This command inserts a pair of parentheses in the current expression; i.e. it
is a Balanced Insert. . (Note that parentheses -are ALWAYS balanced, and
hence must be added or removed in pairs.)) A left parenthesis is inserted
before element N1 of the current expression. A right parenthesis is inserted

®

©

~t

EDITOR 6 December 1983 PSL Manual
page 4.8 section 4.3

after element N2 of the-current expression. . Both. N1 and N2 are usually
integers, and element N2 must be to the right of element N1.

(Bl n1) is equivalent to (Bl n1 n1).

~The -NTH.command: is.used .in' the. search,.so that N1 and N2 may be any
location specifications. The expressions used are the first element of the
current expression in which the specified form is found at any level.

BIND ([COM])

This command provides the user with temporary variables for use during
the execution of the sequence of edit commands coms. There are three
variables available: #1, #2 and #3. The binding is recursive and BIND may
be executed recursively if necessary. All variables are initialized to NiL.
This feature is useful chiefly in defining edit macros.

(]
=

BK

o
=

The current expression becomes the expression immediately preceding the
present current expression; i.e. Back Up. This command generates an error
if the current expression is the first expression in the list.

BO (N)

®
=

The BO command removes a pair of parentheses from the Nth element of
the current expression; i.e. it is a Balanced Remove. The parameter N is
usually an integer. The NTH command is used in the search, however, so
that any location specification may be used. The expression referred to is
the first element of the current expression in which the specified form is
found at any level.

(CHANGE LOC To [ARG))

o®
=

This command replaces the current expression after executing the location
specification LOC by ARGs.

(COMS [ARG])

®
=)

This command evaluates its ARGs and executes them as edit commands.

(COMSQ [ARG])

1]
Q
=

This command executes each ARG as an edit command.

At any -given time, the attention of the -editor is focused on a single expression or form.
- We.call - that form- the current.-expression. = Editor commands may be divided into two
broad classes. Those commands which change the current expression are called

PSL Ma
section

attention- changing commands.

structu

DELETE

nual 6 December 1983
4.3 page 4.9

re modification commands.

This command deletes -the current expression. If the. current expression is a
tail, only the first element is deleted. This command is equivalent to ().

(E FORM <T>)

(EditF

This command evaluates FORM. This may also be typed in‘as:
E FORM

but is valid only if typed in from the TTY. (E FORM) evaluates FORM and
prints the value on the terminal. The form (E FORM T) evaluates FORM but
does not print the result. ‘

FN:id): any

This function initiates editing of the function whose name is FN.

(EditFns FN-LIST:id-1ist, COMS:form): NIL ~

(EitP

(EditV

(EMBED

This function applies the sequence of editor commands, COMS, to each of
several functions. The argument FN-LIST is evaluated, and should evaluate
to a list of function names. COMS is applied to each function in FN-LIST, in
turn. Errors in editing one function do not affect editing of others. The
editor call is via EditF, so that values may also be edited in this way.

AT:id, COMS:form-list): any

This function initiates editing of the property list of the atom whose name
is at. The argument COMS is a possibly null sequence of edit commands
which is executed before calling for input from the terminal.

AT:id, COMS:forms-1list): NIL

This function initiates editing of the value of the atom whose name is AT.
The argument COMS is a possibly null sequence of edit commands which is
executed before calling for input from the terminal.

LOC In ARG)

This command replaces. the expression which would be current after

-executing. the location. specification LOC by another expression which has
- that- expression. as- a -sub—expression. - The manner in which the

transformation is carried out depends on the form of ARG. If ARG is a list,

EDITOR

Those commands which modify structure are called

®
=

o
=

fexpr

fexpr

fexpr

o
=

EDITOR ‘ 6 December 1983 PSL Manual
page 4.10 section 4.3

then each occurrence of the atom * in ARG is replaced by the expression
which would be current after doing LOC. (NOTE: a fresh copy is used for
each substitution.) If ARG is atomic, the result is equivalent to:

““(EMBED loc :IN (arg- ¥))
A call of the form
(EMBED loc IN expl exp2 ... expn)
is equivalent to:
(EMBED loc IN (expl exp2 ... expn ¥))

If the expression after doing LOC is a tail, EMBED behaves as though the
expression were the first element of that tail.

(EXTRACT LOC1 From LOC2) edit
This command replaces the expression which would be current after doing
the location specification LOC2 by the expression which would be current
after doing LOC1. The expression specified by LOC1 must be a sub-
expression of that specified by LOC2.

(F PAT <FLG>) - edit

Also can be used as:
F PAT

This command causes the next command, PAT, to be interpreted as a
pattern. The current expression is searched for the next occurrence of PAT;
i.e. Find. If PAT is a top level element of the current expression, then PAT
matches that top level occurrence and a full recursive search is not
attempted. Otherwise, the search proceeds in print order. Recursion is
done first in the Car and then in the Cdr direction.

The form (F PAT FLG) of the command may be used to modify the search
algorithm according to the value of FLG. Possible values and their actions

are:

N suppresses the top-level check. That is, finds the next print
order occurrence of PAT regardless of any top level
occurrences.

T , like N, but may succeed without changing the current

expression. That is, succeeds even if the current expression
itself is the only occurrence of PAT.

positive integer
finds the nth place at which PAT is matched. This is equivalent

PSL Manual ‘6 December 1983
section 4.3 _ page 4.11

to (F PAT T) followed by n-1 (F PAT N)s. If n occurrences are
not found, the current expression is unchanged.

NIL or missing
‘ - -Only-searches ‘top level- elements of - the -current ‘expression.
- -May succeed without-changing the current expression.

NOTE: If the variable UPFINDFLG is non-NIL, F does an UP after locating a
match. This ensures that F fn, in which fn is a function name, results in a
current expression which is the entire function call. {f this is undesirable,
set UPFINDFLG to NIL. Its initial value is T.

As protection against searching circular lists, the search is abandoned if the
total number of Car-Cdr descents exceeds the value of the variable
MAXLEVEL. (The initial value is 300.) The search fails just as if the entire
element had been unsuccessfully searched.

(FS [PAT])

The FS command does sequential finds; i.e. Find Sequential. That is, it
searches (in print order) first for the first PAT, then for the second PAT, etc.
If any search fails, the current expression is left at that form which matched
in the last successful search. This command is, therefore, equivalent to a
sequence of F commands.

(F= EXP FLG)

This command is equivalent to (F (== exp) flg); i.e. Find Eq. That is, it
searches, in the manner specified by FLG, for a form which is Eq to EXP.
Note that for keyboard type-ins, this always fails unless EXP is atomic.

HELP

This command provides an easy way of invoking the HELP system from the
editor.

(I COM [ARG])

This command evaluates the ARGs and executes COM on the resuiting
values. This command is thus equivalent to: (com vall val2 .. valn), Each
vali is equal to (EVAL argi).

(IF ARG)

This command, useful in edit macros, conditionally causes an editor error.
If (EVAL arg) is-NIL (or if evaluation of arg causes.a LISP error), then IF
generates an editor error.

EDITOR

®
=

®
=

o
=

®
=

edit

EDITOR 6 December 1983 ‘ PSL Manual

page 4.12 section 4.3

(INSERT [EXP ARG LOC]))

The INSERT command provides equivalents of the A, B and : commands
incorporating a location specification, LOC. ARG can be AFTER, BEFORE, or

= "FOR.. This-command inserts EXPs. AFTER, .BEFORE. or FOR (in place of) the
-expression-which ‘is -current -after-executing LOC. Note, however, that the

current expression is not changed.

(LC LOC)

This command, which takes as an argument a location specification,
explicitly invokes the location specification search: i.e. Locate. The current
expression is changed to that which is current after executing LOC.

See LOC-SPEC for details on the definition of LOC and the search method
in question.

(LCL LOC)

(LI N)

(LO N)

This command, which takes as an argument a location specification,
explicitly invokes the location specification search. However, the search is
limited to the current expression itself: i.e. Locate Limited. The current
expression is changed to that which is current after executing LOC.

This command inserts a left parenthesis (and, of course, a matching right
parenthesis); i.e. Left Parenthesis Insert. The left parenthesis is inserted
before the Nth element of the current expression and the right parenthesis
at the end of the current expression. Thus, this command is equivalent to
(Bt n -1).

The NTH command is used in the search, so that N, which is usually an
integer, may be any location specification. The expression referred to is the
first element of the current expression which contains the form specified at
any level. '

This command removes a left parenthesis (and a matching right parenthesis,
of course) from the Nth element of the current expression: i.e. Left
Parenthesis Remove. All elements after the Nth are deleted.

The command uses the NTH command for the search. The parameter N,
which is usually an integer, may be any location specification. The
expression actually referred to is the first element of the current expression
which contains the specified form at any depth.

e

|

[0}

®

2

(]

.

[

di

~+

=

~+

~+

s

Many of the more complex edit commands take as an argument a location specification

PSL Manual ' 6 December 1983 : EDITOR
section 4.3 page 4.13

(abbreviated LOC throughout this document). A location specification is a list of edit

commands, which are, with two exceptions, executed in the normal way. Any command

not recognized by the editor is treated as though it were preceded by F. Furthermore, if

one of the commands causes an error and the current expression has been changed by

- prior commands, ‘the -location operation continues-rather-than aborting. This is a sort of

--back-up operation. For example, suppose the location specification is (COND 2 3), and
the first clause of the first Cond has only 2 forms. The location operation proceeds by
searching for the next Cond and trying again. If a point were reached in which there were
no more Conds, the location operation would then fail.

(LP COMS) edit
This command, useful in macros, repeatedly executes COMS (a sequence of
edit commands) until an editor error occurs; i.e. Loop. As LP exits, it prints
the number of OCCURRENCES; that is, the number of times COMS was
successfully executed. After execution of the command, the current
expression is left at what it was after the iast complete successful
execution of COMS.
The command terminates if the number of iterations exceeds the value of
the variable MAXLOOP (initially 30).

_(LPQ COMS) edit
This command, useful in macros, repeatedly executes COMS (a sequence of
edit commands) until an editor error occurs; i.e. Loop Quietly. After
execution of the command, the current expression is left at what it was
after the last complete successful execution of COMS.
The command terminates if the number of iterations exceeds the value of
the variable MAXLOOP (initially 30).
This command is equivalent to LP, except that OCCURRENCES is not printed.

(M (NAM) ([EXP) COMS)]) edit

This can also be used as:
(M NAM COMS)

or as:

(M (NAM) ARG COMS)

The editor provides the user with a macro facility; i.e. M. The user may

define frequently used command sequences to be edit macros, which may

then be invoked simply by giving the macro name as an edit command.
w:The'M-command provides the-user with a method.of .defining edit macros.

The first alternate form of the command defines an atomic command which

EDITOR 6 December 1983 , . PSL Manual
page 4.14 section 4.3

takes no arguments. The argument NAM is the atomic name of the macro.
This defines NAM to be an edit macro equivalent to the sequence of edit
commands COMS. If NAM previously had a definition as an edit macro, the
~ new definition replaces the old. NOTE: Edit command names take
-preCedence--over macros. It is not possible :to:..redefine -edit .command
names.

The main form of the M command as given above defines a list command,
which takes a fixed number of arguments. In this case, NAM is defined to
be an edit macro equivalent to the sequence of edit commands COMS.
However, as (nam expl exp2 .. expn) is executed, the expi are substituted
for the corresponding argi in COMS before COMS are executed.

The second alternate form of the M command defines a list command
which may take an arbitrary number of arguments. Execution of the macro
NAM is accomplished by substituting (exp1 exp2 .. expn) (that is, the Cdr of
the macro call (nam expl exp2 .. expn)) for all occurrences of the atom
ARG in COMS, and then executing COMS.

(MAKEFN (NAM VARS) ARGS N1 _<N2>)

[0}
=

This command defines a portion of the current expression as a function and
replaces that portion of the expression by a cail to the function; i.e. Make
Function. The form (NAM VARS) is the call which replaces the N1st through
N2nd elements of the current expression. Thus, NAM is the name of the
function to be defined. VARS is a sequence of local variables (in the
current expression), and ARGS is a list of dummy variables. The function
definition is formed by replacing each occurrence of an element in vars (the
Cdr of (NAM_VARS)) by the corresponding element of ARGS. Thus, ARGS
are the names of the formal parameters in the newly defined function.

If N2 is omitted, it is assumed to be equal to NIT.

MARK

(1]
=

This command saves the current position within the form in such a way
that it can later be returned to. The return is accomplished via _or

MBD (ARG)

(]
=

This command replaces the current expression by some form which has the
current expression as a sub-expression. If ARG is a list, MBD substitutes a
fresh copy of the current expression for each occurrence of the atom " in
ARG. If ARG is a sequence of expressions, as:

(MBD expl exp2 ... expn)

then the call is equivalent to one of the form:

PSL Manual 6 December 1983 EDITOR
section 4.3 page 4.15

(MBD (exp! exp2 ... expn ¥#))
The same is true if arg is atomic:

(MBD atom) = (MBD» (atom ¥))

(MOVE <LOC1> To COM <LOC2>)

®
=

The MOVE command allows the user to Move a structure from one point to
another. The user may specify the form to be moved (via LOC1, the first
location specification), the position to which it is to be moved (via LOC2,
the second location specification) and the action to be performed there (via
COM). The argument COM may be BEFORE, AFTER or the name of a list
command (e.g. ;, N, etc.). This command performs in the following manner.
Take the current expression after executing LOC1 (or its first element, if it is
a tail); call it expr. Execute LOC2 (beginning at the current expression AS
OF ENTRY TO MOVE -- NOT the expression which would be current after
execution of LOC1), and then execute (COM expr). Now go back and delete
expr from its original position. The current expression is not changed by
this command.

If LOC1 is NIL (that is, missing), the current expression is moved. In this
case, the current expression becomes the result of the execution of (COM
expr).

If LOC2 is NIL (that is missing) or HERE, then the current expression
specifies the point to which the form given by LOC2 is to be moved.

(N [EXP])

This command adds the EXPs to the end of the current expression; i.e. Add
at End. This compensates for the fact that the negative integer command
does not allow insertion after the last element.

o®
=

(-N:integer [EXP]) edit-command

Also can be used as:
-N

This is really two separate commands. The atomic form is an attention
changing command. The current expression becomes the nth form from
the end of the old current expression; i.e. Add Before End. That is, -1
specifies the last element, -2 the second from last, etc.

The list form of the command is a structure modification command. This
command inserts expi through expn (at least one expi must be present)
before the nth. element (counting from the BEGINNING) of the current

- -~ expression. .. That'is, -1 inserts. before the..first element, -2 before the
second, etc.

EDITOR 6 December 1983 PSL Manual

- -page 4.16 section 4.3
(NEX COM) edit

Also can be used as:
NEX

This-command is equivalent to (BELOW COM) followed by NX. That is, it does
repeated Os until a current expression matching com is found. It then backs
off by one 0 and does a NX.

The atomic form of the command is equivalent to (NEX). This is useful if
the user is doing repeated (NEX x)s. He can MARK at x and then use the
atomic form.

(NTH LOC)

{NX N)

OK

This command effectively performs (LCL LOC), (BELOW <), UP. The net effect
is to search the current expression only for the form specified by the
location specification LOC. From there, return to the initial level and set the
current expression to be the tail whose first element contains the form
specified by LOC at any level.

Also can be used as:
NX

The atomic form of this command makes the current expression the
expression following the present current expression (at the same level); i.e.
Next.

The list form of the command is equivalent to n (an integer number)
repetitions of NX. If an error occurs (e.g. if there are not N expressions
following the current expression), the current expression is unchanged.

This command causes normal exit from the editor.

The state of the edit is saved on property LASTVALUE of the atom EDIT. It
the next form edited is the same, the edit is restored. That is, it is (with

the exception of a BLOCK on the undo-list) as though the editor had never

been exited.

It is possible to save edit states for more than one form by exiting from the
editor via the SAVE command.

[
=3

®
=

(4]
=

PSL Manual ' " 6 December 1983 EDITOR
section 4.3 page 4.17
(ORF [PAT]) h edit

This command searches the current expression, in print order, for the first

occurrence of any form which matches one of the PATs; i.e. Print Order

- - oFinals-1f.found, an -UP is .executed, and -the. current expression becomes the

T ... expression so.specified. This.command. is-equivalent to (F (*ANY* pat1 pat2
.. patn) N). Note that the top level check is not performed.

(ORR [COMS])

[«
=

This command operates in the following manner. Each COMS is a list of
edit commands. ORR first executes the first COMS. If no error occurs, ORR
terminates, leaving the current expression as it was at the end of executing
COMS. Otherwise, it restores the current expression to what it was on
entry and repeats this operation on the second COMS, etc. If no COMS is
successfully executed without error, ORR generates an error and the current
expression is unchanged.

(P N1_<N2>) edit
Also can be used as:
P

This command prints the current expression; i.e. Print. The atomic form of
the command prints the current expression to a depth of 2. - More deeply
nested forms are printed as &.

The form (P NT) prints the N1st element of the current expression to a
depth of 2. The argument N1 need not be an integer. It may be a general
location specification. The NTH command is used in the search, so that the
expression printed is the first element of the current expression which
contains the desired form at any level.

The third form of the command prints the Nl1st element of the current
expression to a depth of N2. Again, N1 may be a general location
specification.

If N1 is 0, the current expression is printed.

Many of the editor commands, particularly those which search, take as an
argument a pattern (abbreviated PAT). A pattern may be any combination
of literal list structure and special pattern elements.

The special elements are as follows.

& this matches any single element.

ANY - - -if (CAR pat) .is the -atom *ANY?¥, then (CDR pat) must be a list of
patterns. PAT matches any form which matches any of the

EDITOR
page 4.18

6 December 1983 PSL Manual
section 4.3

patterns in (Cdr PAT).

if an element of pat is a literal atom whose last character is @,

(N:integer [EXP])

PP

then that element matches any literal atom whose initial
- ‘.characters match the ‘initial characters of the element: That is,
VER: matches VERYLONGATOM.

- this matches any tail of a list or any interior segment of a list.

if (Car PAT) is ==, then PAT matches X iff (Cdr PAT) is Eq to X.

if PAT begins with :::, the Cdr of PAT is matched against tails of
the expression.

edit-command

Also can be used as:
N:integer

This command, a strictly positive integer N, is really two commands. The
atomic form of the command is an attention-changing command. The
current expression becomes the nth element of the current expression.

The list form of the command is a structure modification command. It
replaces the Nth element of the current expression by the forms EXP. If no
forms are given, then the Nth element of the current expression is deleted.

This command Pretty-Prints the current expression.

(R EXP1 EXP2)

This command Replaces all occurrences of EXP1 by EXP2 in the current
expression.

Note that EXP1 may be either the literal s-expression to be replaced, or it
may be an edit pattern. If a pattern is given, the form which first matches
that pattern is replaced throughout. All forms which match the pattern are
NOT repiaced.

(REPACK LOC)

Also can be used as:

REPACK

-~ This' command -allows" the editing - of long " .strings -(or .atom names) one

character at a time. REPACK calls the editor recursively on UNPACK of the

®

(0]

(]

~

~

~t

PSL Manual , 6 December 1983
section 4.3

specified atom. (In the atomic form of the command, the current
expression is used unless it is a list; then, the first element is used. In the
list form of the command, the form specified by the location specification is
treated in the same way.) If the lower editor is exited via OK, the resuit is

-repacked-and replaces. the-original atom. - If STOP is used, no replacement is

.done. .-The new atom is always printed.

(RI N1_N2)

(RO N)

This command moves a right parenthesis. The parenthesis is moved from
the end of the the N1st element of the current expression to after the N2nd
element of the Nlst element; ie. Right Parenthesis |nsert. Remaining
elements of the Nlst element are raised to the top level of the current
expression.

The arguments, N1 and N2, are normally integers. However, because the
NTH command is used in the search, they may be any Ilocation
specifications. The expressions referred to are the first element of the
current expression in which the specified form is found at any level, and the
first element of that expression in which the form specified by N2 is found
at any level.

This command moves the right parenthesis from the end of the nth element
of the current expression to the end of the current expression; i.e. Right
Parenthesis Remove. All elements following the Nth are moved inside the
nth element.

Because the NTH command is used for the search, the argument N, which is
normally an integer, may be any location specification. The expression
referred to is the first element of the current expression in which the
specified form is found at any depth.

(S VAR LOC)

SAVE

This command Sets (via SetQ) the variable whose name is VAR to the
current expression after executing the location specification LOC. The
current expression is not changed.

This command exits normally from the editor. The state of the edit is
saved on the property EDIT-SAVE of the atom being edited. When the same
atom .is next edited, the state of the edit is restored and (with the exception
of a-BLOCK on -the undo-list) it is as if the editor had never been exited. It
-is' not 'h-ecessarv to use the SAVE -command -if only a single atom is being
edited. See the OK command.

EDITOR

page 4.19

[
=

®
=

®
=

®
=

EDITOR 6 December 1983 PSL Manual
page 4.20 section 4.3

(SECOND LOC) edi

o~

|

This command changes the current expression to what it would be after the
location specification LOC is executed twice. The current expression is
- .unchanged if.either execution.of LOC fails.

STOP edit
This command exits abnormally from the editor; i.e. Stop Editing. This
command is useful mainly in conjunction with TTY: commands which the
user wishes to abort. For example, if the user is executing
(MOVE 3 TO AFTER COND TTY:)
and he exits from the lower editor via OK, the MOVE command completes its
operation. If, on the other hand, the user exits via STOP, TTY: produces an
error and MOVE aborts. '

(SW N1 N2) edit
This. command Swaps the Nist and N2nd elements of the current
expression. The arguments are normaily but not necessarily integers. SW
uses NTH to perform the search, so that any location specifications may be
used. In each case, the first element of the current expression which
contains the specified form at any depth is used.

TEST edit
This command adds an undo-biock to the undo-list. This block limits the
'scope of UNDO and !UNDO commands to changes made after the block was
inserted. The block may be removed via UNBLOCK.

(THIRD LOC) edit
This command executes the location specification loc three times. It is
equivalent to three repetitions of (LC LOC). Note, however, that if any of
the executions causes an editor error, the current expression remains
unchanged.

(LOC1 THROUGH LOC2) edit

This command makes the current expression the segment from the form
specified by LOC1 through (including) the form specified by LOC2. It is
equivalent to (LC LOC1), UP, (BI 1 LOC2), 1. Thus, it makes a single element
of the specified elements and makes that the current expression.

.. -.=..This .command- is. meant- for- use in ‘the location -specifications given to the
--DELETE, 'EMBED, EXTRACT and REPLACE commands, and is not particularly
useful by itself. Use of THROUGH with these commands sets a special flag

PSL Manual "6-December 13983 EDITOR
section 4.3 page 4.21

so that the editor removes the extra set of parens added by THROUGH.

(LOC1 TO LOC2) edit

This..command makes the current expression the -segment from the form

--gpecified by LOC1 up to (but not including) the form specified by LOC2. It
is equivalent to (LC LOC1), UP, (BI 1 loc), (RI 1 -2), 1. Thus, it makes a
single element of the specified eiements and makes that the current
expression.

This command is meant for use in the location specifications given to the
DELETE, EMBED, EXTRACT and REPLACE commands, and is not particularly
useful by itself. Use of TO with these commands sets a special flag so that
the editor removes the extra set of parens added by TO.

TTY:

edit

This command calls the editor recursively, invoking a ‘lower editor’ The
user may execute any and all edit commands in this lower editor. The TTY:
command terminates when the lower editor is exited via OK or STOP.
The form being edited in the lower editor is the same as that being edited
in the upper editor. Upon entry, the current expression in the lower is the
same as that in the upper editor.

UNBLOCK edit
This command removes an undo-block from the undo-list, allowing UNDO
and !'UNDO to operate on changes which were made before the block was
inserted. '
Blocks may be inserted by exiting from the editor and by the TEST
command.

UNDO (COM) edit

Also can use as:
UNDO

This command undoes editing changes. All editing changes are undoable,
provided that the information is available to the editor. (The necessary
information is always available unless several forms are being edited and
the SAVE command is not used) Changes made in the current editing
session are ALWAYS undoable.

The short-form of the command..undoes.the most recent change. Note,
- however; that UNDO and !UNDO changes are skipped, even though they are
themselves undoable.

- UP.

EDITOR 6 December 1983 . PSL Manual
page 4.22 section 4.3

The long form of the command allows the user to undo an arbitrary
command, not necessarily the most recent. UNDQ and !UNDO may also be
undone in this manner.

o
Q
—

If the current expression is a tail of the next higher expression, UP has no
effect. Otherwise the current expression becomes the form whose first
element is the old current expression.

(XTR LOC)

1]
=

This command replaces the current expression by one of its subexpressions.
The location specification, LOC, gives the form to be used. Note that only
the current expression is searched. If the current expression is a tail, the
command operates on the first element of the tail.

0 ' edit—-command

This command makes the current expression the next higher expression.
This usually, but not always, corresponds to returning to the next higher left
parenthesis. This command is, in some sense, the inverse of the POS-
INTEGER and NEG- INTEGER atomic commands.

([cOM:form]): any fexpr, edit-command

The value of this fexpr, useful mainly in macros, is the expression which
would be current after executing all of the COMs in sequence. The current
expression is$ not changed. ’

-Commands in which this fexpr might be used (e.g. CHANGE, INSERT, and REPLACE) make
special checks and use a copy of the expression returned.

A

edit-command

This command makes the top level expression the current expression.

? edit-command

This command prints the current expression to a level of 100. It is
equivalent to (P 0 100).

-~
>

edit—-command

This command displays the entries on the undo-list.

edit-command

This command returns to the position indicated by the most recent MARK
command. The MARK is not removed.

(_ PAT) o ‘ ' - edit-command

PSL Manual ' 6 December 1983 EDITOR
section 4.3 page 4.23

This command ascends (does repeated 0s), testing the current expression at
each ascent for a match with PAT. .The current expression becomes the
first form to match. If pattern is atomic, it is matched with the first
element of each expression; otherwise, it is matched against the entire
form.

edit-command

This command returns to the position indicated by the most recent MARK
command and removes the MARK.

(¢ [EXP]) edit-command

(PAT

\P

INX

T'UNDO

Also can be used as:
(:)

This command replaces the current expression by the forms EXP. If no
forms are given (as in the second form of the command), the current
expression is deleted.

:: LOC) edit-command

This command sets the current expression to the first form (in print order)
which matches PAT and contains the form spe:cified by the iocation
specification LOC at any level. The command is equivalent to (F PAT N),
(LCL LOC), (_ PAT).

edit-command

This command returns to the expression which was current before the last
'big jump.” Big jumps are caused by these commands: ~, , _, INX all

commands which perform a search or use a location specificz;tion, \ itself,
and \P. NOTE: \ is shift-L on a teletype.

edit-command

This command returns to the expression which was current before the last

print operation (P, PP or ?). Only the two most recent locations are saved.
NOTE: \ is shift-L on a teletype.

edit-command

This command makes the next expression at a higher level the current
expression. That is, it goes through any number of right parentheses to get
to the next expression.

edit-command

This command undoes all changes made in the current editing session
(back to the most recent block). All changes are undoable.

Blocks may- be -inserted by exiting the editor or by the TEST command.

- EDITOR -6 December 1983 PSL Manual

page 4.24 section 4.3

“"They may be removed with the UNBLOCK command.

10 edit-command

This command does repeated 0s:until it reaches an-expression which is not
- a tail -of the next higher expression. That expression becomes the new

current expression. That is, this command returns to the next higher left
parenthesis, regardless of intervening tails.

PSL MANUAL : - .6 DECEMBER 1983 RLISP
SECTION 5.0 PAGE 5.1

CHAPTER 5
RLISP SYNTAX

-5.1:~Motivation-for RLISP Interface to PSL. 5.1
" §5.2.:AnIntroduction to RLISP. e e e i 5.2
5.2.1. LISP equivalents of some RL|SP constructs e e e 5.2
5.3. An Overview of RLISP and LISP Syntax Correspondence 53
5.3.1. Function Call Syntax in RLISP and LISP e e 5.3
5.3.2. RLISP Infix Operators and Associated LISP Functlons. e 53
5.3.3. Referencing Elements of Vectors in RLISP. 5.5
5.3.4. Differences between Parse and Read 5.5
5.3.5. Procedure Definition. . . . e e e e 5.6
5.3.6. Compound Statement Groupmg e 5.7
5.3.7. Blocks with Local Variables 5.7
5.3.8. The if Then Else Statement 5.8
5.3.9. Case Statement. Lo 5.9
5.4. Looping Statements. L L Lo Lo 5.9
54.1. While Loop Lo 5.10
5.4.2. Repeat Loop Lo, 5.10
5.43. Next and Exit 5.10
5.4.4. For Each Loop oL 5.10
5.45. For Loop Lo oL oL e 5.11
5.4.6. Loop Examples oL 5.11
5.5. RLISP Specific Input/Output 5.12
5.5.1. RLISP File Reading Functions. 5.13
5.5.2. RLISP File Qutput e 5.13
5.6. Transcript of a Short Session wath RLISP e, 5.14

5.1. Motivation for RLISP Interface to PSL

Some of the PSL users at Utah prefer to write Lisp code using an Algol-like (or
Pascal-like) preprocessor language, RLisp, because of its similarity to the heavily used
.Pascal and C languages. RLisp was developed as part of the Reduce Computer Algebra
Project [Hearn 73], and is the Algol-like user language as well as the implementation
language. RLisp provides a number of syntactic niceties which we find convenient, such
as vector subscripts, a case statement, an If-Then-Else statement, etc. We usually do
not distinguish Lisp from RLisp, and can mechanically translate from one to the other in
either direction using a parser and pretty—-printer written in PSL. That is, RLisp is a
convenience, but it is not necessary to use RLisp syntax rather than Lisp. A complete
BNF-like definition of RLisp and its translation to Lisp using the MINI system is given in
Section 6.4. Also discussed in Chapter 6 is an extensible table driven parser which is
used for the current RLisp parser. There we give explicit tables which define RLisp
syntax.

In this chapter we provide enough of an introduction. to-make the PSL sources readable
and to assist the user in writing RLisp code.

RLISP 6 December 1983 - PSL Manual
page 5.2 section 5.2

5.2. An Introduction to RLISP

An RLisp program consists of a set of functional commands which are evaluated
sequentially. RLisp expressions are built up from declarations, statements and
expressions. - Suchentities ‘are ‘composed of: sequences..of numbers,. variables, operators,
strings, reserved -words -and-delimiters (such as commas_and parentheses), which in turn
are sequences of characters. The evaluation proceeds by a parser first converting the
Algol-like RLisp source language into Lisp S-expressions, and evaluating and printing the
result. The basic cycle is thus Parse-Eval-Print, although the specific functions and
- additional processing are under the control of a variety of switches, described in
appropriate sections.

5.2.1. LISP equivalents of some RLISP constructs

The following gives a few examples of RLisp statements and functions and their
corresponding Lisp forms. To see the exact Lisp equivalent of RLisp code, set the switch
1%¥PEcho to T [On PECHO;]. :

Assignment statements in RLisp and Lisp:
X := 13 (setq x 1)
A procedure to take a factorial, in RLisp:
LISP PROCEDURE FACTORIAL N;
IF N <= 1 THEN 1
ELSE N * FACTORIAL (N-1);
in Lisp:
(de factorial (n)
(cond
((legqn 1) 1)
(T
(times n (factorial (difference n 1))))))
Take the Factorial of 5 in RLisp and in Lisp:
FACTORIAL 5; (factorial 5)
Build a list X as a series of “Cons”es in RLisp:

X :='A.'B.'C.NIL;

in Lisp:
(setq x (cons 'a (cons 'b (cons 'c nil))))

PSL Manual 6 December 1983 , : RLISP
section 5.3 page 5.3

5.3. An Overview of RLISP and LISP Syntax Correspondence

The RLisp parser converts RLisp expressions, typed in at the terminal or read from a file,
into directly executable Lisp expressions. For convenience in the following examples, the
"==>" arrow-is .used to-indicate the Lisp actuaily produced from. the input RLisp. To see
".the Lisp equivalents of RLisp code on the machine, set the switch !¥PEcho to T. As far as
possible, upper and lower cases are used as follows:

a. Upper case tokens and punctuation represent items which must appear as is
in the source RLisp or output Lisp.

b. Lower case tokens represent other legal Rlisp constructs or corresponding

Lisp translations. We typically use "e” for expression, “s” for statement, and
“v” for variable; "-list” is tacked on for lists of these objects.

For example, the following rule describes the syntax of assignment in RLisp:

VAR := number;
==> (SETQ VAR number)

Another example:

_ IF expression THEN action_1 ELSE action_2
==> (COND ((expression action 1) (T action 2)))

5.3.1. Function Call Syntax in RLISP and LISP

A function call with N arguments (called an N-ary function) is most commonly
represented as "FN(X1, X2, ... Xn)” in RLisp and as "(FN X1 X2 .. Xn)” in Lisp. Commas are
required to separate the arguments in RLisp but not in Lisp. A zero argument function
call is “FN()” in RLisp and "(FN)” in Lisp. An unary function call is "FN(a)” or "FN a” in
RLisp and “(FN a)” in Lisp; i.e., the parentheses may be omitted around the single
argument of any unary function in RLisp.

5.3.2. RLISP Infix Operators and Associated LISP Functions

Many important PSL binary functions, particularly those for arithmetic operations, have
associated infix operators, consisting of one or two special characters. The conversion of
an RLisp expression "A op B” to its corresponding Lisp form is easy: “{(fn A B)”, in which
“fn” is the associated function. The function name fn may also be used as an ordinary
RLISP function call, “fn(A, B)".

Refer to Chapter 6 for details on how the association of “op” and “fn” is installed.

- -Parentheses may be-used to specify the order of:combination. "((A op_.a B) op_b C)" in
RLisp becomes “(fn_b (fn_a A B) C)” in Lisp.

RLISP 6 December 1983 PSL Manual
page 5.4 section 5.3

If two or more different operators appear in a sequence, such as "Aop aBop b C”,
grouping (similar to the insertion of parentheses) is done-based on relative p;eceden—ce of
the operators, with the highest precedence operator getting the first argument pair:
“(A op_a B) op_b C* if Precedence(op_a) >= Precedence(op_b); “A op_a (B op_b C)” if

--Precedence(op- a) <'Precedence(op_b). - - I

If two or more of the same operator appear in a sequence, such as "A op B op C”,
grouping is normally left-to-right (Left Associative; i.e., “(fn (fn A B) C)"), unless the
operator is explicitly Right Associative (such as . for Cons and := for SetQ: i.e,
“(fn A (fn B C))").

The operators + and * are N-ary; i.e., “A nop B nop C nop B” parses into “(nfn A B C D)”
rather than into “(nfn (nfn (nfn A B) C) D)".

The current binary operator-function correspondence is as follows: (Operation groups
higher on the list are done first.)

Operator Function Precedence

. Cons 23 Right Associative
o Expt 23

/ Quotient 19

o Times 19 N-ary

- Difference 17

+ Plus 17 N-ary

Eq Eq 15

= Equal 15

>= Geq 15

> GreaterP 15

<= Leq 15

< LessP 15

Member Member 15

Memq MemQ 15

Neg Neq 15

And And 11 N-ary

Or Or 9 N-ary

= ‘ SetQ 7 Right Associative

Note: There are other INFIX operators, mostly used as key-words within other syntactic
constructs (such as Then or Else in the If-., or Do in the While-.., etc.). They have
lower precedences than those given above. These key-words include: the parentheses
()", the brackets “[]”, the colon ", the comma ", the semi-colon “;”, the dollar sign "$”,
- and the ids: Collect, Conc, Do, Else, End, Of, -Procedure,; Product,:Step, Such, Sum, Then,
To, and Until. ’ '

PSL Manual 6 December 1983 RLISP

As pointed out above, a unary function FN can be used with or without parentheses:
FN(a); or FN a;. In the latter case, FN is assumed to behave as a prefix operator with
~ highest precedence (99) so that "FOO 1 ** 2” parses as "FOO(1) ** 2;". The operators +, -,
-and / can also be used as unary prefix operators, mapping to Plus, Minus and Recip,
réspectively; with precedence 26:: Certain other ‘unary- operators -(RLisp key-words) have
low precedences or explicit special- purpose- parsing functions. These include: BEGIN,
CASE, CONT, EXIT, FOR, FOREACH, GO, GOTO, IF, IN, LAMBDA, NOOP, NOT, OFF, ON, OUT,
PAUSE, QUIT, RECLAIM, REPEAT, RETRY, RETURN, SCALAR, SHOWTIME, SHUT, WHILE and
WRITE.

5.3.3. Referencing Elements of Vectors in RLISP

In RLisp syntax, X[il; may be used to access the i'th element of an x-vector, and Xlil:=y;
is used to change the i'th element to y. These functions correspond to the Lisp functions
Indx and SetIndx.

5.3.4. Differences between Parse and Read

A single character can be interpreted in different ways depending on context and on

whether it is used in a Lisp or in an RLisp expression. Such differences are not
immediately apparent to a novice user of RLisp, but an example is given below.
The RLisp infix operator “.” may appear in an RLisp expression and is converted by the
Parse function to the Lisp function Cons, as in the expression x := 'y . ‘z;. A dot may also
occur in a quoted expression in RLisp mode, in which case it is interpreted by Read as
part of the notation for pairs, as in x 1= ‘(y . 2);,. Note that Read called from Lisp uses
slightly different scan tables than Read called from RLisp.

What constitutes a valid id name depends upon the scan table in use by the reader. In
RLisp the scan table bound to RLISPSCANTABLE!¥, shown below. ids begin with a letter
or any character preceded by an escape character. They may contain letters, digits,
underscores, and escaped characters. You will note that many characters such as “$” and
"% that are treated as letters by the Lisp scan table are treated as delimiters by the RLisp
scan table. Characters regarded as delimiters by the RLisp scan tabie must be preceded
by an escape character, currently “1”, when they appear in an id name.

Here are some exampies of valid id names using the RLisp scan tabie. Note that the
first and second examples are read as the same identifier if !*¥RAISE is T.

* ThislsALongldentifier
* THISISALONGIDENTIFIER
* ThislsALongldentifierAndDifferentFromTheOther
* this_is_a_long_identifier_with_underscores
* anl-identifierl-with!-dashes
- * I*RAISE
* 12222

RLISP 6 December 1983 PSL Manual
page 5.6 section 5.3
RLISPSCANTABLE!#* [Initially: as shown in following table] global

O 00~3 VU 4200 N —

0 ~@ IGNORE 32 IGNORE 64 @ DELIMITER 96 ' DELIMITER
~A DELIMITER 33 ! IDESCAPECHAR 65 A LETTER 97 a LETTER
~B DELIMITER 34 " STRINGQUOTE . = 66 B LETTER 98 b LETTER
-~C DELIMITER - - 35 # DELIMITER .67 C LETTER .99 c LETTER
~D DELIMITER -~ 36 $ DELIMITER 68 D LETTER ~ 100 d LETTER
~E DELIMITER 37 % COMMENTCHAR 69 E LETTER 101 e LETTER
~F DELIMITER 38 & DELIMITER 70 F LETTER 102 f LETTER
~G DELIMITER 39 ' DELIMITER 71 G LETTER 103 g LETTER
~“H DELIMITER 40 (DELIMITER 72 H LETTER 104 h LETTER
<tab> IGNORE 41) DELIMITER 73 I LETTER 105 1 LETTER
10 <1f> IGNORE 42 * DIPHTHONGSTART 74 J LETTER 106 j LETTER
11 ~K DELIMITER 43 + DELIMITER 75 K LETTER 107 k LETTER
12 ~L IGNORE 4y , DELIMITER 76 L LETTER 108 1 LETTER
13 <cr> IGNORE 45 - DELIMITER 77 M LETTER 109 m LETTER
14 ~N DELIMITER 46 . DECIMALPOINT 78 N LETTER 110 n LETTER
15 ~0 DELIMITER 47 / DELIMITER 79 O LETTER 111 o LETTER
16 ~P DELIMITER 48 O DIGIT 80 P LETTER 112 p LETTER
17 ~Q DELIMITER 49 1 DIGIT 81 Q LETTER 113 q LETTER
18 ~R DELIMITER 50 2 DIGIT 82 R LETTER 114 r LETTER
19 ~S DELIMITER 51 3 DIGIT 83 S LETTER 115 s LETTER
20 ~T DELIMITER 52 4 DIGIT 84 T LETTER 116 t LETTER
21 ~U DELIMITER 53 5 DIGIT 85 U LETTER 117 u LETTER
22 ~V DELIMITER 54 6 DIGIT 86 V LETTER 118 v LETTER
23 ~W DELIMITER 55 7 DIGIT 87 W LETTER 119 w LETTER
24 ~X DELIMITER 56 8 DIGIT 88 X LETTER 120 x LETTER
25 ~Y DELIMITER 57 9 DIGIT 89 Y LETTER 121 y LETTER
'26 ~Z DELIMITER 58 : DIPHTHONGSTART 90 Z LETTER 122 z LETTER
27 $ DELIMITER 59 ; DELIMITER 91 [DELIMITER 123 { DELIMITER
‘28 ~\ DELIMITER 60 < DIPHTHONGSTART 92 \ PACKAGE 124 | DELIMITER
29 ~] DELIMITER 61 = DELIMITER 93] DELIMITER 125 } DELIMITER
30 ~~ DELIMITER 62 > DIPHTHONGSTART 94 ~ DELIMITER 126 ~ DELIMITER
31 ~_ DELIMITER 63 ? DELIMITER 95 _ LETTER 127 <rubout>
DELIMITER

The Diphthong Indicator in the 128th entry is the identifier RLISPDIPHTHONG.

5.3.5. Procedure Definition

When defining a function in RLisp, one gives an “ftype” (one of the tokens EXPR, FEXPR,
etc.) followed by the keyword PROCEDURE, followed by an “id” (the name of the function),
followed by a “v-list” (the formal parameter names) enclosed in parentheses. A
semicolon terminates the title line. The bhody of the function is a <statement> followed
by a semicolon.

mode ftype PROCEDURE name(v_1,...,v_n); body;
==> (Dx name (v_1 ... v_N) body)

In the general definition given above "mode” is usually optional; it can be LISP or
SYMBOLIC {which mean the same thing), ALGEBRAIC (for Reduce code), or SYSLISP [only
- of importance if SYSLisp and Lisp-are-inter-mixed]. .-“Ftype” is expr, fexpr, macro, nexpr, or
~smacro (or can-be omitted, in which case it defaults to expr). Name(v_1,.,v _N) is any

PSL Manual 6 December 1983 RLISP
section 5.3 page 5.7

legal form of call, including infix. Dx is De for expr, Df-for. fexpr, Dm for.macro, Dn for
nexpr, and Ds for smacro.

Examples:

‘EXPR PROCEDURE NULL(X);
EQ(X, NIL);
==> (DE NULL (X) (EQ X NIL))

PROCEDURE ADD1 N;
N+1;
==> (DE ADD1 (N) (PLUS N 1))

MACRO PROCEDURE FOO X;
LIST('FUM, CDR X, CDR X);
==> (DM FOO (X) (LIST 'FUM (CDR X) (CDR X))

The value returned by the procedure is the value of the body; no assignment to the
function name (as in Algol or Pascal) is needed.

5.3.6. Compound Statement Grouping

A group of RLisp expressions may be used in any position in which a single expression
is expected by enclosing the group of expressions in double angle brackets,“< <" and
“>>", and separating them by the ”;” delimiter.

The RLisp <<A; B; C; .. Z>> becomes (PROGN A B C .. Z) in Lisp. The value of the
group is the value of the last expression, Z.
Example:

X:=<<PRINT X; X+1>>; % prints old X then increments X
==> (SETQ X (PROGN (PRINT X) (PLUS X 1)))

5.3.7. Blocks with Local Variables

A more powerful construct, sometimes used for the same purpose as the “<< >>*
group, is the Begin-End block in RLisp or Prog in Lisp. This construct also permits the
allocation of 0 or more local variables, initialized to NIL. The normal value of a block is
NIL, but it may be exited at a number of points, using the Return statement, and each
can return a different value. The block also permits labels and a GoTo construct.

Example:

RLISP 6 December 1983 PSL Manual
page 5.8 section 5.3

BEGIN SCALAR X,Y; % SCALAR declares locals X and Y
X:='(1 2 3);
L1: IF NULL X THEN RETURN Y;
- Y:=CAR X;
~..X:=CDR X;
GOTO L1;
END;

==> (PROG (X Y)
(SETQ X '(1 2 3))
L1 (COND ((NULL X) (RETURN Y)))
(SETQ Y (CAR X))
(SETQ X (CDR X))
(GO L1))

5.3.8. The If Then Else Statement

The Lisp function Cond corresponds to the If statement of most programming
-languages. In RLisp this is simply the familiar If .. Then .. Else construct. For example:

IF predicate THEN action1
ELSE action2

==> (COND (predicate action1)
(T action2))

-Action1 is evaluated if the predicate has a non-NIL evaluation; otherwise, action2 is
evaluated. Dangling Elses are resolved in the Algol manner by pairing them with the
nearest preceding Then. For example: :

IF F(X) THEN
IF G(Y) THEN PRINT(X)
ELSE PRINT(Y);

is equivalent to
IF F(X) THEN
<< IF G(Y) THEN PRINT(X)
ELSE PRINT(Y) >>;

Note that if F(X) is NIL, nothing is printed.

The If..Then construct also exists.

PSL Manual 6 December 1983 ~ RLISP
section 5.3 page 5.9

IF predicate THEN action;

==> (COND (predicate action))

-~ The-actions may-also- contain the special functions Go, Return, Exit, and Next, subject
to the constraints on placement of these functions described-in the control flow chapter
of Part 1 of this manual.

5.3.9. Case Statement

PSL provides a numeric case statement that is compiled quite efficiently; some effort is
made to examine special cases (compact vs. non-compact sets of cases, short vs. long
sets of cases, etc.). It has mostly been used in SYSLisp mode, but can also be used from
Lisp mode provided that case-tags are numeric. The FEXPR Case can also be used
interpretively.

The RLisp syntax is:

Case-Statement ::= CASE expr OF case-clause END

Case-clause ::= Case-expr [; Case-clause]
Case-expr ¢i= Tag-expr : expr
Tag-expr ::= DEFAULT | OTHERWISE |
tag | tag, tag ... tag |
tag TO tag
Tag ::= Integer | Wconst-Integer

An example in RLisp is:

CASE i OF
1: Print("First");
2,3: Print("Second");

4 to 10: Print("Third");
Default: Print("Fourth");
END

5.4. Looping Statements

RLisp provides While, Repeat, For and For Each loops. These are discussed in greater
detail in the chapter on control flow in Part 1 of this manual. Some examples follow:

RLISP 6 December 1983 PSL Manual
page 5.10 section 5.4

5.4.1. While Loop

WHILE e DO s; % As long as e NEQ NIL, do s
==> (WHILE e s)

5.4.2. Repeat Loop

REPEAT s UNTIL e; % repeat doing s until "e" is not NIL
==> (REPEAT s e)

5.4.3. Next and Exit

Next and Exit, described in the control flow chapter of Part 1, are available in RLisp.
Care must be taken in using them in While and Repeat loops. While and Repeat each
macro expand into a Prog; Next and Exit are macro expanded into a Go and a Return
respectively to the Prog immediately containing the Next or Exit. Thus using a Next or
an Exit within a Prog within a While or Repeat will resuit only in an exit of the internal
Prog.

In RLisp be careful to use
WHILE E DO << S1;...;EXIT(1);...;Sn>>
not

WHILE E DO BEGIN S1;...;EXIT(1);...;Sn;END;

5.4.4. For Each Loop

The For Each loops provide various mapping options, processing elements of a list in
some way and sometimes constructing a new list.

FOR EACH x IN y DO s; % y is a list, x traverses list bound to each
% element in turn.
==> (FOREACH x IN y DO s)

FOR EACH x ON y DO s; % y is a list, x traverses list Bound to successive
% Cdr's of y.
==> (FOREACH x ON y DO s)

Other options can return modified lists, etc. See the chapter on control flow in Part 1
of this manual.

Note that FOR EACH may be written as FOREACH

PSL Manual 6 December 1983 RLISP
section 5.4 page 5.11

Examples of use of the ForEach function follow.

(11 X := '(1 3 5);
-[2] Foreach Y in X do Print Y;
1

3

5

NIL

{3] Foreach Y in X collect add1l Y;
(2 46)

(4] Foreach Y on X do Print Y;
(135)

(3 5)

(5)

NIL

5.4.5. For Loop

The For loop permits an iterative form with a compacted control variable. Qther
options can compute sums and products.

FOR i := a:b DO s; % step i successively from a to b in
% steps of 1.
==> (FOR (FROM I a b 1) DO s)

FOR i := a STEP b UNTIL ¢ DO s; % More general stepping
==> (FOR (FROM I a ¢ b) DO s)

5.4.6. Loop Examples

RLISP 6 December 1983 PSL Manual

page 5.12 section 5.4

LISP PROCEDURE count 1lst; % Count elements in 1lst
BEGIN SCALAR k;
k:=0;
WHILE PAIRP 1st DO <<k:=k+1; 1st:=CDR 1lst>>;
RETURN k; -
END;

==> (DE COUNT (LST)
' (PROG (K)
(SETQ K 0)
(WHILE (PAIRP LST)
(PROGN
(SETQ K (PLUS X 1))
(SETQ LST (CDR LST))))
(RETURN K)))

or

LISP PROCEDURE CountNil 1lst; % Count NIL elements in 1st
BEGIN SCALAR k;
k:=0;
FOR EACH x IN 1lst DO If Null x then k:=k+1;
RETURN k;
END;

==> (DE COUNTNIL (LST)
(PROG (K)
(SETQ K 0)
(FOREACH X IN LST DO (COND
((NULL X) (SETQ K (PLUS K 1)))))
(RETURN K)))

5.5. RLISP Specific Input/Output

RLisp provides some special commands not available in Lisp syntax for file input and
output. These are described in this section. Also specific to RLisp is a function RPrint

that prints a form in RLisp format.

(RPrint U:form): NIL expr

Print in RLisp format. Autoloading.

PSL Manual "6 December 1983
section 5.5 page 5.13

5.5.1. RLISP File Reading Functions

RLISP

The following functions are present in RLisp, they can be used from Bare-PSL by loading

RLISP.

-(In [L:string]): None Returned

Similar to DskIn but expects RLisp syntax in the files it reads unless it can
determine that the files are not in RLisp syntax. Also In can take more
than one file name as an argument. On most systems the function In
expects files with extensi