stsatcl - An Single Threaded Software Architecture for Tcl

stsatcl - An Single Threaded Software Architecture for Tcl

stsatcl - An Single Threaded Software Architecture for Tcl

Copyright © 2014 G. Andrew Mangogna

Legal Notices and Information

This software is copyrighted 2014 by G. Andrew Mangogna. The following terms apply to all files associated with the software
unless explicitly disclaimed in individual files.

The author hereby grants permission to use, copy, modify, distribute, and license this software and its documentation for any
purpose, provided that existing copyright notices are retained in all copies and that this notice is included verbatim in any
distributions. No written agreement, license, or royalty fee is required for any of the authorized uses. Modifications to this
software may be copyrighted by their authors and need not follow the licensing terms described here, provided that the new terms
are clearly indicated on the first page of each file where they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR DIRECT, INDIRECT,
SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE USE OF THIS SOFTWARE, ITS
DOCUMENTATION, OR ANY DERIVATIVES THEREOF, EVEN IF THE AUTHORS HAVE BEEN ADVISED OF THE
POSSIBILITY OF SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES, INCLUDING, BUT NOT LIM-
ITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND
NON-INFRINGEMENT. THIS SOFTWARE IS PROVIDED ON AN "AS IS" BASIS, AND THE AUTHORS AND DISTRIB-
UTORS HAVE NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS, OR MODI-
FICATIONS.

GOVERNMENT USE: If you are acquiring this software on behalf of the U.S. government, the Government shall have only
"Restricted Rights" in the software and related documentation as defined in the Federal Acquisition Regulations (FARs) in Clause
52.227.19 (c) (2). If you are acquiring the software on behalf of the Department of Defense, the software shall be classified as
"Commercial Computer Software" and the Government shall have only "Restricted Rights" as defined in Clause 252.227-7013 (c)
(1) of DFARSs. Notwithstanding the foregoing, the authors grant the U.S. Government and others acting in its behalf permission
to use and distribute the software in accordance with the terms specified in this license.

stsatcl - An Single Threaded Software Architecture for Tcl

REVISION HISTORY

NUMBER DATE DESCRIPTION NAME
0.1 July 6, 2013 Initial coding. GAM
1.0 August 11, 2013 Finished code for Revision 1.0. GAM

1.0.1 August 19, 2013 Corrected an error in the force method. Improved GAM
the can’t happen error message. Corrections to
the class diagram.

1.0.2 August 19, 2013 Corrected packaging mistake on version 1.0.1. GAM

1.0.3 August 21, 2013 Corrected subclass name resolution when GAM
traversing a partition link.

stsatcl - An Single Threaded Software Architecture for Tcl iv
Contents
Introduction 1
Reading This Document L e e e e e e e 1
Design Concepts o i i e e e e 1
Document Conventions vttt e e e e e e e e e e 2
Example OVerview e e e e e e e e e e 3
Class Diagram 0 e e e e e e e 4
Error Reporting 5
STSA Class 5
CONSIIUCIOT o ot e e e e e e e e 6
Configuration DSL L . . e 6
Attribute Method L 7
Reference Method o e e 9
Partition Method L e 11
Statemodel Method L 13
Polymorphic Method e e e e 15
InstOp Method o e e e 15
ClassOp Method e 16
Constructor Method L L 17
Destructor Method L L e 18
State Model Configuration DSL o oL 18
State Method e 18
Transition Method L L e 20
DefaultTrans Method 0 e 22
InitialState Method oL e e e 23
Terminal Method L 23
State Model Example L e e e e e e e 24
Completing XUML Class Construction ittt ettt e e e e 27
Attribute Semantics L. e e e e 27
Linkage Semantics e e e 27
State Model Semantics L. L e e e e e 28
Polymorphic Event Semantics L o 31
Completing the Example Classes 31

stsatcl - An Single Threaded Software Architecture for Tcl v
XUML Class Methods 34
Creating ObJECtS o o e e e 34
CONSIIUCIOT o v o it e e e e e e e e e e e e e e 35
Constructingina State L e 39
Destructor e e e e e e 41
Access to ALIibULES L L L e e e 41
Reading Attribute Values L e e e e 41
Updating Attribute Values 43
Linkage Methods o e 44
Link Method 0 0 e e e 45
Unlink Method 0 e e e 47

Link Navigation Method 49
Migrate Method L L e 56
Example Initial Instance Population o . L e e 58
Instance Selection L e 60
Select Where Method L L L L 60
Select One Where Method 0 o e e 61
Select Related Where Method o L e 62
Select One Related Where Method e 64
Instance Computation Methods L e 64
Map Instances Method L e e e e e 64

Map Related Instances Methodo 65

State Machine Execution L L e e 66
Signal Method e e e e 67
Delayed Signal Method L e e e 71
Cancel Method o L e e 72
Remaining Method L e 73
Force Method e e 74
Current State Method e e 75
Receive Method L L e 75
Dispatch Method e e e e e 78
Delayed Dispatch Method e e 80
Cancel Delayed Signal 81
Example State Activities 81
Washing Machine State ACtiVIties o o 0 e e e 82
Clothes Tub State ACHVILIES o o v et e e e e e e e e e e e e 84

stsatcl - An Single Threaded Software Architecture for Tcl vi

State Machine Trace 88
Trace Data L L e 89
Trace Control e e 92
Trace Population L e 93
Trace Operations e e e e e e 96

Trace Dictionary StruCtUre o i o e e e e e e e e e e e e e e e e e e e 96
Decode AL Traces o i i e e e e 98
Decode Class Traces o o o i i i e e e e e e e e e 99
Decode Target Traces o i i i e 101
Format Traces o e e 101
Format Trace Record e 102
Format Time Stamp e 102
Format Time As Seconds e 103
Sequence Diagrams L L e e e e e e e e e 103
Diagram Traces e e e e e e 103
Diagram AIITraces e e 104
Diagram Class Traces o v v i it e e e e e e e e e e e e e e e e e 104

Finishing the Example 104

Domain Operations o i v i e e e e e e e e e e e e e e e e e e e 105
Start Washer o L e e e e e 105
Select Cycle o o o 105

External Operations e e e e e e e e e e e e e e 106

Introspection 107
Info Method L . 107
Dot Method e e 109
Dot File Method 110
Draw Method 111

Utility Methods 114
Check Link Name e 114
Check Reference Object o e e e e e e 114
Resolve Object e e 115
Resolve Class o o 115
Validate Event o e e 115
Event Source e e 115

Forward Polymorphic Event e 116

stsatcl - An Single Threaded Software Architecture for Tcl vii

Running the Example 116
Stubbing the External Operations o oL e e e e e 116
Example Run Results o e e e e e 118

Code Organization 122
Source Code L e 122
Unit Tests o o e e e e 123
Package Index 124
Example Code e e e e e e 124

Bibliography 125
BOOKS . . . e 125

Index 127

stsatcl - An Single Threaded Software Architecture for Tcl viii

List of Figures
1 STSA Tcl Block Diagram 0 o e e e e e e e e e 2
2 Simplified Translation Workflow 3
3 Washing Machine Class Diagram e 4
4 Washing Machine State Model e 25
5 Clothes Tub State Model 32
6 Trace Data Class Model L e 90
7 Dot Drawing of Washing Machine State Model 113
8 Example Sequence Diagram L e e e e e e e 121

Abstract

The stsatcl package is a software execution architecture intended as the target for translating Executable UML (XUML)
domain models into a running program using Tcl as the implementation language. The package is build upon a TclOO foundation
and will on casual inspection appear as a higher order object system. Classes may be defined with attributes, relationships and
state models. The execution semantics of XUML are provided in a form to make translation of a model onto stsatcl a
direct and understandable undertaking. State machine event dispatch and state machine event tracing are provided to support
implementing and testing the dynamic aspects of an XUML model. The documentation includes a complete example showing
the translation of an example XUML model into a running program.

stsatcl - An Single Threaded Software Architecture for Tcl 1/130

Introduction

By analogy to STSA, which is a software architecture for micro-controller based implementations that are coded in “C”, the
stsatcl package is a single threaded software architecture for Tcl based applications.

The concepts here are similar to those used by STSA. Specifically we are defining an implementation based scheme that supports
the execution model of XUML and is to be used as the target for translating XUML models using Tcl as an implementation
language.

There are, of course, many differences in the way a “C” based architecture and a Tcl based one will handle the implementation
aspects. For example, STSA uses pointers to traverse relationships. There are no such things in Tcl. However, command names
of TclOO objects can be used to serve the same purpose. In STSA, “C” data types must be given for attributes. In the Tcl world,
everything is a string, Tcl variables can hold data of any type and type annotation is unnecessary. State models in Tcl have
already been done in many ways. Here, we will follow the pattern of the oomoore, package and indeed a large amount of that
code is reused in this package.

In addition to the explanation and code for the st sat c1 package, we will also include an example and endeavor to show how an
XUML model is translated into a Tcl implementation using this package. The example will, of necessity, be small and somewhat
contrived. The use of small, contrived examples is always unfortunate but this document is large enough with just the package
and its test cases that any real-world example would over burden the entire undertaking. Realistic models and their translation
easily become books in themselves.

Reading This Document

There are several different topics threaded together in this document. We cover the Tcl code for the software architecture and
it test cases as well as discussion of the design decisions that make up the architecture. There is also an example that uses the
package to implement an XUML model. The reader should not feel compelled to read this document from beginning to end in
order. Skipping around is encouraged. It is hoped that the table of contents, index and hyperlinks within the article will help
finding the section of interest.

Design Concepts

The main design consideration for a XUML software architecture is how to map XUML execution rules onto the implementation
language. That mapping is not unique. We could build a Tcl-based XUML architecture strictly from data structures and proce-
dures or as namespace ensembles or with other implementation technology that is available in Tcl. We have chosen to base the
stsatcl package on TclOO.

The translation of XUML model classes to TclOO classes is, to a first approximation, one-to-one. To support the XUML
execution model, we will create a meta-class called, STSAClass. Instances of STSAClass will correspond to the XUML
classes of the implementation. The constructor of STSAClass will allow for the appropriate configuration of the resulting
XUML implementation class to be specified. Instances can then be created to generate a population of the model. This is shown
in the diagram below.

http://repos.modelrealization.com/cgi-bin/fossil/tcl-cm3/doc/trunk/mechs/doc/mechs.pdf
http://en.wikipedia.org/wiki/Executable_UML
http://repos.modelrealization.com/cgi-bin/fossil/mrtools/doc/tip/oomoore/wiki/intro.wiki

stsatcl - An Single Threaded Software Architecture for Tcl 2/130

STSA Meta-Class

XUML Implementation Class

XUML Implementation Object

Figure 1: STSA Tcl Block Diagram

This package uses the common technique of defining a small domain specific language (DSL) that is used in the construction of
objects to specify the required properties. In this case, we are constructing classes that have XUML qualities, namely:

* Attributes.
* Relationship linkage.
e State models.

¢ Common processing.

Document Conventions

The source for this document conforms to asciidoc syntax. This document is also a literate program. The source code for the
implementation is included directly in the document source and the build process extracts the source that is then given to the Tcl
interpreter. This process is known as tangleing. The program, at angle, is available to extract source code from the document
source and the asciidoc tool chain can be used to produce a variety of different output formats, although PDF is the intended
choice.

The goal of a literate program is to explain the logic of the program in an order and fashion that facilitates human understanding
of the program and then rangle the document source to obtain the Tcl code in an order suitable for the Tcl interpreter. Briefly,
code is extracted from the literate source by defining a series of chunks that contain the source. A chunk is defined by including
its name as:

<<chunk name>>=

The trailing = sign denotes a definition. A chunk definition ends at the end of the source block or at the beginning of another
chunk definition. A chunk may be referenced from within a chunk definition by using its name without the trailing = sign, as in:

<<chunk definition>>=
<<chunk reference>>

http://www.methods.co.nz/asciidoc/
http://www.literateprogramming.com/
http://repos.modelrealization.com/cgi-bin/fossil/tcl-cm3/

stsatcl - An Single Threaded Software Architecture for Tcl 3/130

Chunk names are arbitrary strings. Multiple definitions with the same name are simply concatenated in the order they are
encountered. There are one or more root chunks which form the conceptual tree for the source files that are contained in the
literate source. By convention, root chunks are named the same as the file name to which they will be tangled. Tangling is then
the operation of starting at a root chunk and recursively substituting the definition for the chunk references that are encountered.

For readers that are not familiar with the literate style and who are adept at reading source code directly, the chunks definitions
and reordering provided by the tangle operation can be a bit disconcerting at first. You can, of course, examine the tangled source
output, but if you read the program as a document, you will have to trust that the author managed to arrange the chunk definitions
and references in a manner so that the tangled output is acceptable to the Tcl interpreter.

We will actually include root chunks for the following items:

* Tcl source for the package.
* Test cases that run under tcltest.
* The pkgIndex.tcl package index file.

* A runnable example.

Since we also include test cases in this document, the usual order will be to show a method or proc and follow it by the tests
that exercise the method. From a development and maintenance point of view, is is beneficial to keep the code and tests lexically
near each other. However, you may wish to skip over the testing to keep the narrative flow more consistent.

Example Overview

In this section we start the discussion of the example that is used to illustrate the usage of stsatcl. Unfortunately, there is
rather a lot of background material that we will not cover here. We do not explain how to create an XUML model nor will we
spend much time explaining why the example model was designed the way it was. There are many good books that explain
XUML in detail and will teach you the basics of modeling'. We suggest you read at least one of them. It is also the case that
this package represents one particular piece of a larger workflow and this means that readers who may not be completely familiar
with model-driven translation oriented development may have many questions that remain.

Requirements Program

Population

stsatcl

1

Figure 2: Simplified Translation Workflow

In the above figure, we will cover those portions that are colored. Specifically, we will not deal with how one creates models
from Requirements. We will start with the Model and show how that becomes Code via translation. By combining the code with
a population and the st satcl package, we will produce a running example program.

! Mellor and Balcer, Chris Raistrick et.al and Leon Starr all are worthy of a close reading.

stsatcl - An Single Threaded Software Architecture for Tcl 4/130

The subject matter of our example is an automatic clothes washer. This is a very simple washing machine, especially compared to
modern commercially available washers. The intent is to select a subject that most people would be familiar with from ordinary
experience so that we don’t have to devote too much time explaining the problem. One word of caution. This model is an
example for pedagogical purposes and probably has little correspondence with the way real washing machines operate or are
designed to operate. You will also notice a lack of any attention paid to what can go wrong. For industrial strength programs,
handling probable failure cases is very important but we have dispensed with those considerations here to focus on how the model
is translated into the implementation code using stsatcl.

Class Diagram

The figure below shows a class diagram for the washing machine control domain in UML graphical notation.

Washing Cycle (WC)

Cycle Type {I}
Wash Water Temp

Washing Machine (WM)

Machine ID {I} R4 ;T \?/'225 \Igvlit:tri(;rnemp
Cycle Type {R4} 0..n operates according to» 1 Rinse Duration

«prescribes the operation of

Spin Duration
Agitation Speed
1 Spin Speed

R1
washes clothes in»
<holds clotheq during wash

1

Water Valve (WV
valve 1D {I} () R3 Clothes Tub (CT) RS Water Level Sensor (WLS)
Machine ID {I,R3} | 1..n controls water flow for» 1 |Machine ID {I,R1} 1 monitors water level with» 1 |Machine ID {I,R5}
«controls wash water via «is the water level monitor for
1
R2
usgs»
«is used by
1l.n Washing Machine Control Domain
Class Diagram

Motor (MTR)

Motor ID {I,R2}
Machine ID {I,R2}

Version 1.0.1

Figure 3: Washing Machine Class Diagram

In our world, a Washing Machine operates according to some Washing Cycle. The Washing Cycle is a set of parameters that
specifies aspects of the washing that will turn dirty clothes into clean ones. The Washing Machine itself has a Clothes Tub into
which the dirty laundry is placed. There are also Water Valves to control the flow of water into and out of the Clothes Tub and
Motors to run a water pump, agitate the Clothes Tub and rotate the Clothes Tub to spin excess water out of the clean laundry.
Rounding out the machinery, there is a Water Level Sensor that will tell us when the Clothes Tub is filled with water or empty of
water.

For a well engineered model, the class diagram must also have a set of descriptions of what the attributes and relationship actually
mean, what the value domains of the attributes are and many other aspects that describe how the problem is represented in the
model. These descriptions are vital to understanding a class diagram. Here again, in the interests of space, we will have to
suffice ourselves with more casual descriptions included along with the example as it translated into the implementation and an
admonition that writing the model descriptions is an essential aspect of a well engineered solution.

The class diagram shows the static aspects of our domain and is always the first aspect of the model that must be considered when
deriving the implementation. The classes hold the parameters of the domain and the relationships state how the components are
associated with respect to each other. The class diagram facet of the model is static in the sense that at any point in time, the
statements you can infer from the diagram will be true. Later, we visit the dynamic and algorithmic facets of the domain but, for
now, we will endeavor to represent the classes and relationships in terms of the st satcl package constructs. Of course, first
we must explain what those constructs are and we begin that in a section below. First we get a discussion of error reporting out
of the way.

stsatcl - An Single Threaded Software Architecture for Tcl 5/130

Error Reporting

Often any discussion of errors is pushed to the end as if it were unimportant or an afterthought (which, sadly, in many cases it
is). Here we bring error reporting up front to emphasize its importance.

We will consistently use the throw command to produce errors in an effort to insure that reasonable error codes are produced.
Good error codes are key to programmatic recovery from errors. The format of the error code will be a list of the following
elements:

1. The package name in upper case, i.e. STSATCL.
2. An error code word. The error code word is a simple string in upper case and they are listed in the index.
3. Parameters that are dependent upon the error code word.

4. A human readable error message.

Although the size of the error code list varies since the number of parameters for the error code word (item 3 above) varies, the
first two elements and the last element have easily computed locations.

We factor into common code the manipulations required to t hrow errors.

<<stsatcl commands>>=

proc ::stsatcl::DeclError {errcode args} {
variable errFormats
set errmsg [format [dict get S$SerrFormats Serrcode] {x}S$args]
tailcall throw [list STSACLASS S$errcode {*}S$Sargs Serrmsg] S$Serrmsg

The mapping of errcode values to format strings is held as package data in the namespace of the st satc1 package.

<<stsatcl data>>=

variable errFormats

set errFormats [dict create {=*}{
<<error code formats>>

H

It is also important to realize that programs built upon this package will perform most of their operations in event callbacks. This
means that the majority of errors encountered during run time, for example during a state activity, will happen as a background
error. It will be important to install a background error handler?. Attention to the error codes thrown by this package can make
coding a background error handler much easier but the consequence of errors must be determined by the application.

STSA Class

The stsatcl package defines the STSAClass class. STSAClass is a meta-class, i.e. it is a class for defining other classes.

For each XUML class in the class diagram, we will create an implementation counterpart that is an instance of STSAClass.
Since instances of STSAClass are themselves classes, we will then be able to create object instances of the XUML imple-
mentation class created by STSAClass. The XUML implementation classes are all different because we will configure them
differently when they are constructed.

<<stsatcl commands>>=

::00::class create ::stsatcl::STSAClass {
superclass ::00::class ; + O
unexport new ; + O

<<stsaclass configuration>>

<<package exports>>=
namespace export STSAClass

2 See bgerror and interp bgerror commands

stsatcl - An Single Threaded Software Architecture for Tcl 6/130

o Deriving from : : 0o: : class makes us a meta-class.
(2} We insist that all STSA classes be named commands.
Constructor

The constructor of the STSAClass class takes a script that consists of configuration commands. Those commands will validate
and store away the configuration information. Using the configuration information, a new class is created with the properties
described in the construction configuration script. Objects created from the class then have all the characteristics specified in the
configuration script.

<<stsaclass configuration>>=

constructor {{config {}}} {
::00::0bjdefine [self] export new ; # 0
<<stsaclass constructor>>

] We now want the new method to be available to create object instances of the resulting XUML class.

Configuration DSL

The configuration language is really just a series of commands that are implemented as methods of the meta-class. The design
uses the my eval command to evaluate the configuration script in the context of the class being created. The commands in the
configuration script need to resolve correctly in that context. We would like not to be forced to prefix the DSL commands with
the my command as that clutters the configuration script. The co: :util package in tc11ib provides the 1ink command to
make the DSL command definitions easier.

<<required packages>>=

package require oo::util

The mixin of "oo::class.Delegate", interacts badly with meta-classes that

have constructor arguments. So we eliminate the oco::class mixins here. This
will mean that you can’t define class methods.

::00::define oo::class self mixin

<<stsaclass constructor>>=
link\
{attribute Attribute}\
{reference Reference}\
{partition Partition}\
{instop InstOp}\
{classop ClassOp}\
{constructor Constructor}\
{destructor Destructor}\
{polymorphic Polymorphic}\
{statemodel Statemodel}

The 1ink command arranges, for example, that invoking attribute in the namespace of the class being created actually
invokes the Att ribute method of the STSAClass class. The trickery to accomplish can be found in the source to the oo :
:util package. We follow the naming convention that the methods implementing the DSL commands are unexported and the
corresponding linked names begin with lower case.

So there will be nine commands in the configuration DSL. The statemodel command will itself take another configuration
script to describe states and transitions. The state model configuration commands will be described in a section of their own.
Each of the top level commands is described in a section below and the method that implements the command is given.

The methods that implement the DSL commands follow the same general pattern. They store the data given in the command
arguments, possibly with some validation, into data variable associated with the created class. That data is then available to the
class methods to implement the semantics of XUML attribute access, relationship navigation and state machine dispatch. The

stsatcl - An Single Threaded Software Architecture for Tcl 7/130

design approach is data-driven with the DSL commands supplying the values of the data that determine the specific semantics
that occur during execution.

We will encounter situations where we wish to insure that collections form a mathematical set (i.e. there are no duplicated
elements). Again, tc11lib can supply the required package.

<<required packages>>=
package require struct::set

Attribute Method

The attribute command is used to define the attributes of a XUML class. It is invoked as:

attribute attr-value-pairl attr-value-pair2

attr-value-pair
Each attr-value-pair argument is treated as a one or two element list. The first element gives the name of the
attribute. If the second element of the pair is present, then it gives the default value for the attribute. If the second element
is missing then the default value for the attribute is the empty string. Default attributes values will be used when objects of
the class are created if no other values is supplied at construction time.

The command may be invoked an arbitrary number of times in the configuration script. When objects of the resulting class are
created, the attributes will be present and have their default values after construction. The constructor constructor of the newly
created class will also allows us to override the defaults at creation time.

Attribute names form a set and so duplicates are not allowed. We also do not allow the empty string as an attribute name on the
rational that the empty string cannot convey any semantics. Attempts to define the empty string as an attribute name or to define
a duplicate attribute name cause an error to be thrown.

Attribute names will be stored away in a dictionary. The keys to the dictionary will be the attribute names themselves and the
value of the corresponding key will be the default value of the attribute.

<<stsaclass constructor>>=
my variable attrInfo
set attrInfo [dict create]

The implementation of the At t ribute method consists of an iteration over the arguments, validating the attribute names and
assigning the default values into the at t rInfo dictionary.

<<stsaclass configuration>>=
method Attribute {args} {
my variable attrInfo

foreach attr $args {
lassign $attr name dfltvalue
if {$name eqg {}} {
tailcall ::stsatcl::DeclError BADATTRIBUTENAME S$name
}
if {[dict exists SattrInfo $name]} {
tailcall ::stsatcl::DeclError DUPATTRIBUTENAME S$name
} else {
dict set attrInfo $name $dfltvalue

<<error code formats>>=
BADATTRIBUTENAME {invalid attribute name, "%s"}
DUPATTRIBUTENAME {duplicate attribute name, "%s"}

stsatcl - An Single Threaded Software Architecture for Tcl 8/130

Attribute Method Tests

We can test the At t ribute method in isolation, but this requires a bit of namespace trickery to invoke the unexported method.
However, in Tcl nothing is really hidden.

<<meta constructor tests>>=
test Attribute-1.0 {
configure multiple attributes
} —-setup {
::stsatcl STSAClass create atl
} —cleanup {
atl destroy
} -body {
[info object namespace atl]::my Attribute\
Count {Maximum 20}
dict size [set [info object namespace atl]::attrInfo]
} —result {2}

<<meta constructor tests>>=
test Attribute-2.0 {
attempt to name an attribute the empty string
} —setup {
::stsatcl STSAClass create at2
} —cleanup {
at2 destroy

} —body {
[info object namespace at2]::my Attribute {}
} —result {invalid attribute name, ""} -returnCodes error

<<meta constructor tests>>=
test Attribute-3.0 {
attempt to have duplicate attributes
} —setup {
::stsatcl STSAClass create at3
} —cleanup {
at3 destroy
} —body {
[info object namespace at3]::my Attribute Count Count
} —result {duplicate attribute name, "Count"} -returnCodes error

Attribute Example

We now show how the attribute command in the DSL is used. In this section we will define the attributes of the Washing
Cycle class. These attributes specify the parameters of the washing that we can control and change.

<<WC class>>=
STSAClass create WashingCycle {
attribute CycleType
attribute WashWaterTemp RinseWaterTemp
attribute WashDuration RinseDuration SpinDuration
attribute AgitationSpeed SpinSpeed

A few items to note.

* We could have defined all the attributes in one invocation of attribute. We have chosen to group them into functional
categories.

* We haven’t yet said what the attributes mean or control, however, the names should give a good indication of the semantic
intent.

stsatcl - An Single Threaded Software Architecture for Tcl 9/130

* We haven’t specified any default values and, consequently, will have to specify values when instances are created.

* We haven’t specified the valid value range of the attributes or the physical units of the values.

So we know how to configure attributes into a class but there is still more work to be done. For now, we move on to the class
relationships.

Reference Method

In XUML, a relationship between two classes is bi-directional.

The relationship defines a function (or partial function) between the two instance sets of the classes and the idea is firmly grounded
in referential integrity ideas from the Relational Model of Data.

In this architecture, a relationship is implemented by decomposing it into /inks. A link is uni-directional and is included in a class
if any of the activities of the class requires navigating the link to obtain instances of the related class.

XUML relationships also carry the notion of multiplicity and conditionality. So a relationship may navigate to multiple instances
in one direction and may also allow for the case that no instances are linked. We need a way to specify whether a link reference
is singular or multiple and whether it is conditional.

The reference command is invoked in the XUML class configuration script to define a linkage where one class refers to
another. The invocation synopsis is:

reference rname spec dstclass

rname
is the name of the reference. Conventionally, XUML references are named with a capital “R” followed by a number (e.g.
R42), but any string may be used.

spec
is a string that designates the multiplicity and conditionality of the reference. It consists of a hyphen (-) followed by one
or two greater than signs (>) followed by an optional letter “c”. A spec argument of “->” indicates the multiplicity of the
reference is singular. A spec of “->>” indicates a multiplicity of many. Either type of multiplicity may have a “c” suffix
(e.g. “->>c”) to indicate that the reference may refer to zero instances.

dstclass
is the name of a class command to which instances refer. The class need not exist at the time the reference command
is executed. Unqualified class commands are resolved into the namespace of the creator of the class.

In this architecture, linkage is achieved by storing the command name of the object. We will make sure to store the fully qualified
command name even if we take unqualified names as dstclass arguments. So one aspect of linkage is to perform the object
command name qualification.

<<stsaclass configuration>>=
method Qualify {cmdname {level 4}} {
return [expr {[string range $cmdname 0 1] ne "::" 2\
"[string trimright [uplevel $level namespace current] :]::$cmdname" :\
$cmdname}] ; # ©

o This is a bit boiled down as the ternary expression is not the easiest thing in the world to read. The test is to determine
if the leading characters of the cmdname are “::”. If not, we climb up the call stack using uplevel to get the current
namespace. The default number of levels to climb up is 4 so we will be rather nested when this method is invoked. The

€, .0

string trimright will discard the ““::” that is returned if we hit the global namespace in our uplevel command.

€,

Since we are going to tack on another “::” namespace separator anyway, we don’t want the case of the global namespace
to end up with “::::”, which is incorrect syntax. There are probably a number of other ways to code this. If the leading

66,0

characters of cmdname are ““::”, then we already have a fully qualified name and will just return it.

http://en.wikipedia.org/wiki/Relational_model

stsatcl - An Single Threaded Software Architecture for Tcl 10/130

Just as for attributes, we hold the linkage information in a dictionary. The dictionary key is the name of the linkage and the

corresponding value is also a dictionary (yielding a nested dictionary). We will see the structure of the nested portion of the
dictionary below.

<<stsaclass constructor>>=
my variable linkInfo
set linkInfo [dict create]

The implementation of the Reference method uses a regular expression to parse the spec argument syntax. A dictionary is
then created to hold the component parts of the spec.

<<stsaclass configuration>>=
method Reference {rname spec dstclass} {
my variable linkInfo
if {[dict exists $linkInfo Srname]} {
tailcall ::stsatcl::DeclError DUPREFERENCE S$rname
}
set dstclass [my Qualify $dstclass]

if {![regexp —— {\A-(>{1,2}) (c?)\Z} S$spec match mult cond]} { # (1
tailcall ::stsatcl::DeclError BADREFSPEC $spec

dict set linkInfo S$rname [dict create\
type reference\
dest S$dstclass\
mult [string equal S$mult ">>"]\
cond [string equal $cond "c"]\

o In regexp speak: starting at the beginning of the string, find a hyphen followed by 1 or 2 greater than signs followed by
an optional “c” character that is the last character of the string. The parentheses surround the subcomponents so that we
can capture the matched portions into variables.

<<error code formats>>=
DUPREFERENCE {linkage, "%s", already exists}
BADREFSPEC {bad reference spec, "%s"}

Reference Method Tests

Using the same techniques as for the At t ribute method, we can test the Re ference method in isolation. However, we must
be careful to give fully qualified class names. Otherwise since the Quali fy method is not being invoked at the correct level, it
will throw an error.

<<meta constructor tests>>=
test Reference-1.0 {
configure a simple reference
} —setup {
::stsatcl STSAClass create refl
} —cleanup {
refl destroy

} —body {
[info object namespace refl]::my Reference Rl —-> [namespace current]::foo
dict get [set [info object namespace refl]::1linkInfo] R1

} —result {type reference dest ::stsatcl::test::foo mult 0 cond 0}

stsatcl - An Single Threaded Software Architecture for Tcl 11/130

<<meta constructor tests>>=
test Reference-2.0 {

define reference with bad syntax
} —setup {

::stsatcl STSAClass create ref2
} —cleanup {

ref2 destroy

} —body {
[info object namespace ref2]::my Reference Rl —->>x [namespace current]::foo
} —result {bad reference spec, "->>x"} -returnCodes error

<<meta constructor tests>>=
test Reference-3.0 {
duplicated reference
} —setup {
::stsatcl STSAClass create ref3
} —cleanup {
ref3 destroy

} —body {
[info object namespace ref3]::my Reference R1 —-> [namespace current]::foo
[info object namespace ref3]::my Reference Rl -> [namespace current]::foo

} —result {linkage, "R1", already exists} -returnCodes error

Reference Example

Our example has many cases where references are used and will present only one of them here. Rest assured that all the references
will be dealt with fully, as we will ultimately have a running example. To illustrate the reference command, we will show
the Clothes Tub class. Here we only show the reference definitions and we defer the state model associated with the Clothes
Tub until later.

<<CT class>>=

STSAClass create ClothesTub {
reference R1 —-> WashingMachine
reference R2 ->> Motor
reference R3 —->> WaterValve
reference R5 —> WaterLevelSensor
<<CT state model>>

In the class diagram, relationship R2 represents the set of Motor instances that are available to a Clothes Tub instance. It is
defined as a one-to-many association between Clothes Tub and Motor, respectively, and codifies the physical arrangement of
how the mechanics of a Washing Machine were designed to operate®. In the implementation, that relationship is decomposed
into two links, a one-to-many link from ClothesTub to Motor and a one-to-one link from Motor to Clothes Tub. The above
shows the link from the Clothes Tub perspective. A similar set of reasoning can be applied to the other relationships in the class
diagram.

Partition Method

There is one other type of linkage that must be supported. In XUML the generalization relationship of ordinary UML is inter-
preted in terms of a set partition*. A set partition of the super class instances implies that each instance of the super class is linked
to exactly one instance of a subclass from among all the subclasses that participate in the generalization. You can think of the
generalization in this usage as an equivalence relation.

partition rname subl sub2

3 Real washing machines probably don’t use multiple motors. One motor and a simple transmission would make more sense.
4 Cf conventional UML that usually interprets the general relationship as some type of inheritance.

stsatcl - An Single Threaded Software Architecture for Tcl 12/130

rname
is the name of the partition. Conventionally, partitions and references are named with a capital “R” followed by a number
(e.g. R42), but any string may be used. A partition and a reference may not have the same name.

subl sub2
are the names of subclasses of the partition. The subclasses do not have to exist when the partition is declared. At least
two subclasses must be given.

We will store the partition information in the same 1inkInfo dictionary. Together the references and partitions form the set of
linkages for the class. For the case of a partition, the dictionary value will have a different value for the t ype key and the value
of the subclasses key holds the set of subclasses.

We will also find it convenient to have the set of partitions defined for a class accessible outside of the 1inkInfo dictionary
(i.e. we don’t want to have to search the 1inkInfo dictionary for all the partition type links).

<<stsaclass constructor>>=
my variable partitions
set partitions [list]

The Partition method follows the familiar pattern of validating the input and adding an entry to the 1inkInfo dictionary
and the partitions list.

<<stsaclass configuration>>=
method Partition {rname args} {
my variable linkInfo
if {[dict exists $linkInfo Srname]} {
tailcall ::stsatcl::DeclError DUPREFERENCE S$rname
}
if {[llength S$args] < 2} { # @
tailcall ::stsatcl::DeclError PARTITION S$rname

set subs [list]
foreach sub $args {
::struct::set include subs [my Qualify S$sub]
}
dict set linkInfo $rname [dict create\
type partition\
subclasses $subs\
]
my variable partitions
lappend partitions $rname

<<error code formats>>=
PARTITION {partition, "%s", must have at least two subclasses}

o We insists that a partition have at least two subclasses. Although, one can conceive of an improper subset as a partition, it
does not carry any interesting semantics (i.e. it is a “distinction without a difference”) and so is interpreted as a mistake.

Partition Method Tests

Partition method testing follows the same pattern as for the Att ribute and Reference methods.

<<meta constructor tests>>=
test Partition-1.0 {
define partition
} —setup {
::stsatcl STSAClass create ptl

stsatcl - An Single Threaded Software Architecture for Tcl

13/130

} —cleanup {
ptl destroy
} —body {
[info object namespace ptl]::my Partition RI1\
[namespace current]::subl [namespace current]::sub2
dict get [set [info object namespace ptl]::1linkInfo] R1

} —result {type partition subclasses {::stsatcl::test::subl ::stsatcl::test:

<<meta constructor tests>>=
test Partition-2.0 {
partition with one subclass
} —setup {
::stsatcl STSAClass create pt2
} —cleanup {
pt2 destroy
} -body {
[info object namespace pt2]::my Partition RI1\
[namespace current]::subl
} —result {partition, "R1", must have at least two subclasses}\
-returnCodes error

<<meta constructor tests>>=
test Partition-3.0 {
define duplicate partitions
} —setup {
::stsatcl STSAClass create pt3
} —cleanup {
pt3 destroy
} —body {
[info object namespace pt3]::my Partition RI1\
[namespace current]::subl [namespace current]::sub2
[info object namespace pt3]::my Partition RI1\
[namespace current]::sub3 [namespace current]::subd
} —result {linkage, "R1", already exists} -returnCodes error

Statemodel Method

:sub2}}

In XUML, a state model may be associated with a class to describe its dynamic behavior. Not all XUML classes have state
behavior. The analysis model will only define state models for classes that have non-trivial and interesting dynamic behavior.
We would like to keep the commands that are required to define a state model grouped together. Although not strictly necessary,
grouping the state model commands together into a script will help make the semantic distinction between dynamic behavior

implied by the state model and the static characteristics specified by the attributes and links.

statemodel script

script
A script invoking commands used to specify a Moore style state model.

We will want to execute STSAC1ass methods to handle the state model specification just as we did for attributes and references.
However, we want to insure that the state model configuration script does not execute any other configuration commands (e.g. we
don’t want att ribute commands embedded in the state model configuration script). To do this, we will put the state model
configuration commands in a namespace that is a child of the class namespace and evaluate the state model configuration script

in that namespace.

The bit of trickery required for this is similar to that used in the 1ink command. Indeed the code below is a simple variation
on the tcllib source for the co::util 1link procedure. Here we define a 1inkTo helper procedure that specifies a child

namespace where we wish to evaluate the linked commands.

stsatcl - An Single Threaded Software Architecture for Tcl 14 /130

<<helper commands>>=

proc ::00::Helpers::1inkTo {childns args} { + O
set childns [string trim $childns :] ; + O
namespace eval $childns {} ; 4 O

set ns [uplevel 1 {namespace current}]
foreach link $args {

if {[llength $1link] == 2} {
lassign $1link src dst
} else {

lassign $1link src
set dst $src
}
interp alias {} ${ns}::${childns}::$src {} ${ns}::my $dst ; # (4
}

return
}
o N.B. we put this procedure into a namespace that is accessible to all TclOO objects.
2] Clean up any extraneous colon characters. We definitely don’t want any leading colons as that would imply a fully-
qualified namespace name.
(3] Make sure to create the namespace.
(4] Use an alias to link the command in the child namespace back to a class method.

With the ability to link commands to a child namespace, we can now define the state model configuration commands.

<<stsaclass constructor>>=
1linkTo smdsl\
{state State}\
{transition Transition}\
{defaultTrans DefaultTrans}\
{initialState InitialState}\
{terminal Terminal}

With all these preliminaries out of the way, the Statemodel method simply consists of evaluating a script in the proper
child namespace that resolves the commands required to specify the state behavior. We will discuss those commands in detail
below.

<<stsaclass configuration>>=
method Statemodel {script} {
namespace eval [namespace current]::smdsl S$script

Statemodel Method Tests

Here we will only test that the statemodel script is evaluated in the proper child namespace. After presenting the code for the
individual state model definition commands we will have more extensive tests.

<<meta constructor tests>>=
test Statemodel-1.0 {
insure the statemodel script executes in the correct namespace
} —setup {
::stsatcl STSAClass create sml
} —cleanup {
sml destroy
} -body {

stsatcl - An Single Threaded Software Architecture for Tcl 15/130

[info object namespace sml]::my Statemodel ({
puts -nonewline [namespace tail [namespace current]]
attribute Foo Bar

}

} —result {invalid command name "attribute"} -output {smdsl} -returnCodes error

Polymorphic Method

The semantics of execution model in XUML supports only one type of polymorphism and it takes the form of events that
are directed at a super class. Super class events that are declared as polymorphic are propagated, at run time, to the subclass
instance to which the target super class is currently related. This idea is only valid for those classes that are the super class in a
generalization relationship. From a methodology point of view, there is much to say about polymorphic events. However from an
implementation architecture point of view, they amount to little more than factoring some common code into the event signaling
operation.

The polymorphic command is used to declare those events that are intended to be treated as polymorphic with respect to their
subclasses.

polymorphic eventl event2

eventl event2
the names of events that are to be treated polymorphically.

It is sufficient simply to store the event names as a set.

<<stsaclass constructor>>=
my variable polyEvents
set polyEvents [list]

<<stsaclass configuration>>=

method Polymorphic {args} {
my variable polyEvents
::struct::set add polyEvents S$args

Polymorphic Method Tests

<<meta constructor tests>>=
test Polymorphic-1.0 {
define polymorphic events
} —setup {
::stsatcl STSAClass create pml
} —cleanup {
pml destroy
} —body {
[info object namespace pml]::my Polymorphic el e2
llength [set [info object namespace pml]::polyEvents]
} —result {2}

InstOp Method

Instance based operations in XUML allow code common to all instances to be factored into one place.

instop name arglist body

stsatcl - An Single Threaded Software Architecture for Tcl 16/130

name
The name of the instance operation.

arglist
A list of formal parameters to the instance operation in the style of the proc command.

body
A Tecl script that executes when the instance operation is invoked.

The direct implementation of an instance operation as a method is used. TclOO provides all the machinery here and we just
need to pass the parameter along.

<<stsaclass configuration>>=

method InstOp {name arglist body} {
::00::define [self] method $name S$Sarglist S$body ; # (1
::00::define [self] export S$name ; + O

] Note here that : : co: :define is used to declare the instance operation. Because we are constructing a class, we want
the instance operation to be realized as part of the configuration of the class being constructed. Configuring the method
into the class will insure that the method is available to created instances. This is just one of the mind-binding aspects of
meta-classes.

(2] All instance operations are exported regardless of whether the first letter is capitalized.

InstOp Method Tests

<<meta constructor tests>>=
test InstOp-1.0 {
define instance operation
} —setup {
::stsatcl STSAClass create iol
} —cleanup {
iol destroy
} —body {
[info object namespace iol]::my InstOp print {a} {puts -nonewline $a}
iol create inst-iol
inst-iol print alpha
expr {"print" in [info object methods inst-iol -all]}
} —result {1} -output {alpha}

ClassOp Method

By analogy to instance based operations, XUML allows for class based operations. This is code that common to the class and
independent of the instances. These types of operations are not common, but serve a role providing, for example, improved
access to instance queries.

classop name arglist body

name
The name of the class based operation.

arglist
A list of formal parameters to the instance operation in the style of the proc command.

body
A Tcl script that executes when the operation is invoked.

stsatcl - An Single Threaded Software Architecture for Tcl 17/130

The direct implementation of a class based operation as a method is used. Again, TclOO provides all the machinery here.

<<stsaclass configuration>>=

method ClassOp {name arglist body} {
::00::0bjdefine [self] method $name $arglist $body ; # ©
::00::0bjdefine [self] export S$name ; O

o Compare this with the implementation of the InstOp method. In this case we want the class based operation to be
available to the class that is under construction. As classes are objects themselves under TclOO, we then need to define
the method on the class object itself using : : co: :objedefine

2] All class operations are exported regardless of whether the first letter is capitalized.

ClassOp Method Tests

<<meta constructor tests>>=
test ClassOp-1.0 {
define class based operation
} —setup {
::stsatcl STSAClass create col
} —cleanup {
col destroy
} —body {
[info object namespace col]::my ClassOp print {a} {puts -nonewline S$a}
col print beta
expr {"print" in [info object methods col]}
} —result {1} -output {beta}

Constructor Method

Under some circumstances it is necessary to have more direct access to the underlying TclOO constructor. That is provided by
the constructor command. The primary purpose of this is to allow other system resources to be acquired at instance creation
time. It is a capability subject to abuse, but the occasional need to control the construction process is very real. The primary
restriction is that there is no way to pass any arguments to this code.

constructor body

body
A Tecl script that is executed when an instance is created.

<<stsaclass constructor>>=
my variable cscript
set cscript {}

<<stsaclass configuration>>=
method Constructor {body} {
my variable cscript
set cscript $body

stsatcl - An Single Threaded Software Architecture for Tcl 18/130

Destructor Method
Resources acquired during instance construction may need to be release at instance deletion time. So we provide a hook into the
destructor.

destructor body

body
A Tecl script that is executed when an instance is deleted.

<<stsaclass constructor>>=
my variable dscript
set dscript {}

<<stsaclass configuration>>=
method Destructor {body} {
my variable dscript
set dscript $body

State Model Configuration DSL

Now that we have covered all the first level class configuration commands, we can turn our attention to the commands used to
configure a state model. Recall that the statemodel command takes a script and that script should invoke the commands
discussed here to specify the state model for a class.

The state model defined by these commands is of the Moore type. This means that the processing associated with the state
is executed when the state is entered. XUML has a long history of using this formulation of state models and specifically
eschews hierarchical state models. We follow the syntax and conventions of the comoore package. Indeed, most of the code
for configuring and dispatching events to state models was taken from that package and adapted here.

The commands to specify a state model are:

* state — define a state and the activity executed when it is entered.

* transition — define the transition between states that an event causes.

¢ defaultTrans — specify the default transition.

* initialState — specify the state where a machine starts.

* terminal — specify states where an object is deleted.

The state model script may contain invocations of these commands in any order. In our examples, we tend to declare a state and

then list the out-bound transitions for that state. However, this is just a convention and there is no inherent order dependency in
how states and transitions are declared. The invocation synopsis for each command is given in the sections below.

State Method
The State method is used to specify the states of the state model. States may have arguments and will execute the provided Tcl
script when the state is entered.

state name arglist body

name
the name of the state. The names, “IG”, “CH” and “@” are reserved. The reserved state names are discussed as part of the
transition command.

http://en.wikipedia.org/wiki/Moore_machine
http://repos.modelrealization.com/cgi-bin/fossil/mrtools/doc/tip/oomoore/wiki/intro.wiki

stsatcl - An Single Threaded Software Architecture for Tcl 19/130

arglist
a list of parameters in the style of the proc command. Events that cause a transition into the state must supply actual
argument values that correspond to the parameters.

body
a script that is executed when the state is entered.

We use a variable to hold the set of defined states. Order is important here because we will choose to use the first defined state as
the default initial state if one is not explicitly declared.

<<stsaclass constructor>>=
my variable states
set states [list]

<<stsaclass configuration>>=
method State {name argList body} {
my variable states
if {$Sname in {IG CH @Q@}} {
tailcall ::stsatcl::DeclError RESERVED_STATE S$name
} elseif {Sname in S$states} {
tailcall ::stsatcl::DeclError DUPLICATE_STATE S$name
} else {
lappend states $name ; # ©

::00::define [self] method ${name}_ STATE__ S$argList S$body ; # ©
::00::define [self] unexport ${name}__ STATE_ ; # ©
}
}
o We don’tuse the : : struct: : set operations so as to guarantee the order of the state name list.
2] State activities just become methods of the class being created. Again, we just use the existing TclOO facilities. However,

we do want to insure that the method names for state activities do not interfere with any other method definitions that
might arise from instance operations.

(3] State activity methods should not be invoked from outside of the object. They also should net be invoked directly as
methods from other methods. It is not possible to hide things completely in Tcl, but an unexported, contrived name is
intended to make sure you have to work a little harder to circumvent the design intent.

<<error code formats>>=

RESERVED_STATE {states may not be named by the reserved name, "%s"}
DUPLICATE_STATE {duplicate state, "%s"}

State Method Tests

<<meta constructor tests>>=
test State-1.0 {

define state
} —setup {

::stsatcl STSAClass create stl
} —cleanup {

stl destroy
} —body {

[info object namespace stl]::my Statemodel ({

state s1 {} {
puts "in state s1"

}

set isdef [expr {"sl" in [set [info object namespace stl]::states]}]

stsatcl - An Single Threaded Software Architecture for Tcl 20/130

set hasmeth [expr {"sl__STATE__" in [info class methods stl -private]}]
expr {S$isdef && Shasmeth}
} —result {1}

<<meta constructor tests>>=
test State-2.0 {

define state with reserved name
} —setup {

::stsatcl STSAClass create st2
} —cleanup {

st2 destroy
} —body {

[info object namespace st2]::my Statemodel ({

state IG {} {}
}

} —result {states may not be named by the reserved name, "IG"}\
—-returnCodes error

<<meta constructor tests>>=
test State-3.0 {
define state with reserved name
} —setup {
::stsatcl STSAClass create st3
} —cleanup {
st3 destroy
} -body {
[info object namespace st3]::my Statemodel ({
state Idle {} {}
state Idle {a b} {puts "Sa S$b"}
}

} —result {duplicate state, "Idle"} -returnCodes error

Transition Method

The Transition method is used to specify how the state model transitions when it receives events. It is useful to consider
the possible transitions that a state model may make to be a matrix where the rows of the matrix are labeled by state names and
columns are labeled by event names. The matrix entry at the intersection of each row and column is the name of the new state
to which the state machine will enter. It is not necessary to specify the entire states by events matrix. A default entry may be
specified for the missing entries.

There are a few more rules about state model transitions. The “IG” state denotes that an event is to be ignored. The “CH” state
asserts that the event can never happen in a state and if it does then it is an error. Neither of these state cause a transition, despite
their being used as the target of a transition. The “@” state denotes the initial pseudo-state into which a new asynchronously
created state machine is placed. There is never an activity associated with the “@” state (hence it is called a pseudo-state).

transition current - event -> target

current
The state name from which the transition arises. The special states, IG and CH are not allowed for this argument.

event
The event name that causes the transition.

target
The state to which the transition is made. The special state @ is not allowed as a target.

The “-” and “->” arguments are literally required but only serve as syntactic sugar. The command asserts that when the state
model is in the current state and receives the event event it is to transition to the target state. N.B. that current and target may be
the same state. In that case, the event causes the the state to be reentered and its activity is executed again.

stsatcl - An Single Threaded Software Architecture for Tcl 21/130

This configuration command will fill in two pieces of data. There is no special configuration command to declare events. They
are simply picked up from the transition command. The transitions themselves are stored in a dictionary keyed by the values of
both the current and event arguments.

<<stsaclass constructor>>=
my variable events

set events [list]

my variable transitions

set transitions [dict create]

<<stsaclass configuration>>=
method Transition {current - event -> target} {
if {Scurrent in {IG CH}} {
tailcall ::stsatcl::DeclError TRANS_SRC S$current
} elseif {$current eq "Q@"} { # ©
my variable states
::struct::set include states Scurrent

if {Starget eqg "@"} {
tailcall ::stsatcl::DeclError TRANS_DST
}
my variable events
::struct::set include events $event ; # ©

my variable transitions
if {[dict exists Stransitions S$Scurrent Sevent]} {

tailcall ::stsatcl::DeclError DUPLICATE_TRANS S$current S$Sevent
} else {

dict set transitions Scurrent $event S$target

] The only valid place were the “@” state may be specified is as the current state in a t ransition command. If it shows
up we need to record that fact.

2] Event names are collected from all the transition statements but they form a set.

<<error code formats>>=

TRANS_SRC {a transition cannot originate from the "%s" pseudo-state}
TRANS_DST {the initial pseudo-state, "@", cannot be the\

target of a transition}
DUPLICATE_TRANS {duplicate transition, "%s - %s"}

Transition Method Tests

<<meta constructor tests>>=
test Transition-1.0 {
define transition
} —setup {
::stsatcl STSAClass create trl {}
} —cleanup {
trl destroy
} -body {
[info object namespace trl]::my Statemodel {
transition sl - el —> sl

stsatcl - An Single Threaded Software Architecture for Tcl 22/130

namespace upvar [info object namespace trl] transitions t
namespace upvar [info object namespace trl] events e

set hasevent [expr {"el" in $e}]
set hastrans [expr {[dict get $t sl el] eq "sl1"}]
expr {Shasevent && S$hastrans}

} —result {1}

<<meta constructor tests>>=
test Transition-2.0 {
define transition -- bad source state
} —setup {
::stsatcl STSAClass create tr2 {}
} —cleanup {
tr2 destroy

} -body {
[info object namespace tr2]::my Statemodel ({
transition IG - el —-> sl

}
} —result {a transition cannot originate from the "IG" pseudo-state}\
-returnCodes error

<<meta constructor tests>>=
test Transition—-3.0 {
define transition -- bad source state
} —setup {
::stsatcl STSAClass create tr3 {}
} —cleanup {
tr3 destroy

} -body {
[info object namespace tr3]::my Statemodel ({
transition sl - el —> @

}
} —result {the initial pseudo-state, "Q", cannot be the target of a transition}\
-returnCodes error

<<meta constructor tests>>=
test Transition—-4.0 {
define transition -- duplicate transition
} —setup {
::stsatcl STSAClass create tr4d {}
} —cleanup {
tr4 destroy
} —body {
[info object namespace tr4]::my Statemodel {
transition sl - el -> sl
transition sl - el —-> s2
}

} —result {duplicate transition, "sl - el"} -returnCodes error

DefaultTrans Method

It is not necessary to specify all the entries of the conceptual transition matrix for a state model. Any unspecified entries will
default to “CH”. However, sometimes it is more convenient to specify “IG” as the default transition. The DefaultTrans
method allows you to set the default transition to either “CH” or “IG”.

defaultTrans trans

stsatcl - An Single Threaded Software Architecture for Tcl 23/130

trans
Either “IG” or “CH” may be specified as the default transition.

A simple variable is used to hold the default transition. That variable is initialized to “CH”.

<<stsaclass constructor>>=
my variable defaulttrans
set defaulttrans CH

<<stsaclass configuration>>=
method DefaultTrans {trans} {
if {Strans in {IG CH}} {
my variable defaulttrans
set defaulttrans S$trans
} else {
tailcall ::stsatcl::DeclError BAD_DEFAULT_TRANS S$trans

<<error code formats>>=
BAD_DEFAULT_TRANS {bad default transition name, "%s": must be one of\
"IG" or "CHH}

InitialState Method

initialState state

state
The state name into which newly create instances are placed.

<<stsaclass constructor>>=
my variable initialstate
set initialstate {}

<<stsaclass configuration>>=
method InitialState {state} {
if {Sstate in {IG CH @ {}}} {
tailcall ::stsatcl::DeclError BAD_INIT_STATE S$state
}

my variable initialstate
set initialstate $state

<<error code formats>>=
BAD_INIT_STATE {initial state, "%s", cannot be "IG", "CH", "Q@" or empty}

Terminal Method
terminal statel state2 ...
state

The name of a state that is to be deemed a terminal state. When an instance transitions into a terminal state, it is destroyed
at the completion of the state activity.

stsatcl - An Single Threaded Software Architecture for Tcl 24/130

<<stsaclass constructor>>=
my variable terminals
set terminals [list]

<<stsaclass configuration>>=
method Terminal {args} {
foreach state $args {
if {$state in {IG CH @ {}}} {
tailcall ::stsatcl::DeclError BAD_TERM_STATE S$state

}
my variable terminals
::struct::set add terminals $args

<<error code formats>>=
BAD_TERM_STATE {terminal state, "%s", cannot be "IG", "CH", "@" or empty}

State Model Example

With the state model configuration commands in hand, we can now show to define one of the state models for our example.

Here we will consider the Washing Machine class. The state model for that class is shown below.

stsatcl - An Single Threaded Software Architecture for Tcl 25/130

(Filling To Wash A 4 Stopped \
Fill the tub with wash water. # Stop spinning -- wash complete
select one wc related by self->R4[WC] Start select one ct related by self->R1[CT]
select one ct related by self->R1[CT] signal Stop to ct
signal Fill(wc.WashWaterTemp) to ct 9

Full Dgne

4 Washing R 4 Spinning R
Agitate the tub to wash. # Spin out excess water.
select one ct related by self->R1[CT] select one ct related by self->R1[CT]
signal Agitate to ct signal Spin to ct
select one wc related by self->R4[WC] select one wc related by self->R4[WC]
signal Done to self at wc.WashDuration signal Done to self at wc.SpinDuration

- J - J

Dgne Empty
Draining Wash w (Draining Rinse
Stop washing and drain # Stop rinsing and drain
the dirty wash water. # the rinse water.
select one ct related by self->R1[CT] select one ct related by self->R1[CT]
signal Drain to ct signal Drain to ct
Emlpty Dane
4 o I
Rinsin
(Filling To Rinse A g

4 Fill the tub with ri . # Agitate the tub to rinse.

: € tub with rinse water. Full select one ct related by self->R1[CT]

select one wc related by self->R4[WC]
select one ct related by self->R1[CT]
signal Fill(wc.RinseWaterTemp) to ct

signal Agitate to ct
select one wc related by self->R4[WC]
sighal Done to self at wc.RinseDuration

- J

Washing Machin
State Model
Version 1.0.1

Figure 4: Washing Machine State Model

The initial state is Stopped. The transitions in the model show how dirty clothes are cleaned. Events drive the state machine
through its lifecycle filling, washing, draining, filling again, rinsing, draining and finally spinning out the excess water. The
responsibilities of the Washing Machine class are rather narrow. It restricts its scope to controlling the Clothes Tub and timing
the various parts of the overall cycle.

You will notice that the state activities contained in each state are coded in a pseudo-code with which you may not be familiar.
There are many ways to express the algorithmic processing and we have chosen one here that is very similar to that supported

stsatcl - An Single Threaded Software Architecture for Tcl 26/130

proposed by others. We don’t have to be overly precise since we don’t intend to parse the action language. Rather the intent is to
state the overall intent and then show how, in terms of the model level constructs, that intent is realized.

Below we show the definition of the Washing Machine class along with its state model configuration. For now, we are not
showing the how the state activities end up as Tcl code. We will have more to say on that subject later. What we want to
emphasize here is the correspondence between the state model graphic and its representation as a set of declarative commands.

<<WM class>>=
STSAClass create WashingMachine ({
attribute MachinelID
reference R1 —-> ClothesTub
reference R4 -> WashingCycle
statemodel {
initialState Stopped
defaultTrans CH

state Stopped {} {
<<WM stopped activity>>
}
transition Stopped - Start -> FillingToWash

state FillingToWash {} {
<<WM filling to wash activity>>

}
transition FillingToWash - Full -> Washing

state Washing {} {
<<WM washing activity>>
}

transition Washing - Done —-> DrainingWash

state DrainingWash {} {
<<WM draining wash activity>>

}

transition DrainingWash - Empty —-> FillingToRinse

state FillingToRinse {} {
<<WM filling to rinse activity>>

}

transition FillingToRinse - Full -> Rinsing

state Rinsing {} {
<<WM rinsing activity>>
}

transition Rinsing - Done -> DrainingRinse

state DrainingRinse {} {
<<WM draining rinse activity>>

}

transition DrainingRinse - Empty -> Spinning

state Spinning {} {
<<WM spinning activity>>
}

transition Spinning - Done -> Stopped

stsatcl - An Single Threaded Software Architecture for Tcl 277130

Completing XUML Class Construction

At this point we have now covered all the commands that are used to construct a configuration script used to create a new XUML
class. These commands all follow the same pattern, namely they validate their inputs as possible and store away argument values
into appropriate data structures.

Now we consider what needs to be done to evaluate the configuration script and complete constructing the new class.
First, we evaluate the configuration script in the namespace of the newly created class.

<<stsaclass constructor>>=
my eval S$config

This will cause the various configuration command methods to be invoked. The next step is to perform some semantic validation.
It is still possible to incorrectly specify parts of the configuration and a correct configuration cannot be determined on a command
by command basis. Like any language, in our DSL it is quite possible to make syntactically correct statements that are still
meaningless.

We divide the remaining evaluation into parts that parallel the configuration, i.e. attributes, linkage, state models and polymorphic
events. We will also encounter some common code that we have factored into some utility procedures.

<<stsaclass constructor>>=
<<attribute semantics>>
<<linkage semantics>>
<<state model semantics>>
<<polymorphic semantics>>
::00::define [self] {
<<select related methods>>
<<map related methods>>
<<utility methods>>
}
::00::0bjdefine [self] {
<<select instance methods>>
<<map instance methods>>

Each of these categories is discussed below.

Attribute Semantics

If the XUML class declares any attributes, we want to make available a set of attribute access methods so that other classes may
read and update attributes.

<<attribute semantics>>=
if {[dict size SattrInfo] != 0} {
::00::define [self] {
<<attribute access methods>>

We will discuss the class methods that will be provided to access attributes below. Here we note that if no attributes are declared,
then the methods will not be part of the interface for objects created from the class.

Linkage Semantics

For reference and partition definitions, we want to include the methods used to create and traverse the linkage into the
created class. These methods are also described below.

stsatcl - An Single Threaded Software Architecture for Tcl 28/130

<<linkage semantics>>=
if {[dict size $linkInfo] != 0} {
:00::define [self] {
<<linkage access methods>>

State Model Semantics

For state models, there is a bit more work to do to insure that a consistent model has been defined. One of the goals of the DSL
was not to place a rigid order on the statements. Consequently, it is possible to refer to entities during the configuration that are
not yet defined (e.g. a transition command may refer to states not yet defined). So there is some additional validation that
must be done now that the state model configuration is fully known.

<<state model semantics>>=
if {[llength $states] != 0 || [llength $polyEvents] != 0} {
<<validate transitions>>
<<compute transition matrix>>
<<validate initial state>>
<<validate terminal states>>
<<creation events>>
::00::0bjdefine [self] {
<<in state creation methods>>

::00::define [self] {
<<state model methods>>
}
} elseif {S$dscript ne {}} {
::00::define [self] destructor {
classvariable dscript
my eval $dscript

We first insure that no isolated states were defined. Isolated state are those that have no incoming or outgoing transitions. Such
state are not reachable and indicate a specification error.

The strategy to compute isolated states starts with finding all the states that have out-bound transitions and all the states that have
in-bound transitions. This can be determined by looking at the values of t ransitions dictionary.

<<validate transitions>>=
set outstates [list]
set instates [list]
dict for {src trans} S$Stransitions {
dict for {event dst} S$Strans {
if {$src ni $states} { # @
tailcall ::stsatcl::DeclError UNKNOWN_SRC_STATE S$src Sevent S$dst
}
::struct::set include outstates $src
if {Sdst ni {IG CH}} { # ©
if {$Sdst ni S$states} {
tailcall ::stsatcl::DeclError UNKNOWN_DST_STATE $src Sevent S$Sdst
} else {
::struct::set include instates $dst

stsatcl - An Single Threaded Software Architecture for Tcl 29/130

o While we are iterating across the transitions, check that they are consistent with the set of defined states. We have to defer
this until here so there will not be any order dependency in the configuration language.

(2] Skip the non-transitioning pseudo-states of IG and CH.

<<error code formats>>=

UNKNOWN_SRC_STATE {unknown source state in transition, "%s - %$s —-> %s"}
UNKNOWN_DST_STATE {unknown target state in transition, "%s - %s -> %$s"}

Next, we compute the set of states with no in-bound transitions and the set with no out-bound transitions. The set of states with
no in-bound transitions is just the difference between the set of all states and those that do have in-bound transitions. Similarly
the set of states with no out-bound transitions is computed.

<<validate transitions>>=
set noincoming [::struct::set difference $states S$Sinstates]
set nooutgoing [::struct::set difference $states Soutstates]

Finally, isolated states are those which have neither in-bound nor out-bound transitions. This is just the intersection of the two
sets we just computed.

<<validate transitions>>=
set isostates [::struct::set intersect $noincoming $nooutgoing]
if {![::struct::set empty S$isostates]} {

tailcall ::stsatcl::DeclError ISOLATED $isostates

<<error code formats>>=
ISOLATED {state model has isolated state(s): "%s"}

During state machine event dispatch, we will find it much more convenient to find a new target state if the entire transition matrix
is completely populated. We use this opportunity to fill in any transitions not explicitly mentioned in a t ransition command
with the default transition.

<<compute transition matrix>>=
foreach s Sstates {
foreach e S$Sevents {
set id [list $s Se]
if {![dict exists Stransitions $s $e]} {
dict set transitions $s S$e S$defaulttrans

We also have to validate that the initial state is reasonable. This is another situation where we must defer the check until after the
configuration script is executed to avoid imposing some arbitrary order onto the configuration commands in a script. We can also
now determine if the initial state was not explicitly defined and implement the default behavior of taking the first defined state as
the default initial state.

<<validate initial state>>=
if {$initialstate eq {}} {
set initialstate [lindex S$states 0]
} elseif {$initialstate ni S$Sstates} {
tailcall ::stsatcl::DeclError UNKNOWN_INIT STATE S$initialstate

<<error code formats>>=
UNKNOWN_INIT_STATE {unknown initial state, "%s"}

We must insure that the set of terminal states is a subset of the set of all states. This will make sure that no undefined states are
included in the terminal state set.

stsatcl - An Single Threaded Software Architecture for Tcl 30/130

<<validate terminal states>>=

if {![::struct::set subsetof Sterminals S$states]} {
set unknown [::struct::set difference S$terminals S$states]
tailcall ::stsatcl::DeclError UNKNOWN_TERM_ STATE Sunknown

<<error code formats>>=
UNKNOWN_TERM_STATE {unknown terminal states, "%s"}

Finally, we deal with creation events. Creation events allow class instances to be created asynchronously. In this architecture,
a creation event implies creating a new instance, placing that instance in the “@” initial pseudo-state and signaling the creation
event to the instance. Creation events are consequently directed at the class as it will be responsible for creating the instance.
Here, we test to see if the “@? initial pseudo-state is present and if so, we then need to have a method to handle the creation
events.

<<creation events>>=
if {"@" in S$states} {
::00::0bjdefine [self] method signal {event args} ({
try {
set src [lindex [uplevel 1 {self caller}] 1]
} on error {} {
set src {}

set inst [my newin @]
::stsatcl::TraceCreation $src $event $inst
$inst signal $event {x}S$args

return $inst

Note that the creation event generated by a method named, signal, just as for other events. The difference here is that the
method is defined on the XUML class not on one of its objects.

<<exported tests>>=
test creation—-event-1.0 {
send a creation event
} —-setup {
stsatcl STSAClass create crel {
attribute Count {Maximum 27}
statemodel {
transition @ - el -> sl

state sl {} {
my variable Maximum
incr Maximum 10
::stsatcl::test::syncToTest $Maximum

}
} —cleanup {
crel destroy
} —body {
set inst [crel signal el]
::stsatcl::test::waitForSync
$inst readAttributes Maximum
} —result {37}

stsatcl - An Single Threaded Software Architecture for Tcl 31/130

Polymorphic Event Semantics

Polymorphic events are kept entirely separate from transitioning events. It is possible that a superclass has its own state model
and has polymorphic events passed along to its subclasses. So we cannot have the same event name for both a polymorphic and
transitioning event.

<<polymorphic semantics>>=
set commonEvents [::struct::set intersect S$polyEvents Sevents]
if {![::struct::set empty ScommonEvents]} {

tailcall ::stsatcl::DeclError COMMON_EVENTS $commonEvents

<<error code formats>>=
COMMON_EVENTS {polymorphic events and ordinary events cannot have\
the same name, "%$s"}

Polymorphism in events is only defined across a generalization relationship. So defining polymorphic events only makes sense
if there is at least one partition defined for the class.

<<polymorphic semantics>>=
if {[llength $polyEvents] != 0 && [llength $partitions] == 0} {
tailcall ::stsatcl::DeclError BAD_POLY_EVENTS S$polyEvents

<<error code formats>>=
BAD_POLY_EVENTS {polymorphic events, "%s", are defined,\
but there are no defined partition linkages}

Completing the Example Classes

We have now completed the mini-DSL that is used configure an XUML class. To recap, the STSAClass is a meta-class that,
as part of its construction, accepts a configuration script. That configuration script invokes commands that together form a small
domain specific language (DSL) to describe the data and dynamics the newly create class is to have. We refer, collectively, to
those newly created classes as XUML classes.

In this section we complete the XUML class definitions for the remaining classes in our example model. We have already seen
the definitions for the Washing Cycle class and the Washing Machine class. We have also seen the references defined for the
Clothes Tub class. The remaining three classes are given below along with the state model for the Clothes Tub class. Again we
will defer the discussion of the state activities. To be able to code the state activities we need to know about some class methods
that we will discuss after we finish with the class and state diagrams.

We start with the state model for the Clothes Tub class. It is shown below.

stsatcl - An Single Threaded Software Architecture for Tcl 32/130

(Filling R
Enable the sensor
select one wis related by self->R5[WLS]
wIs.Enal_JIe() (Stopping Spin R
Open inlet valve(s) # Stop the motor
if (temp = 'Hot")
select one wv related by self->R3[WV] Fill(temp) sele;t oneMmttr rtletl)al_eldsby 'self->R2[MTR]
where (ValvelD = 'Hot') mt:NSteorS(g otorlD = Spin)
e|svewi'f(z{):mng = "Cold") # Stop the pump
select one mtr related by self->R2[MTR]
select one wv related by self->R3[WV] s D) where (MotorlD = 'Pump’
where (ValvelD = 'Cold") Empty mtr Stop(g B)
| wv_.fczi)en() "Warm’) # Stop the pump # Close the drain valve
else if (temp = 'Warm . select one mtr related by self->R2[MTR]
Fill (tem select one wv related by self->R3[WV
select many wvs related by self->R3[WV] (p) where (MotorID = 'Pump') where (ValvelD = 'D)r/ain') W)
where (ValvelD = 'Hot' OR ValvelD = 'Cold") mtr.Stop() wv.Close()
foreach wv in wvs # Close the drain valve -)
wv.Open() select one wv related by self->R3[WV]
endfor where (ValvelD = 'Drain') Sthp
Gnd if Y, wv.Close()
Disable the sensor
select one wis related by self->R5[WLS] -
TugFull wls.Disable() C Spinning)
Inform the washing machine Spin # Open the drain valve
select one wm related by self->R1[WM] select one wv related by self->R2[WV]
4 Full) signal Empty to wm where (ValvelD = 'Drain')
N J wv.O
- -Open()
Disable the sensor # Start the pump
select one wis related by self->R5[WLS] select one mtr related by self->R2[MTR]
wls.Disable() TubBmpty v
' where (MotorID = 'Pump’)
Close all water valves mtr.Start()
select many wvs related by self->R3[WV] # S.tart the spin motor
where (VglveID = 'Hot' OR ValvelD = 'Cold’) 4 i N select one mtr related by self->R2[MTR]
foreach wv in wvs Emptying
where (MotorID = 'Spin’)
wv.Close() # Stop the motor mtr.Start()
endfor select one mtr related by self->R2[MTR] _ ’ Y,
Inform the washing machine where (MotorID = 'Agitator’)
select one wm related by self->R1[WM] mtr.Stop()
signal Full to wm # Open the drain valve
J select one wv related by self->R3[WV]
where (ValvelD = 'Drain')
Agitate wv.Open()

Start the pump
select one mtr related by self->R2[MTR]

- N where (MotorID = 'Pump’

(Agitating mtrAStart(() P Clothes Tub
Start the agitator motor . # Enable the sensor State Model
select one mtr related by self->R2[MTR] Drain select one wlis related by self->R5[WLS] Version 1.0.1

where (MotorID = 'Agitator’) wls.Enable()
mtr.Start()) g J

Figure 5: Clothes Tub State Model

Like the state model for Washing Machine, we code the diagram into the DSL command syntax. The code sequences for the
activities are defined later.

<<CT state model>>=

statemodel {
initialState Empty
defaultTrans CH

state Empty {} {
<<CT empty activity>>
}
transition Empty - Fill -> Filling
transition Empty - Spin —-> Spinning

state Filling {temp} {
<<CT filling activity>>

}
transition Filling - TubFull -> Full
transition Filling - TubEmpty -> IG ; + O

state Full {} {
<<CT full activity>>

stsatcl - An Single Threaded Software Architecture for Tcl

33/130

The Water Valve and Motor classes have a single attribute and some instance operations.

transition Full - Agitate -> Agitating

state Agitating {} {
<<CT agitating activity>>
}

transition Agitating - Drain —-> Emptying

state Emptying {} {
<<CT emptying activity>>
}
transition Emptying - TubEmpty -> Empty
transition Emptying - TubFull -> IG

state Spinning {} {
<<CT spinning activity>>
}
transition Spinning - Stop -> StoppingSpin

state StoppingSpin {} {
<<CT stopping spin activity>>
}
transition StoppingSpin - Fill -> Filling

We allow for the fact that when the water level sensor is enabled it may send events that reflect its current state. So we
simply ignore those sensor events in which we are not currently interested. See also the Emptying state transition for the

TubFull event.

<<WV class>>=
STSAClass create WaterValve ({

attribute ValveID
instop Open {} {
<<WV open operation>>
}
instop Close {} {
<<WV close operation>>

<<MTR class>>=
STSAClass create Motor {

attribute MotorID
instop Start {} {
<<MTR start operation>>
}
instop Stop {} {
<<MTR stop operation>>

<<WLS class>>=
STSAClass create WaterLevelSensor

reference R5 —> ClothesTub
instop Enable {} {

<<WLS enable operation>>
}
instop Disable {} {

<<WLS disable operation>>

stsatcl - An Single Threaded Software Architecture for Tcl 34/130

XUML Class Methods

XUML defines a set of data accessors that are required to support the execution semantics of the model. These accessors are
independent of the nature of the class. Roughly speaking the accessors are:

¢ Create instances.

* Create instances in a particular state.

¢ Delete instances

¢ Select instances that meet a stated criteria.
» Read attributes of a specified instance.

» Update attributes of a specified instance.
There are also operations that support the dynamic execution model. These allow a state activity to:

¢ Create a link between instances.

* Destroy a link between instances.

* Signal an event.

* Signal an event delayed to some time in the future.

 Cancel a delayed event.

* Query the time remaining of a delayed event.

In the following section we describe the methods that the XUML classes have. These are methods that are common to all XUML
classes and represent the implementation of the data accessors and dynamic operations that the XUML logical model requires.
Recall that the instop and classop DSL commands can be used to create object methods and class methods, respectively,

to a particular XUML class. The methods in this section go somewhat beyond the minimum required to support the XUML
execution model as experience shows some support for common operation is useful.

First we deal with creating objects and the variations on construction that are supported. Afterwards we follow the set of topics
that we have already established. There are methods to deal with attributes, linkage and state model dynamics and sections will
be devoted to each of these topics. Then we explain methods that are used to obtain sets of object instances, either selecting them
by some criteria or selected related instances for some criteria. Lastly, we look a methods for computing on sets of instances.

Creating Objects

In this section we deal with constructing an object from an XUML class. We need to be clear of that distinction given how much
of our effort so far has been devoted to constructing the XUML class itself from the STSAC1ass meta-class.

stsatcl - An Single Threaded Software Architecture for Tcl 35/130

Constructor

The constructor for an XUML class is invoked when the create or new method is used to generate an object, as in:
STSAClass create xumlclass { ... configuration script . ..}
xumlclass create objname attrl valuel attr2 value? ...

xumlclass new attrl valuel attr2 value2 ...

attr value
a set of attribute name / attribute value pairs. If supplied, then the values will override any default value set for the attribute.

The implementation of the constructor deals, roughly speaking, with the same areas that the configuration DSL deals with,
namely, attributes, linkages and state model.

<<stsaclass constructor>>=
:00::define [self] constructor {args} {
<<attribute initialization>>
<<linkage initialization>>
<<state model initialization>>

classvariable cscript ; # ©
my eval Scscript

] At the end of construction we execute any user supplied construction script.

If the XUML class declares any attributes, we want to make them instance variables. This allows state activities to use the my
variable command to access the attributes. It is a convenient and expected way to do things is TclOO objects. We also need
to set up values for the attributes. When an object is constructed, it attributes will be given values that are either its default value
(which will be the empty string if no default was supplied) or the value given in the arguments to create or new (or createin
or newin).

The easy way to accomplish this is to merge the dictionary supplied by args onto the attrInfo dictionary. The dict
merge command does the overriding as we want, if we make sure that the supplied args dictionary is the second argument to
dict merge.

<<attribute initialization>>=
classvariable attrInfo ; # @

if {[dict size S$attrInfo] != 0} { # ©
dict for {attrName defValue} [dict merge S$attrInfo $args] {
if {[dict exists S$attrInfo S$attrName]} { # ©
my variable SattrName
set S$attrName S$defValue
} else {
tailcall ::stsatcl::DeclError UNKNOWN_ATTRIBUTE S$attrName

o From the point of view of the an object of an XUML class, the attribute information gleaned from the DSL commands
is stored in a variable in the class. The oo: :util package provides the classvariable command to conveniently
create a reference to the proper variable in the class. We will use this construct many more times and it insures that all the
objects of the XUML class work off of the same configuration information.

(2] If no attributes were defined when the class was configured, then no variables will have been defined and we ignore
any supplied arguments.

stsatcl - An Single Threaded Software Architecture for Tcl 36/130

(3] We need to check if the attribute name is valid since the caller may have included an unknown attribute in the argument
list and, after the dictionary merge, it would show up as part of the iteration over the dictionary.

<<error code formats>>=
UNKNOWN_ATTRIBUTE {unknown attribute, "%s"}

Constructor Attribute Tests

<<constructor tests>>=
test constructor-1.0 {

create an instance with attributes
} —setup {

stsatcl STSAClass create test5 {

attribute Count {Maximum 20}

}
} —cleanup {

test5 destroy
} -body {

testb create instb5

set [info object namespace inst5]::Maximum
} —result {20}

<<constructor tests>>=
test constructor-1.1 {

create an instance with attributes -- override values
} —setup {

stsatcl STSAClass create test5 {

attribute Count {Maximum 20}

}
} —cleanup {

test5 destroy
} —body {

test5 create inst5 Maximum 30

set [info object namespace inst5]::Maximum
} —result {30}

<<constructor tests>>=
test constructor-1.2 {
error overriding attributes
} —setup {
stsatcl STSAClass create test5 {
attribute Count {Maximum 20}
}
} —cleanup {
test5 destroy
} —-body {
test5 create inst5 Foo 30
} —result {unknown attribute, "Foo"} -returnCodes error

The object command names that make up the linkage information are stored in variables by the same name as the linkage. So we
must initialize these variables.

<<linkage initialization>>=
classvariable linkInfo

foreach linkName [dict keys $linkInfo] {
my variable $linkName
set S$linkName {}

stsatcl - An Single Threaded Software Architecture for Tcl 37/130

Constructor Linkage Tests

<<constructor tests>>=
test constructor-2.0 {

create an instance with a reference
} —setup {

stsatcl STSAClass create ct2 {

reference R42 -> foo

}
} —cleanup {

ct2 destroy
} —body {

ct2 create inst2

info exists [info object namespace inst2]::R42
} —result {1}

One of the more significant aspects of an XUML class is its ability to dispatch events into a state machine. There is substantial
machinery required to do this and we devote much text below to the details of how the state machine execution is implemented
on top of Tcl. We will defer that discussion until later, but during object construction we must do some initialization of the state
machine execution mechanism.

What we will discuss here is the notion of the current state of an object. All objects of an XUML class have the same state model
behavior. However, each object can be in a state that is different from that of any other object. This means we need a variable to
hold the current state that is part of the object

<<state model initialization>>=
classvariable states
if {[llength $states] != 0} {
my variable __ currentstate_
Set the initial state to the default
classvariable initialstate
set __ currentstate__ $initialstate

<<binding state machine events>>

When an object is created from an XUML class using create or new it’s current state is set to be the initial state defined by
the initialState command’. N.B. that any activity associated with the initial state is not executed. We will also see below
that the createin and newin methods can be used to create an object in some state other than its default initial state. We will
also see that it is possible to create objects asynchronously and, in that case, we will be able to cause some processing to happen
immediately after creation.

Constructor State Tests

<<constructor tests>>=
test constructor-3.0 {
define a state model -- defined initial state
} —setup {
stsatcl STSAClass create test6 {
statemodel {
state sl {} {
puts "[self] in s1"
}

transition sl - el —-> s2

state s2 {a} {
puts $a

5 or the first state defined if the initialState command is not invoked

stsatcl - An Single Threaded Software Architecture for Tcl

38/130

}

transition s2 - e2 -> sl
initialState s2

}
} —cleanup {

test6 destroy
} —body {

test6 create insté6

set [info object namespace inst6]::__ _currentstate_
} —result {s2}

<<constructor tests>>=
test constructor-3.1 {
define a state model -- default initial state
} —setup {
stsatcl STSAClass create test6 {
statemodel {
state sl {} {
puts "[self] in s1"
}

transition sl - el —-> s2

state s2 {a} {
puts $a
}

transition s2 - e2 -> sl

}
} —cleanup {

test6 destroy
} —body {

test6 create insté6

set [info object namespace inst6]::___currentstate_
} —-result {sl}

<<constructor tests>>=
test constructor-3.2 {
define state model -- check transition
} —setup {
stsatcl STSAClass create test6 {
attribute Count {Maximum 20}

statemodel {
state sl {} {
puts "[self] in s1"
}
transition sl - el —-> sl

}
} —cleanup {
test6 destroy
} -body {
test6 create insté6
namespace upvar [info object namespace test6] transitions transitions
dict get S$transitions sl el
} —result {sl}

stsatcl - An Single Threaded Software Architecture for Tcl 39/130

Constructing in a State

XUML execution semantics support the idea of creating an object in a specified state. The XUML classes here support that
notion by augmenting create and new with the createin and newin methods. It is worth repeating that creating an object
either its default initial state or a specified state does not execute any activity associated with the state. The initial state only
determines how the object reacts to events in the future.

STSAClass create xumlclass { ... configuration script . ..}
xumlclass createin objname initialstate attrl valuel attr2 value? ...

xumlclass newin initialstate attrl valuel attr2 value?2 ...

initialstate
the name of the state into which the newly created object is place.

The implementation strategy for these methods is to use the create and new methods and then, after construction, set the
current state to the given initialstate.

<<in state creation methods>>=
method createin {name initialstate args} {
my variable states
if {$initialstate in S$states} { # ©
if {[string range $name 0 1] ne "::"} {
set ns [string trimright [uplevel 1 namespace current] :]
set name ${ns}::${name}
}
set inst [my create $name {*}Sargs]
set [info object namespace $inst]::__currentstate__ S$initialstate
} else {
tailcall ::stsatcl::DeclError UNKNOWN_STATE $initialstate $states

return S$inst

<<error code formats>>=
UNKNOWN_STATE {unknown state, "%s", should be one of, "%s"}

(1] We must deal with the complication that name may not be fully qualified. If we hand an unqualified name to create it
will resolve it to the namespace in which we are running rather than the namespace of the caller. We have to undertake
the desired namespace resolution here so that create will see a fully-qualified name.

<<in state creation methods>>=
method newin {initialstate args} {
my variable states
if {$initialstate in S$states} {
set inst [my new {x}$args] ; # ©
set [info object namespace $inst]::__ currentstate_ $initialstate
} else {
tailcall ::stsatcl::DeclError UNKNOWN_STATE S$initialstate S$states

return $inst

(1] Unlike createin, here we can depend upon new creating an object name automatically.

stsatcl - An Single Threaded Software Architecture for Tcl 40/130

In State Constructor Tests

<<constructor tests>>=
test constructor-4.0 {
create an instance in a given state
} —setup {
stsatcl STSAClass create testd {
statemodel {
state sA {} {
puts "[self] in sA"
}

transition sA - el —-> sB

state sB {a} {
puts $a
}

transition sB - e2 -> sA
initialState sB

}
} —cleanup {

test4 destroy
} —body {

test4 createin inst4 sA

set [info object namespace inst4]::___currentstate_
} —result {sA}

<<constructor tests>>=
test constructor-4.1 {
create an instance in a given state using newin
} —setup {
stsatcl STSAClass create testd {
statemodel {
state sA {} {
puts "[self] in sA"
}

transition sA - el -> sB

state sB {a} {
puts $a
}

transition sB - e2 -> sA

state sC {b} {
puts $b
}

transition sC - el -> sB
initialState sB

}
} —cleanup {
test4 destroy

} —body {
set inst [testd4 newin sC]
set [info object namespace $inst]::___currentstate_

} —-result {sC}

stsatcl - An Single Threaded Software Architecture for Tcl 41/130

Destructor

Destroying an XUML class object involves release resource associated with the event dispatch mechanisms. As with the con-
structor, we will defer that discussion until later.

The destructor logic involves testing if this class has a state model and if so, then releasing any event dispatch resources. It
suffices to test for the existance of the current state to determine if the object has an associated state mode.

<<state model methods>>=
destructor {
my variable __ currentstate_
if {[info exists __ currentstate_]} {
<<unbinding state machine events>>
}
classvariable dscript ; # ©
my eval $dscript

o Note that any additional destructor script code was defined when the XUML class was created, it is contained in a variable
in the class itself.

Access to Attributes

XUML execution semantics provide for reading and updating the attributes of an object. Some readers will observe that there is
no notion of private or hidden attributes. Privacy is not a concept that enters into XUML and so is not dealt with here.

Reading Attribute Values

The readAttributes method provides access to the values of an object’s attributes.

xumlobj readAttributes Zattrnamel attrname? ...?

attrname
The name of an attribute to be read. If one attrname argument is given, then the method return value is the simple scalar for
the given attribute. If multiple attrname arguments are given then the method return value is a dictionary whose keys are
the attribute names given by the attrname arguments. If no attribute names are given, then the return value of the method
is a dictionary of all the attributes of xumlobj.

<<attribute access methods>>=
method readAttributes {args} {
set nargs [llength $args]
if {$nargs == 1} {
set attrName [lindex S$Sargs 0] ; # ©
my variable $attrName
try {
return [set SattrName]
} on error {} {
tailcall ::stsatcl::DeclError UNKNOWN_ATTRIBUTE S$SattrName

set attrNames $args ; # 0
if {$nargs == 0} {
classvariable attrInfo
set attrNames [dict keys $attrInfo]
}
my variable {«*}$attrNames ; # ©

stsatcl - An Single Threaded Software Architecture for Tcl 42/130

set result [dict create]
foreach attrName SattrNames {
try {
dict set result SattrName [set SattrName]
} on error {} {
tailcall ::stsatcl::DeclError UNKNOWN_ATTRIBUTE S$SattrName

}

return Sresult

(1] For a single attribute, just return the value. It’s just easier to deal with the most common case in that way.
2] When requesting multiple attributes we will return a dictionary.
o Bring all the named attributes into scope.

Read Attributes Tests

<<exported tests>>=
test readAttributes-1.0 {
read single attribute wvalue
} —setup {
stsatcl STSAClass create test-ral {
attribute Count {Maximum 27}
}
} —cleanup {
test-ral destroy
} —body {
test-ral create instl-ral
instl-ral readAttributes Maximum
} —result {27}

<<exported tests>>=
test readAttributes-2.0 {
read multiple attribute values
} —setup {
stsatcl STSAClass create test-raz2 ({
attribute Count {Maximum 27} {Timeout 1000}
}
} —cleanup {
test-ra2 destroy
} —body {
test-ra2 create instl-ra2
instl-ra2 readAttributes Maximum Timeout
} —result {Maximum 27 Timeout 1000}

<<exported tests>>=
test readAttributes-3.0 {
read all attribute values
} —setup {
stsatcl STSAClass create test-ra2 {
attribute Count {Maximum 27} {Timeout 1000}
}
} —cleanup {
test-ra2 destroy
} —body {
test-ra2 create instl-ra2
instl-ra2 readAttributes
} —result {Count {} Maximum 27 Timeout 1000}

stsatcl - An Single Threaded Software Architecture for Tcl

43/130

<<exported tests>>=
test readAttributes—-4.0 {
read unknown attribute values
} —setup {
stsatcl STSAClass create test-ra2 {
attribute Count {Maximum 27} {Timeout 1000}
}
} —cleanup {
test-ra2 destroy
} -body {
test-ra2 create instl-ra2
instl-ra2 readAttributes foo
} —result {unknown attribute, "foo"} -returnCodes error

<<exported tests>>=
test readAttributes—-4.1 {
read unknown attribute values from among many
} —setup {
stsatcl STSAClass create test-ra2 {
attribute Count {Maximum 27} {Timeout 1000}
}
} —cleanup {
test-ra2 destroy
} -body {
test-ra2 create instl-ra2
instl-ra2 readAttributes Maximum foo Timeout
} —result {unknown attribute, "foo"} -returnCodes error

Updating Attribute Values

The updateAttributes method sets one or more attributes to the values given as arguments.

xumlobj updateAttributes attrnamel valuel attrname2 value 2... 7?7

attrname
The name of the attribute to be read.

value
The corresponding value to assign to the attribute.

The return value is the empty string. It is an error to attempt to update an attribute not defined for the class.

<<attribute access methods>>=
method updateAttributes {args} {
classvariable attrInfo

dict for {attribute value} $args {
if {[dict exists SattrInfo S$Sattribute]} {
my variable S$attribute
set Sattribute Svalue
} else {

tailcall ::stsatcl::DeclError UNKNOWN_ATTRIBUTE Sattribute

}

return

stsatcl - An Single Threaded Software Architecture for Tcl

44 /130

Update Attributes Tests

<<exported tests>>=
test updateAttributes-1.0 {

}

}

}

}

update attribute value
-setup {
stsatcl STSAClass create test-ra2 {
attribute Count {Maximum 27}
}
—cleanup {
test-ra2 destroy
-body {
test-ra2 create inst-ra2
inst-ra2 updateAttributes Count 33
inst-ra2 readAttributes Count
-result {33}

<<exported tests>>=
test updateAttributes-2.0 {

}

}

}

}

update multiple attribute values
—-setup {

stsatcl STSAClass create test-ra2 {

attribute Count {Maximum 27}

}
—cleanup {

test-ra2 destroy
-body {

test-ra2 create inst-ra2

inst-ra2 updateAttributes Count 33 Maximum 50

inst-ra2 readAttributes Count Maximum
—-result {Count 33 Maximum 50}

<<exported tests>>=
test updateAttributes-3.0 {

}

}

}

}

unknown attribute
-setup {
stsatcl STSAClass create test-ra2 {
attribute Count {Maximum 27}
}
—cleanup {
test-ra2 destroy
-body {
test-ra2 create inst-ra2
inst-ra2 updateAttributes Foo 42

-result {unknown attribute, "Foo"} -returnCodes error

Linkage Methods

As we discussed above, the model notion of a relationship is implemented by one or more links. There are three fundamental
operations on relationships:

1. Creating a relationship.
2. Destroying a relationship.

3. Navigating a relationship.

stsatcl - An Single Threaded Software Architecture for Tcl 45/130

In this section we discuss the methods provide to XUML classes to operate on relationship linkage. When configuring an XUML
class, the reference and partition commands are used to define object linkages that are the implementation realization
of a relationship in the XUML model. Each class participating in the relationship that also uses the relationship in some activity
need to have a link defined for it. This implies that creating or destroying the model notion of a relationship may require linking
or unlinking in both objects that participate in the relationship.

Link Method

The 1ink method is used to establish a relationship linkage between two XUML objects.

xumlobj 1ink rname target

rname
the name of the relationship link. This will be one of the link names given as an argument to either the reference or
partition command.

target
the object command name of the target object of the link. The farget must be an instance of the class (or subclasses in the
case of a partition link) defined for the link.

returns
the fully qualified farget command name.

<<linkage access methods>>=

method link {rname target} {
set target [my ResolveObj S$target] ; # ©
my CheckLinkName S$rname
my CheckReferenceObj S$rname S$Starget

classvariable linkInfo

my variable $rname

set multiple [expr {[dict get $linkInfo $rname typel eq "reference" 2\
[dict get $linkInfo S$rname mult] : 0}] ; # ©

if {Smultiple} {
::struct::set include $rname S$target ; # ©
} else {
if {[set S$rname] eq {}} {
set S$rname S$target
} else {
tailcall ::stsatcl::DeclError OVERLINK [self] [set S$rname]\
$rname S$target ; # O

}

return $target

(1] We use a number of utility methods described below to handle object command name resolution and checking that the
linkage exists and the target object is of the correct class.

(2] All we need to determine here is whether or not the linkage is singular or multiple. For partition links, they are always
singular.

(3] For links with multiple cardinality, it is important that the list of target object commands be a set.

o For singular links, we insist that the link variable be empty, i.e. that it has been properly unlinked before we overwrite the

new linkage value.

<<error code formats>>=
OVERLINK {attempt to over-link: %s is currently linked to %s across $%s,\
requested link to %s}

stsatcl - An Single Threaded Software Architecture for Tcl

46 /130

Link Tests

<<exported tests>>=
test 1ink-1.0 {
link across singular reference
} —setup {
stsatcl STSAClass create test-1tl {
reference R1 —-> test-1t2
}
stsatcl STSAClass create test-1t2 {
reference R1 -> test-1tl
}
} —cleanup {
test-1tl destroy

}

test-1t2
-body {
test-1tl
test-1t2
1tl link

destroy

create 1tl
create 1t2
R1 1t2

} —result {::stsatcl::test::1t2}

<<exported tests>>=
test link-1.1 {
overlink error
} —setup {
stsatcl STSAClass create test-1tl {
reference R1 —-> test-1t2
}
stsatcl STSAClass create test-1t2 {
reference R1 —-> test-1tl
}
} —cleanup {
test-1tl destroy
test-1t2 destroy
} -body {
test-1tl create 1tl
test-1t2 create 1t2
1tl link R1 1t2
1tl link R1 1t2

} —result {attempt to over-link: ::stsatcl::test::1tl is currently linked to
::stsatcl::test::1t2 across R1, requested link to

—-returnCodes error

<<exported tests>>=
test 1ink-2.0 {
link across multiple reference
} —setup {
stsatcl STSAClass create test-1tl {
reference R2 ->> test-1t2
}
stsatcl STSAClass create test-1t2 {
reference R2 -> test-1tl
}
} —cleanup {
test-1tl destroy
test-1t2 destroy
} -body {
test-1tl create instl
test-1t2 create inst2
test-1t2 create inst3
instl link R2 inst2

::stsatcl::test::1t2}\

stsatcl - An Single Threaded Software Architecture for Tcl

47 /130

instl link R2 inst3

llength [set [info object namespace instl]:

} —result {2}

<<exported tests>>=
test link-2.1 {

:R2]

link across multiple reference, duplicate references

} —setup {
stsatcl STSAClass create test-1tl {
reference R2 ->> test-1t2
}
stsatcl STSAClass create test-1t2 {
reference R2 -> test-1tl
}
} —cleanup {
test-1tl destroy
test-1t2 destroy
} —body {
test-1tl create instl
test-1t2 create inst2
instl link R2 inst2
instl link R2 inst2

llength [set [info object namespace instl]::R2]

} —result {1}

<<exported tests>>=
test 1ink-3.0 {
link across partition
} —setup {
::stsatcl STSAClass create super {
partition R3 subl sub2

::stsatcl STSAClass create subl {
reference R3 -> super

::stsatcl STSAClass create sub2 {
reference R3 —-> super
}
} —cleanup {
super destroy
subl destroy
sub2 destroy
} —body {
super create supl
subl create instl
supl link R3 instl

llength [set [info object namespace supl]::R3]

} —result {1}

Unlink Method

A link between objects is destroyed by invoking the unlink method.

xumlobj unlink rname target

rname

the name of the relationship link. This will be one of the link names given as an argument to either the reference or

partition command.

stsatcl - An Single Threaded Software Architecture for Tcl

48 /130

target

the object command name of the target object of the link. The farget must be an instance that is currently linked across

rname

<<linkage access methods>>=

method unlink {rname target} {
set target [my ResolveOb]j S$target]
my CheckLinkName S$rname
my CheckReferenceObj S$rname S$Starget

classvariable linkInfo
my variable S$rname

switch —-exact -- [dict get $linkInfo S$rname type] {

reference {

set multiple [dict get $1linkInfo S$rname mult]
set match [::struct::set contains [set S$rname] S$target]

}
partition {
set multiple O

set match [expr {$target eqg [set S$rname]}]

}
default {

tailcall ::stsatcl::DeclError UNKNOWN_LINKTYPE\
[dict get $linkInfo S$rname type]

}
if {S$match} {
if {$Smultiple} {
::struct::set exclude $rname Starget
} else {
set $rname {}
}

} else {

tailcall ::stsatcl::DeclError NOT_LINKED S$target S$rname

return

<<error code formats>>=
UNKNOWN_LINKTYPE {unknown linkage type, "%s"}
NOT_LINKED {object, "%$s", is not linked to

Unlink Tests

<<exported tests>>=
test unlink-1.0 {
unlink across singular reference
} —setup {
stsatcl STSAClass create test-ull {
reference R1 ->c test-ul2
}
stsatcl STSAClass create test-ul2 {
reference R1 —-> test-ull
}
} —cleanup {
test-ull destroy
test-ul2 destroy
} —body {

"%S"}

stsatcl - An Single Threaded Software Architecture for Tcl 49/130

test-ull create inst-ull

test-ul2 create inst-ul2

inst-ull link R1 inst-ul2

inst-ull unlink R1 inst-ul2

set [info object namespace inst-ul2]::R1
} —result {}

<<exported tests>>=
test unlink-2.0 {
unlink across multiple reference
} —setup {
stsatcl STSAClass create test-ul3 {
reference R1 ->> test-ul4d
}
stsatcl STSAClass create test-uld {
reference R1 -> test-ul3
}
} —cleanup {
test-ul3 destroy
test-ul4d destroy
} -body {
test-ul3 create instl
test-uld create inst2
test-ul4 create inst3

instl link R1 inst2

instl link R1 inst3

instl unlink R1 inst2

llength [info object namespace instl]::R1
} —result {1}

test unlink-3.0 {
unlink across partition
} —setup {
::stsatcl STSAClass create super {
partition R3 subl sub2

::stsatcl STSAClass create subl {
reference R3 —-> super

::stsatcl STSAClass create sub2 {
reference R3 -> super
}
} —cleanup {
super destroy
subl destroy
sub2 destroy
} -body {
super create inst-super
subl create inst-subl
inst-super link R3 inst-subl
inst-super unlink R3 inst-subl
set [info object namespace inst-super]::R3
} —result {}

Link Navigation Method

The —> method is used to navigate one or more links.

stsatcl - An Single Threaded Software Architecture for Tcl 50/130

xumlobj —> rnamel ?rname2 ... ?

rname
The name of a relationship link. If rname refers to a partition link and the navigation is from the superclass to the subclass,
then rname must be followed by the name of the subclass at which the navigation is directed.

There are two particular points in navigating links. First, references and partition have different characteristics in the navigation.
A partition, when navigated from superclass to subclass® must specify which subclass of the partition is to be navigated and
consequently whether the currently linked instance is of the specified subtype. Second, we want to be able to have a chain of
links specified and so navigation can be seen as a recursive operation without having to nest command invocations.

<<linkage access methods>>=

method —-> {rname args} {
classvariable linkInfo
my CheckLinkName S$rname

my variable S$rname
set relobjs [set S$rname]

switch —-exact -- [dict get $linkInfo S$rname typel] {
reference {
if {![dict get $linkInfo S$rname cond] && [llength S$relobijs] == 0} {

tailcall ::stsatcl::DeclError UNCOND S$rname

}
partition {
if {Srelobjs eq {}} {
tailcall ::stsatcl::DeclError UNCOND S$rname
}
if {[llength S$args] < 1} { # @
tailcall ::stsatcl::DeclError NOSUBCLASS $rname

set subclass [lindex S$args 0]
set args [lrange $args 1 end]

set subclass [my ResolveClass $subclass] ; # ©

if {$subclass ni [dict get $linkInfo $rname subclasses]} {
tailcall ::stsatcl::DeclError NOT_SUBCLASS $subclass Srname

}

if {[llength [info class instances $subclass $relobjs]] == 0} {
set relobijs [list]

}
default {
tailcall ::stsatcl::DeclError UNKNOWN_LINKTYPE\
[dict get $linkInfo S$rname type]

if {[llength Sargs] != 0} {
set related [list]
foreach robj $relobjs {
::struct::set add related [Srobj -> {x}Sargs] ; # (3]
}
} else {
set related $relobijs

return [expr {[llength S$related] < 2 ? [lindex S$related 0] : Srelated}] ; #0

6 Navigating from subclass to superclass us just an unconditional singular link with no special characteristics

stsatcl - An Single Threaded Software Architecture for Tcl 51/130

}

export —>

o When navigating from a superclass to a subclass we must state which subclass of the partition we are interested in and so
an extra argument is required.

(2] We resolve non-qualified class names to the same namespace as class of the object performing the traversal. This means
that for STSAClasses created in a single namespace, as you would normally do when translating a domain, that non-
qualified class names resolve correctly. Of course, you can always use fully qualified class names.

(3] The instances related by a link form a set.

o We return a single scalar value when possible.

<<error code formats>>=

UNCOND {reference, "%s", is unconditional, yet no instances were found}
NOSUBCLASS {navigation of "%s" from supertype to subtype\

requires the destination subtype class}
NOT_SUBCLASS {subclass, "%s", is not a subclass of partition "%s"}

Traversal Tests

<<exported tests>>=
test traverse-1.0 {
traverse a singular relationship
} —setup {
stsatcl STSAClass create rtl {
reference R1 —-> rt2
}
stsatcl STSAClass create rt2 {
reference R1 —-> rtl
}
} —cleanup {
rtl destroy
rt2 destroy
} —body {
rtl create instl
rt2 create inst2
instl link R1 inst2
instl -> R1
} —result {::stsatcl::test::inst2}

<<exported tests>>=
test traverse-1.1 {
traverse multiple singular relationships
} —-setup {
stsatcl STSAClass create rtl {
reference R1 —-> rt2
}
stsatcl STSAClass create rt2 {
reference R1 -> rtl
}
} —cleanup {
rtl destroy
rt2 destroy
} -body {
rtl create instl
rt2 create inst2

stsatcl - An Single Threaded Software Architecture for Tcl

52/130

instl link R1 inst2
inst2 link R1 instl

instl -> R1 R1
} —result {::stsatcl::test::instl}

<<exported tests>>=
test traverse-1.2 {

traverse many singular relationships —-- violate conditionality
} —setup {

stsatcl STSAClass create rtl {

reference R1 —-> rt2
}
stsatcl STSAClass create rt2 {
reference R1 —-> rtl

}
} —cleanup {

rtl destroy

rt2 destroy
} —body {

rtl create instl

rt2 create inst2

instl link R1 inst2

instl -> R1 R1
} —result {reference, "R1", is unconditional, yet no instances were found}\

—-returnCodes error

<<exported tests>>=
test traverse-2.0 {
traverse a multiple relationship
} —setup {
stsatcl STSAClass create rtl {
reference R2 ->> rt2
}
stsatcl STSAClass create rt2 {
reference R2 -> rtl
}
} —cleanup {
rtl destroy
rt2 destroy
} —body {
rtl create instl
rt2 create inst2
rt2 create inst3
instl link R2 inst2
instl link R2 inst3
instl -> R2
} —result {::stsatcl::test::inst2 ::stsatcl::test::inst3}

<<exported tests>>=
test reference-2.1 {
traverse a multiple relationship, then a singular
} —setup {
stsatcl STSAClass create rtl {
reference R2 ->> rt2
}
stsatcl STSAClass create rt2 {
reference R2 -> rtl
}
} —cleanup {
rtl destroy

stsatcl - An Single Threaded Software Architecture for Tcl

53/130

rt2 de
} —body {
rtl cr
rt2 cr
rt2 cr
instl
instl
inst2
inst3

instl
} —result

stroy

eate instl
eate inst2
eate inst3
link R2 inst2
link R2 inst3
link R2 instl
link R2 instl

-> R2 R2
{::stsatcl::test::instl}

<<exported tests>>=

test trave

rse-3.0 {

traverse across partition

} —setup {

::stsatcl STSAClass create super {
partition R3 subl sub2

::stsatcl STSAClass create subl {
reference R3 —-> super

::stsatcl STSAClass create sub2 {
reference R3 —-> super

}

} —cleanup {

super

destroy

subl destroy
sub2 destroy

} —body {
super

create supl

subl create instl

supl link R3 instl
supl —-> R3 subl

} —result

{::stsatcl::test::instl}

<<exported tests>>=
test reference-3.1 {

traverse across partition and single reference

} —setup {

::stsatcl STSAClass create super {
partition R10 subl sub2

::stsatcl STSAClass create subl {
reference R10 —> super
reference R11 -> c3

::stsatcl STSAClass create sub2 {
reference R10 —> super

}

::stsatcl STSAClass create c3 {
reference R11 -> subl

}

super

create supl

subl create sl

stsatcl - An Single Threaded Software Architecture for Tcl 54 /130

c3 create inst3
} —cleanup {
super destroy
subl destroy
sub2 destroy
c3 destroy
} -body {
supl link R10 sl
sl link R10 supl
sl link R11 inst3
inst3 link R11 sl
supl -> R10 subl R11
} —result {::stsatcl::test::inst3}

<<exported tests>>=
test reference-3.2 {
traverse across partition and single reference -- come up empty
} —setup {
::stsatcl STSAClass create super {
partition R10 subl sub2

::stsatcl STSAClass create subl {
reference R10 —> super
reference R11 -> c3

::stsatcl STSAClass create sub2 {
reference R10 —-> super
}
::stsatcl STSAClass create c3 {
reference R11 -> subl
}
super create supl
subl create sl
c3 create inst3
} —cleanup {
super destroy
subl destroy
sub2 destroy
c3 destroy
} -body {
supl link R10 sl
sl link R10 supl
sl link R11 inst3
inst3 link R11 sl
supl -> R10 sub2 R11
} —result {}

<<exported tests>>=
test traverse-3.3 {
traverse across partition -- wrong subclass
} —setup {
::stsatcl STSAClass create super {
partition R3 subl sub2

::stsatcl STSAClass create subl {
reference R3 —-> super

stsatcl - An Single Threaded Software Architecture for Tcl 55/130

::stsatcl STSAClass create sub2 {
reference R3 -> super

::stsatcl STSAClass create sub3
} —cleanup {

super destroy

subl destroy

sub2 destroy

sub3 destroy
} -body {

super create supl

subl create instl

supl link R3 instl
supl —-> R3 sub3
} —result {subclass, "::stsatcl::test::sub3",\
is not a subclass of partition "R3"} -returnCodes error

<<exported tests>>=
test traverse-3.4 {
traverse across partition —-- resolve subclass of auto named instance
} —-setup {
::stsatcl STSAClass create super {
partition R3 subl sub2

::stsatcl STSAClass create subl {
reference R3 —-> super

::stsatcl STSAClass create sub2 {
reference R3 —-> super
}
} —cleanup {
super destroy
subl destroy
sub2 destroy
} -body ({
super create supl
set inst [subl new]

supl link R3 $inst
$inst link R3 supl
set related [supl —-> R3 subl]
expr {Srelated eq $inst}
} —result {1}

<<exported tests>>=
test traverse-3.4 {

traverse across partition -- fail class resolution
} —setup {

namespace eval [namespace current]::resolvetest {}

::stsatcl STSAClass create super {

partition R3 resolvetest::subl sub2

::stsatcl STSAClass create resolvetest::subl {
reference R3 -> super

stsatcl - An Single Threaded Software Architecture for Tcl 56 /130

::stsatcl STSAClass create sub2 {
reference R3 —-> super
}
} —cleanup {
super destroy
resolvetest::subl destroy
sub2 destroy
namespace delete resolvetest
} —body {
super create supl
set inst [resolvetest::subl new]

supl link R3 $inst
$inst link R3 supl
set related [supl —-> R3 subl]
} —result {cannot resolve, "::stsatcl::test::subl", to a class}\
-returnCodes error

Migrate Method

The migrate method provides the common operation of migrating one of the subclass instances in a partition to a different
subclass. Conceptually, this is accomplished by:

1. Unlink in the subclass instance.
2. Destroy the unlinked instance.
3. Create a new instance of the required subclass.

4. Link the new subclass instance to the superclass instance.
xumlobj migrate rname subclass ?attrl valuel attr2 value2 ... ?

rname
the name of a partition link. Subclass migration is only defined for partition links.

subclass
the name of the subclass to which the migration will occur. The subclass must be one defined for the rname partition.

attr value
attribute name / attribute value pairs that given as arguments to the new constructed subclass instance.

<<linkage access methods>>=

method migrate {rname subclass args} {
set subclass [my ResolveObj S$subclass]
my CheckLinkName $rname

classvariable linkInfo

if {[dict get $linkInfo S$rname type] ne "partition"} {
tailcall ::stsatcl::DeclError NOT_PARTITION S$Srname

}

if {$subclass ni [dict get $linkInfo S$rname subclasses]} {
tailcall ::stsatcl::DeclError NOT_SUBCLASS $subclass Srname

my variable S$rname
set subinst [set S$rname]
if {$subinst eq {}} {

stsatcl - An Single Threaded Software Architecture for Tcl 57 /130

tailcall ::stsatcl::DeclError UNCOND $rname
}

$subinst destroy

set $rname [$subclass new {*}S$Sargs]

<<error code formats>>=
NOT_PARTITION {linkage "%s" is not a partition}

Migrate Tests

<<exported tests>>=
test migrate-1.0 {
migrate subclasses
} —setup {
::stsatcl STSAClass create super {
partition R3 subl sub2

::stsatcl STSAClass create subl {
attribute {Al 20}

::stsatcl STSAClass create sub2 {
attribute {Al 30}
}
super create supl
subl create instl
supl link R3 instl
} —cleanup {
super destroy
subl destroy
sub2 destroy
} —body {
supl migrate R3 sub2 Al 50
Traverse the partition from superclass to subclass
to obtain the attribute value. Demonstrates the link was made.
[supl -> R3 sub2] readAttributes Al
} —result {50}

<<exported tests>>=
test migrate-2.0 {

migrate subclasses —-- not a partition
} —setup {

::stsatcl STSAClass create fake {

reference R32 -> baz
}
::stsatcl STSAClass create baz

fake create il
} —cleanup {
fake destroy
baz destroy
} —body {
il migrate R32 sub2
} —result {linkage "R32" is not a partition} -returnCodes error

stsatcl - An Single Threaded Software Architecture for Tcl 58/130

<<exported tests>>=
test migrate-3.0 {
migrate subclasses —-- unknown subclass
} —setup {
::stsatcl STSAClass create super {
partition R3 subl sub2

::stsatcl STSAClass create subl {
attribute {Al 20}

::stsatcl STSAClass create sub2 {
attribute {Al 30}
}
super create supl
subl create instl
supl link R3 instl
} —cleanup {
super destroy
subl destroy
sub2 destroy

} -body {
supl migrate R3 sub3
} —result {subclass, "::stsatcl::test::sub3",\

is not a subclass of partition "R3"} -returnCodes error

<<exported tests>>=
test migrate-4.0 {
migrate subclasses -- missing link
} —setup {
::stsatcl STSAClass create super {
partition R5 subl sub2
}
super create supl
} —cleanup {
super destroy
} —body {
supl migrate R5 sub2
} —result {reference, "R5", is unconditional, yet no instances were found}\
-returnCodes error

Example Initial Instance Population

In Tcl, all the XUML class instances are created at “run time” since there is no concept of “compile time” in Tcl. However,
most domain models benefit from being able to assume that some population of instances exists when the domain starts running.
This collection of instances that is put into place before the system is started is known as the initial instance population. For our
simple example, the initial instance population is the entire population of instances. Now that we know how to create instances
and link objects in relationships we can define that population here.

We start with Washing Cycles. We’ll define a few common washing use cases and set the WashingCycle attributes to match those
use cases.

<<initial instance population>>=

WashingCycle create normal\
CycleType Normal\
WashWaterTemp Cold\
RinseWaterTemp Cold\
WashDuration 20\

stsatcl - An Single Threaded Software Architecture for Tcl 59/130

RinseDuration 10\
SpinDuration 10\
AgitationSpeed Medium\
SpinSpeed Medium
WashingCycle create whites\
CycleType Whites)\
WashWaterTemp Hot\
RinseWaterTemp Cold\
WashDuration 20\
RinseDuration 10\
SpinDuration 20\
AgitationSpeed High\
SpinSpeed High
WashingCycle create permpress\
CycleType PermPress\
WashWaterTemp Warm\
RinseWaterTemp Cold\
WashDuration 15\
RinseDuration 10\
SpinDuration 15\
AgitationSpeed Medium\
SpinSpeed Medium
WashingCycle create delicate\
CycleType Delicate\
WashWaterTemp Cold\
RinseWaterTemp Cold\
WashDuration 15\
RinseDuration 10\
SpinDuration 10\
AgitationSpeed Low\
SpinSpeed Low

We intend to have only a single WashingMachine instance but note that the model will run correctly regardless of how many
washing machines we are trying to control. We can also link up our washer with its initial washingCycle.

<<initial instance population>>=
WashingMachine create washer MachineID WasherOne
washer link R4 normal

The class model dictates that each washer have exactly one ClothesTub.

<<initial instance population>>=
ClothesTub create tub

washer link R1 tub ; + O
tub link R1 washer

o We must link R1 from both sides. Instances of both classes navigate R1 during their state activities and so the link appears
in the definitions of both participating classes.

Each washing machine, by design, has three motors to pump water, agitate the tub and to spin the tub.

<<initial instance population>>=

Motor create pump MotorID Pump

Motor create agitator MotorID Agitator
Motor create spin MotorID Spin

tub link R2 pump

tub link R2 agitator
tub link R2 spin

Each washing machine, also by design, has three valves to control hot and cold water and draining.

stsatcl - An Single Threaded Software Architecture for Tcl 60/130

<<initial instance population>>=
WaterValve create hot ValveID Hot
WaterValve create cold ValveID Cold
WaterValve create drain ValveID Drain

tub link R3 hot
tub link R3 cold
tub link R3 drain

Finally, each washing machine has a sensor that can determine whether the tub is full or empty.

<<initial instance population>>=
WaterLevelSensor create sensor

tub link R5 sensor
sensor link R5 tub

Instance Selection

In this section we describe the methods provided to search for class instances. There are two types of searches that are quite
general and are provided by the package.

1. Selecting from all instances of a class.

2. Selecting from related instances of a class.

To find an instance set from among all the instances of a class is a method on the XUML class itself. Finding related instances is
a method on XMUL objects.

Note

The searches here are simple linear searches and are entirely suitable for a small number of instances. More sophisticated
searches can be implemented by creating and maintaining indices or other techniques. However, those techniques are beyond
that provided by this package. Constructing more sophisticated instance selection can be done by adding class-based opera-
tions and carefully building the required auxiliary data structures. It remains for a future enhancement to add the ability to use
a more sophisticated search index scheme.

The methods in this section use a tc11ib package to do the actual work of evaluating the selection criterion and building the
resulting list of instances.

<<required packages>>=
package require struct::list

Select Where Method
xumlclass selectWhere varname expr

varname
The name of a variable to which each object command from xumlclass is assigned during the search.

expr
An expression that is evaluated by the : : expr command.

The selectWhere method is defined on each XUML class. The method iterates over each instance of the xumlclass and assigns
the object command to the variable given by varname and evaluates the expression given by expr. The result of evaluating expr
is interpreted as a boolean and if true, the instance command name is included in the returned list of instance commands.

stsatcl - An Single Threaded Software Architecture for Tcl 61/130

<<select instance methods>>=
method selectWhere {varname expr}

tailcall ::struct::list filterfor $varname [info class instances [self]]\
Sexpr ; # (1
}
] Note the use of the tailcall command here. The filterfor procedure will evaluate the expression in the stack

level of the caller. Using tailcall insures that another stack level is not introduced so that the expression is evaluated
in the stack level of the caller of the selectWhere method, which is exactly what we want.

Select Where Tests

<<exported tests>>=
test selectWhere-1.0 {
find instances based on criteria
} —setup {
::stsatcl STSAClass create swl {
attribute Count {Maximum 27} {Timeout 1000}
}
} —cleanup {
swl destroy
} —body {
swl create instl
swl create inst2 Maximum 30 Timeout 1000
swl create inst3 Timeout 2000
set min 1000
swl selectWhere inst {
[$inst readAttributes Timeout] == Smin

}

} —result {::stsatcl::test::instl ::stsatcl::test::inst2}

Select One Where Method

There are times when it is known, a priori, that the return of a selection operation will yield exactly one result or only one is
desired in any case. Since selectWhere returns a list, we use the selectOneWhere method to pick the first result off of
the list.

xumlclass selectOneWhere varname expr

<<select instance methods>>=
method selectOneWhere {varname expr} {
tailcall lindex [uplevel 1 [list ::struct::list filterfor S$varname\
[info class instances [self]] S$Sexpr]] 0 ; # ©

o Okay, this is psychedelic but here’s what’s going on. We wanttorun : : struct::1ist filterfor to do the heavy
lifting for selecting based on some expression. No reason to duplicate all that well tested and often run logic here. We
are filtering a list of class instances the XUML class itself. We need to run the selection in the stack frame of the caller
(uplevel 1) so we get any substitution of variables, efc. that might be referenced in the expr to happen there. Note
we hand uplevel a proper list built with the 1ist command. Since we are doing variable substitution of the method
arguments we don’t want to get confused with embedded spaces as might happen if we just let uplevel concatenate its
arguments into a script. Finally, we just take the first element of the returned list and since this is the end of the method, we
can tailcall directly into 1 index. Thus, we get the selectOne quality we are after. And yes some local variables
might have made it easier to read, but hey! you got the nice comment.

stsatcl - An Single Threaded Software Architecture for Tcl 62/130

<<exported tests>>=
test selectOneWhere-1.0 {
find a single instance based on criteria
} —setup {
::stsatcl STSAClass create swl
attribute Count {Maximum 27} {Timeout 1000}
}
} —cleanup {
swl destroy
} -body {
swl create instl
swl create inst2 Maximum 30 Timeout 1000
swl create inst3 Timeout 2000
set min 1000
swl selectOneWhere inst {
[$inst readAttributes Timeout] == S$Smin
}

} —result {::stsatcl::test::instl}

Select Related Where Method

The selectRelatedWhere method performs a selection based on the set of instances found by navigating one more links.

xumlobj selectRelatedWhere links varname expr

links
a list of links representing a navigation chain as described in the — method.

varname
the name of a variable

expr
a Tcl expression as defined by the expr core command.

The selectRelatedWWhere command iterates over the set of object command instances that are found by navigating the links
chain of linkages. Each object command is assigned to the variable named, varname, and expr is evaluated. The result of the
evaluation is interpreted as a boolean to indicate whether the object command name is to be included in the returned result set.

<<select related methods>>=
method selectRelatedWhere {rlist varname expr} {
tailcall ::struct::list filterfor $varname [my -> {x}$rlist] Sexpr

Select Related Where Tests

<<exported tests>>=
test selectRelatedWhere-1.0 {
select related instances based on criteria
} —setup {
::stsatcl STSAClass create frwl {
attribute Count {Maximum 27} {Timeout 1000}
reference R1 —->> frw2
}
::stsatcl STSAClass create frw2 {
attribute Reason Temp Pressure Current

stsatcl - An Single Threaded Software Architecture for Tcl

63 /130

frwl

frw2
frw2
frw2
frw2

create

create
create
create
create

il link R1
il link R1
il link R1
il link R1
—cleanup {
frwl destroy
frw2 destroy

-body

{

il

cl
€2
c3
c4

cl
c2
c3
c4

Temp 20
Temp 30
Temp 40
Temp 50

set targetTemp 30
i1 selectRelatedWhere R1 selected ({
[$selected readAttributes Temp] > S$targetTemp

}

—-result {::stsatcl::test::c3

<<exported tests>>=

test selectRelatedWhere-2.0 {
select instances related by multiple links

-setup {
::stsatcl STSAClass create frwl {

attribute Count {Maximum 27}

reference R1 ->> frw2

}

}

}

}

::stsatcl::test::c4}

::stsatcl STSAClass create frw2 {
reference R2 ->> frw3

}

::stsatcl STSAClass create frw3 {
attribute Reason Temp Pressure Current

frwl create il

frw2 create ml
frw2 create m2

il link R1 ml
il link R1 m2

These two will be on the chain,
frw3 create cl Temp 20
frw3 create c2 Temp 30
ml link R2 cl
ml link R2 c2

{Timeout 1000}

but not match the criterion

These two will match the criterion
frw3 create c3 Temp 40
frw3 create c4 Temp 50
m2 link R2 c3
m2 link R2 c4
—cleanup {
frwl destroy
frw2 destroy
frw3 destroy

-body

{

set targetTemp 30
il selectRelatedWhere {R1 R2} selected {
[$selected readAttributes Temp] > S$targetTemp

stsatcl - An Single Threaded Software Architecture for Tcl 64 /130

}

} —result {::stsatcl::test::c3 ::stsatcl::test::c4}

Select One Related Where Method

By analogy to selectOneWhere the selectOneRelatedWhere method is provided.
xumlobj selectOneRelatedWhere links varname expr

<<select related methods>>=
method selectOneRelatedWhere {rlist varname expr} {
tailcall lindex [uplevel 1\
[list ::struct::1list filterfor S$varname [my -> {x}$rlist] S$expr]] O

; O

] See the selectOneWhere code for the details of what is going on here.

Instance Computation Methods

In this section we show methods that, like the instance selection methods above, iterate over instances. For these methods we
provide a means to compute on each of the instances and thereby build up higher order summaries of data. The fundamental
capabilities are provided by the 1map command.

Map Instances Method
xumlclass mapInstances varname script

varname
The name of a variable to which each instance of xumclass is sequentially assigned.

script
A Tecl script that is evaluated once for each instance of xumliclass.

The mapInstances method iterates across all the instances of xumlclass, assigning the instance command name to varname.
Then script is evaluated and the result of the that evaluation is added to an accumulator list. The return value of method is the
accumulated list of script results.

<<map instance methods>>=
method mapInstances {varname script} {
uplevel 1 [list ::1lmap $varname [info class instances [self]] S$script]

Map Instances Tests

<<exported tests>>=
test mapInstances-1.0 {

iterate on instances to produce an attribute list
} —setup {

::stsatcl STSAClass create fwl {

attribute Count Maximum Timeout

}
} —cleanup {

fwl destroy
} —body {

stsatcl - An Single Threaded Software Architecture for Tcl 65/130

fwl create instl Maximum 20
fwl create inst2 Maximum 30
fwl create inst3 Maximum 40

set divisor 10
fwl mapInstances inst {
expr {[$inst readAttributes Maximum] / $divisor}
}
} —result {2 3 4}

Map Related Instances Method

The mapRelatedInstances command operates like the mapInstances command except the iteration happens only on
those instances that are related to a xumlobj by some relationship chain.

xumlobj mapRelatedWhere links varname script

links
a list of links representing a navigation chain as described in the — method.

varname
The name of a variable to which each instance of xumclass is sequentially assigned.

script
A Tecl script that is evaluated once for each instance of xumlclass.

<<map related methods>>=
method mapRelatedInstances {rlist varname script} {
uplevel 1 [list ::1lmap S$varname [my —-> {x}Srlist] S$script]

Map Related Instances Tests

<<exported tests>>=
test mapRelatedInstances—-1.0 {
iterate on related instances to produce a list
} —setup {
::stsatcl STSAClass create frwl {
attribute Count {Maximum 27} {Timeout 1000}
reference R1 ->> frw2
}
::stsatcl STSAClass create frw2 {
attribute Reason Temp Pressure Current

frwl create il

frw2 create cl Temp 20
frw2 create c2 Temp 30
frw2 create c3 Temp 40
frw2 create c4 Temp 50

il link R1 cl

il link R1 c2

il 1link R1 c3

il link R1 c4
} —cleanup {

frwl destroy

stsatcl - An Single Threaded Software Architecture for Tcl 66 /130

frw2 destroy
} —body {
set divisor 10
il mapRelatedInstances R1 inst {
expr {[$inst readAttributes Temp] / $divisor}

}
} —-result {2 3 4 5}

State Machine Execution

At long last we will now discuss how state machine execution operates.

We must start by clarifying some terms. The term event is heavily overloaded in the Tcl world and in most of the computing
world. It can be used to describe Tk window events or used in conjunction with event oriented programming concepts. Here we
will overload the term one more time and discuss state machine events. We will use the term state machine event to denote a
particular named occurrence of an event that can drive the transitions of a state machine. The state model execution rules need to
be made explicit.

» The state machine formalism is of the Moore type. type. Activities associated with states are executed when the state is entered.
There is no support for the Mealy formalism and no support for hierarchical or other composed forms of state models’.

» There are three types of state machine events, ordinary transitioning events (or just simply events), polymorphic events and
creation events.

 Events signaled to an instance are not lost. The event will be delivered at the next available opportunity.

* The order of event dispatch is not specified, however, events signaled by one instance to another are received in the order they
were generated.

» Events signaled by an instance to itself are dispatched before events that are signaled from a different instance.
» Events and polymorphic events may be delayed, i.e. you may request the system to signal events at some time in the future.
* There may be only one outstanding delayed event of a given event name between any sending / receiving pair of instances.

» Polymorphic events can only be signaled to instances that have defined a partition link. A polymorphic event is signaled
down the generalization hierarchy to the currently related subclass instance. A polymorphic event sent to a superclass instance
propagates down all the generalization hierarchies for which the instance is a superclass.

* Creation events are signaled to the class and result in an instance of that class being created in its initial pseudo-state and an
event signaled to the newly created instance.

One of the important properties of state activities is that they execute to completion. During the execution of the activity of a state,
signaling a state machine event does not cause any side effects on the state of the executing instance and does not immediately
cause any transition in the target state machine. Also, this architecture is single threaded, so there is no concurrency implied
by the state machine events. Concurrency can be achieved by following the Tcl threading model which supports the notion of
multiple concurrent interpreters.

From a design point of view, we must decide how to implement the above rules. The execute-to-completion rule can be accom-
plished using a queue for the events. In this design, each XUML class instance has its own event queue for non-delayed events.
Signaling events to an instance will result in inserting an event on the event queue associated with the target instance.

Another important consideration is how to drive the dispatch of events on the instance queues. Fortunately, the after command
provides us with all we need. For non-delayed signaling, we will use the : :after 0 command idiom to queue up Tcl event
that can be used for state machine event dispatch. For delayed signaling, we use the : : after ms form of the after command.

At instance construction time, we must set up some variables to use to track the event dispatch.

7 The Mealy formalism is mathematically equivalent to the Moore formalism. Hierarchical state models are an unnecessary abomination.

http://en.wikipedia.org/wiki/Moore_machine

stsatcl - An Single Threaded Software Architecture for Tcl 67/130

<<binding state machine events>>=

my variable __ _event_queue_

set __event_queue_ [list] ; # (1]

We also need to keep track of the timer ID’s for the non-delayed signals.
my variable __ signals___

array set __signals__ {}

Delayed signals require some additional bookkeeping.
my variable _ delayedSignals___
array set __delayedSignals__ {}

o We keep a queue of events as a simple list.

At object destruction time, we must clear up any allocated timer resources.

<<unbinding state machine events>>=

my variable __signals__ ; # ©

foreach {sigid timerid} [array get __ _signals__] {
after cancel S$timerid

}

my variable _ delayedSignals___

foreach {sigid sigdetails} [array get __delayedSignals__] {
after cancel [dict get $sigdetails timerid]

(1] Both non-delayed and delayed events are ultimately mapped to timer events via the : :after command so we must
cancel anything that is currently outstanding.

Signal Method

The primary operation on state machines is to generate events to them and that is accomplished by the signal method.

xumlobj signal event ?paraml param?2 ...?

event
The name of the event to be signaled.

paraml param2 ...
Optional parameters given to the state activity.

The signal method generates event to xumlobj passing along any parameter arguments. The state activity that is invoked by the
transition caused by event receives the values of the paramN arguments. State activities have a signature that defines the formal
arguments that they expect. It is a rule of the Moore formalism that all events that cause a transition info a given state must carry
parametric data values that match those expected by the state activity signature. In this architecture, a run time error is generated
if the arguments don’t match.

The implementation of the signal method has two major considerations. First, we must determine if the signaled event is
polymorphic or not. Polymorphic events are just forwarded on to the related subclass instance. Eventually, the polymorphic
event arrives at a subclass instance where it is consumed as an ordinary event. Second for ordinary events, we must place the
event into the event queue. It is here we enforce the rule that self-directed events are dispatched before any events generated by
other instances.

<<state model methods>>=
method signal {event args} {
set src [my EventSource]
classvariable polyEvents
if {$event in $polyEvents} {
my ForwardPolyEvent signal $src $event $args

stsatcl - An Single Threaded Software Architecture for Tcl 68 /130

} else {
my ValidateEvent S$event
set eventInfo [dict create\
src $src\
event $event\
params S$Sargs\
]
my variable __ event_queue_
Self directed events are queued to the front. However, we handle the
case where a state activity may signal multiple self-directed events.
In that, admittedly unusual case, we want to preserve the order of
the signaled events.
if {$src eq [self]} {

for {set nsindex 0} {S$nsindex < [llength $__ event_queue__]}\
{incr nsindex} { # ©
set cmpevent [lindex $__event_queue_ $nsindex]

if {[dict get S$cmpevent src] ne [self]} {
break ; # ©

}

set __event_queue__ [linsert $__event_queue_ $nsindex S$eventInfo]
} else {

lappend __event_queue_ $SeventInfo ; # (3

}

my variable __event_counter_
incr _ _event_counter_
set timerid [::after 0 [mymethod Dispatch $__event_counter_]]
my variable __ signals___
set _ _signals__ ($__event_counter_) S$timerid
}
}
o We iterate through the event queue using an index because we want to use 1insert to place the event in the correct
location.
2] Stop the iteration at the first event that is non-self directed. The 1insert command inserts the item into a list before its

argument index, which is just what we want.

(3] Non-self directed events are simply appended to the event queue.

Signal Method Tests

<<exported tests>>=
test signal-1.0 {
signal an event from outside of a state machine context
} —setup {
::stsatcl STSAClass create sgl {
statemodel {
state sl {a} {
puts -nonewline $a
}

transition sl - el —-> sl

}
} —cleanup {
sgl destroy
} —body {
sgl create instl
instl signal el 20

stsatcl - An Single Threaded Software Architecture for Tcl

69/130

namespace upvar
dict get
} —result {}

[info object namespace instl] __event_queue__ evtqueue

[lindex S$evtqueue 0] src

<<exported tests>>=
test signal-2.0 {
signal an event from inside of a state machine context

} —setup {

::stsatcl STSAClass create sgl {

}

statemodel {

state sl {a} {
puts -nonewline $a

}

transition sl - el —-> sl

::stsatcl STSAClass create sg2 {

}

} —cleanup {
destroy
destroy

sgl
sg2
} —body
sgl
sg2

reference R1 —-> sgl
instop sig_sgl {event args} {

[my —> R1] signal Sevent {*}S$Sargs

create instl
create inst2

inst2 link R1 instl
inst2 sig_sgl el 20

namespace upvar
dict get [lindex S$evtqueue 0]
} —result {::stsatcl::test::inst2}

<<exported tests>>=
test signal-3.0 {
signal multiple self directed events

} —setup {

[info object namespace instl] __event_queue__ evtqueue
src

::stsatcl STSAClass create sgl {

}

attribute {Count 0}
statemodel {

state s1 {} {
my variable Count
incr Count
my signal el
my signal e2
}

transition sl - el —->

state s2 {} {
my variable Count
incr Count

}

transition s2 - e2 —>

sl

sl

::stsatcl STSAClass create sg2 {

reference R1 -> sgl
instop sig_sgl {event} {

[info object namespace

[my —> R1]]::my Receive\

stsatcl - An Single Threaded Software Architecture for Tcl

70/130

[dict create src {} event el params {}]
[my —> R1] signal el

}

} —cleanup {
sgl destroy
sg2 destroy

} —body {
sgl create instl
Sg2 create inst2
inst2 link R1 instl
inst2 sig_sgl el

namespace upvar [info object namespace instl]

set checklen [expr {[llength S$evtqueue] == 3}]

set checkl [expr {[dict get
set check2 [expr {[dict get
set check3 [expr {[dict get

[lindex S$evtqueue 0] event] eq
[lindex S$Sevtqueue 1] event] eq

[lindex $evtqueue 2] src] eq\

"::stsatcl::test::inst2"}]

expr {Schecklen && S$checkl
} —result {1}

<<exported tests>>=
test signal-4.0 {
signal a polymorphic event
} —-setup {
::stsatcl STSAClass create
partition R3 subl sub2
polymorphic xel

::stsatcl STSAClass create
reference R3 —-> super
attribute {Count 0}
statemodel {

state sbl {} {

&& Scheck2 && Scheck3}

super |

subl {

my variable Count

incr Count

}

transition sbl - xel -> sbl

::stsatcl STSAClass create sub2 {

reference R3 —-> super
attribute {Count 0}
statemodel {

state sbl {} {

my variable Count

incr Count

}

transition sbl - xel -> sbl

}
} —cleanup {
super destroy
subl destroy
sub2 destroy
} —body {
super create supl
subl create instl
supl link R3 instl

event_queue evtqueue

"el"}]
"62"}]

stsatcl - An Single Threaded Software Architecture for Tcl

71/130

}

instl link R3 supl

supl signal =xel
namespace upvar [info object namespace instl] __event_queue__ evtqueue
dict get [lindex S$Sevtqueue 0] src

—result {::stsatcl::test::supl}

Delayed Signal Method

The delayedSignal method requests an event to be signaled at some time in the future.

xumlobj delayedSignal time event ?paraml param?2 ... ?

time
The minimum number of milliseconds in the future when the event will be signaled. This value must be non-negative.

event

The name of the event to be signaled.

paraml param2 ...

Optional parameters given to the state activity.

There are several design considerations here. Clearly, we have to have access to some timing resource. The after command
provides basic time driven events. However, there are two other operations on delayed signals that must be considered. It is
possible to cancel a delayed signal. This is conveniently mapped to the after cancel command. It is also necessary to be
able to determine the amount of time remaining before a delayed signal is to be generated. For this function, we have to provide

some additional machinery.
We must also enforce the rule that there can only be one outstanding delayed signal for a given event name between any sending
/ receiving pair of instances. The first complication arises in determining what to do if a duplicate request is made. In this
architecture we interpret an attempt to have a duplicated delayed event as a request to cancel the first signal and reinstate the
signal at the newly requested time. This turns out to be the most common intent in practice and it prevents have to deal with a
potential error situation.

<<state model methods>>=
method delayedSignal {time event args} {

if {!([string is integer -strict S$time] && S$time >= 0)} {
tailcall ::stsatcl::DeclError INVALIDTIME S$time
}
set src [my EventSource]
classvariable polyEvents
if {$Sevent in $polyEvents} {
my ForwardPolyEvent [list delayedSignal $time] $src $Sevent S$Sargs
} else {

Cancel any existing delayed signal that might have been in place.

my CancelDelayedSignal $src $event

my variable _ delayedSignals___
set _ delayedSignals__ ($src, $event) [dict create\
timerid\
[::after S$time [mymethod DelayedDispatch $src $Sevent]]\
expire [expr {[clock milliseconds] + Stime}]\
info [dict create\
src $src\
event Sevent)\
params Sargs\

}

return

stsatcl - An Single Threaded Software Architecture for Tcl

72/130

<<error code formats>>=
INVALIDTIME {invalid signal delay time, "%1d"}

Delayed Signal Method Tests

<<exported tests>>=
test delayedSignal-1.0 {

signal a delayed event from outside of a state machine context

} —setup {
::stsatcl STSAClass create dsl {
statemodel {
state sl {a} {
puts -nonewline $a
}

transition sl - el —-> sl

}
} —cleanup {
dsl destroy
} -body {
dsl create instl
set begin [clock milliseconds]
instl delayedSignal 100 el 20

namespace upvar [info object namespace instl] _ _delayedSignals__ dsigs

set expire [dict get $dsigs(,el) expire]

expr {Sexpire - S$begin - 100 <= 2}
} —result {1}

Cancel Method

A delayed event may be canceled using the cancel method. It is not an error to cancel an event that was never scheduled or

might have already been delivered.

xumlobj cancel event

event
The name of the event to be canceled.

The method returns a boolean indicating whether event was actually canceled.

<<state model methods>>=
method cancel {event} {
return [my CancelDelayedSignal [my EventSource] $event]

Cancel Method Tests

<<exported tests>>=
test cancel-1.0 {
cancel a delayed event
} —setup {
::stsatcl STSAClass create dsl {
statemodel {
state sl {a} {

stsatcl - An Single Threaded Software Architecture for Tcl 73/130

puts -nonewline $a

}

transition sl - el —-> sl

}

} —cleanup {
dsl destroy

} -body {
dsl create instl
set begin [clock milliseconds]
instl delayedSignal 100 el 20
instl cancel el

namespace upvar [info object namespace instl] __ delayedSignals__ dsigs
parray dsigs
info exists dsigs(,el)

} —result {0}

Remaining Method

The final operation on delayed events is to obtain the amount of time remaining before the event is dispatched.

xumlobj remaining event

event
The name of the event for which the remaining time is to be returned.

The method returns the number of milliseconds before the event is to be signaled. A return value of 0 indicates that the event has
expired or was not found as a delayed event.

<<state model methods>>=
method remaining {event} {
set src [my EventSource]
my variable _ _delayedSignals___

return [expr {[info exists __ delayedSignals__ ($src, Sevent)] ?\
max ([dict get $__delayedSignals__ ($src, Sevent) expire]\
- [clock milliseconds], 0) : 0}] ; # ©
}
o The remaining time is the difference between the expiration time recorded when the event was signaled and the current

time. We return 0, if the delayed signal doesn’t exists or if by some chance the current time is past the expiration time.
The current time may be past the expiration time if the we have been off executing outside of the event loop. The logic is
nested together in one expression under some, probably misguided as the units of time here are milliseconds, impression
that calculations on time should be “efficient”.

Remaining Method Tests

<<exported tests>>=
test remaining-1.0 {
obtain the remaining time for a delayed event
} —-setup {
::stsatcl STSAClass create dsl {
statemodel {
state sl {a} {
puts —-nonewline $a
}

transition sl - el —-> sl

stsatcl - An Single Threaded Software Architecture for Tcl 74/130

}

} —cleanup {
dsl destroy

} -body {
dsl create instl
instl delayedSignal 100 el 20
set remain [instl remaining el]
expr {Sremain - 100 <= 2}

} —result {1}

<<exported tests>>=
test remaining-2.0 {
remaining time for non-existent event
} —setup {
::stsatcl STSAClass create dsl {
statemodel {
state sl {a} {
puts -nonewline $a
}

transition sl - el —-> sl

}
} —cleanup {
dsl destroy
} —body {
dsl create instl
instl remaining el
} —result {0}

Force Method

The force method causes an unconditional transition into the given state and executes the state activity there. Although this
method is subject to abuse, it can be very useful under certain error and / or recovery conditions.

xumlobj force state

state
The name of the state into which an unconditional transition is to be made.

<<state model methods>>=
method force {state args} {
classvariable states
if {Sstate ni S$states} {
tailcall ::stsatcl::DeclError UNKNOWN_STATE S$state S$states

}

my variable __ currentstate_

set _ currentstate_ S$state

my ${__currentstate__}__STATE__ {x}Sargs
return

<<exported tests>>=
test force-1.0 {
force the transition to a state
} —setup {
::stsatcl STSAClass create frcl {
statemodel {
initialState s2

stsatcl - An Single Threaded Software Architecture for Tcl 75/130

state sl {} {
puts -nonewline "in s1"

}
transition sl - el —-> s2
state s2 {} {

puts -nonewline "in s2"

}

transition s2 - el -> sl

}
} —cleanup {
frcl destroy
} -body {
frcl create instl
instl force sl
} —result {} -output {in sl}

Current State Method

The currentstate method returns the name of the current state of the object. This method is also subject to abuse and is
provided for diagnostic and introspection purposes. Please do not make the logic of your application dependent upon the return
of the currentstate. It is not necessary and there is always a better way to partition the control logic. However, debugging
insight can depend upon knowledge of where you are and the current state of an instance.

xumlobj currentstate

<<state model methods>>=

method currentstate {} {
my variable __ currentstate_
return $__ currentstate_

Receive Method

This section begins that discussion of several unexported methods that are used to implement the internals of the state machine
event dispatch code. These methods form the heart of the design of the execution mechanisms and warrant close study if you
wish to understand how the architecture actually works.

The Receive method is responsible for performing a transition on the state machine and executing the activity associated with
the destination state. This happens synchronously as this method is what is invoked along the callback path that event signaling
starts.

The design handles a few key considerations:

* Computing the transition is accomplished by accessing a dictionary. Recall that the transition matrix is fully populated and the
new state is a function of the current state and the event. So a two level dictionary serves as the new state function.

e The “IG” and “CH” pseudo-transition must be accounted for. “IG” causes nothing to happen, “CH” is a serious error.

* Assuming an actionable transition, the state activity is invoked. Recall that all state activities were turned into methods, albeit
with a convention enforced on the method naming.

* Finally, we have to deal with asynchronous deletion by examining the set of terminal states for the state model. At the end of
the execution of the activity for a terminal state, the instance is deleted.

The code below is a direct implementation of these considerations.

stsatcl - An Single Threaded Software Architecture for Tcl 76 /130

<<state model methods>>=
method Receive {eventInfo} {
my variable __ currentstate_
set src [dict get S$eventInfo src]
set event [dict get S$SeventInfo event]
set params [dict get S$eventInfo params]

classvariable transitions
set newState [dict get Stransitions $__currentstate__ S$Sevent] ; # (1]

::stsatcl::TraceTransition $src Sevent [self] $_ currentstate_ \
SnewState S$Sparams

if {$newState eq "CH"} { # ©
tailcall ::stsatcl::DeclError CH_TRANSITION\
[list $src] Sevent [self] $_ currentstate_
} elseif {S$SnewState ne "IG"} {
set _ currentstate_ SnewState ; # (3]
try {
my ${__currentstate_ }_ STATE__ {*}$params ; # O
} finally {
classvariable terminals ; # ©
if {$__ _currentstate_ in S$terminals} {
my destroy

}

return
}
o In the Moore formalism, the new state is a function of the current state and the event.
(2] In this architecture, we deem the state machine to be “in” the new state before the activity is executed. Some XUML

software architectures do the opposite, i.e. changing state only after the activity is executed. The difference is subtle and
applications should not depend upon such nuances, but one rational for this order is to allow a state activity to read the
current state and get a value that matches its own state name.

(3] Check for pseudo-transitions.

o Despite the “line noise” appearance of this statement, we are simply invoking the method that is the state activity, con-
structing its name according to some established conventions and giving it the arguments specified in the event.

(5] If this is a terminal state, then we destroy ourselves. This is the asynchronous deletion that corresponds to asynchronous
creation.

<<error code formats>>=
CH_TRANSITION {can’t happen transition: %s - %s —-> %s ==> %s —-> CH}

Receive Method Tests

<<exported tests>>=
test Receive-1.0 {

synchronously receive a state machine event
} —setup {

::stsatcl STSAClass create rcl {

statemodel {
state sl {a} {
puts -nonewline $a

stsatcl - An Single Threaded Software Architecture for Tcl

777130

}

transition sl - el -> sl

}
} —cleanup {

rcl destroy
} -body {

rcl create instl

[info object namespace instl]::my Receive\

[dict create src {} event el params 20]

} —result {} -output {20}

<<exported tests>>=
test Receive-2.0 {
cause can’t happen transition
} —setup {
::stsatcl STSAClass create rcl {
statemodel {
state sl {a} {
puts -nonewline $a
}
transition sl - el —-> sl
transition sl - e2 -> CH

}
} —cleanup {
rcl destroy
} —body {
rcl create instl
[info object namespace instl]::my Receive\
[dict create src {} event e2 params {}]
} —result {can’t happen transition: {} - e2 -> ::stsatcl::test
==> sl —-> CH} -returnCodes error

<<exported tests>>=
test Receive-3.0 {
enter a terminal state
} —setup {
::stsatcl STSAClass create rc3 {
statemodel {
terminal s2

state sl {} {
}

transition sl - el —-> s2

state s2 {} {
}

}
} —cleanup {
rc3 destroy
} -body {
rc3 create instl
[info object namespace instl]::my Receive\
[dict create src {} event el params {}]
llength [info commands ::stsatcl::test::instl]
} —result {0}

<<exported tests>>=
test Receive-4.0 {

::instl1\

stsatcl - An Single Threaded Software Architecture for Tcl 78/130

ignore an event
} —setup {
::stsatcl STSAClass create rcéd {
statemodel {
state sl {} {
}

transition sl - el —-> sl
transition sl - e2 -> IG

}
} —cleanup {
rc4 destroy
} -body {
rc4 create instl
[info object namespace instl]::my Receive\
[dict create src {} event e2 params {}]
instl currentstate
} —result {sl}

Dispatch Method

The dispatch of non-delayed events is accomplished by the Dispatch method. Each non-delayed state machine event that is
signaled causes a Tcl event to which this method is attached as the Tcl event handler.

The purpose of this method is to turn a Tcl event into a state machine event. The logic of dispatch is simple. We pull the first event
off of the event queue and, using the Receive method, synchronously cause the transition to happen and, consequently, the
state activity to be executed. Note that we always pull the dispatched event off of the front of the event queue. The event queue is
always kept in dispatch order and recall that inserting an event it the event queue accounts for the rules about self-directed events
being dispatched before non-self-directed events.

The only minor complication in the design is that we have to attend to the bookkeeping of the timer ID’s associated with the Tcl
_after command. Recall that the Tcl events that are handled here are created using the after 0 command sequence. When
the Tcl events are created, we save the timer ID returned from after. Here we have to remove our memory of that timer ID.
Any timer ID’s remaining at dest roy time are then canceled insuring basic resource cleanup occurs properly.

<<state model methods>>=
method Dispatch {eventid} {

my variable _ _signals___
array unset _ signals__ S$eventid
my variable __ _event_queue_
if {[llength $_ event_queue_] != 0} { # ©
Pull the event from the front of the queue.
set eventInfo [lindex $__event_queue__ 0]
set __event_queue__ [lrange $__event_queue__ 1 end]

tailcall my Receive S$eventInfo

o The event queue should contain something here, but we test anyway.

Dispatch Method Tests

To test asynchronous dispatch of events into state machines, we will use some utility procedures to help synchronize things for
back to the test script. The design idea is to have one procedure that can be called by state activities to write to a well known
variable and another one that will perform the necessary vwait command to enter the event loop.

stsatcl - An Single Threaded Software Architecture for Tcl

79/130

<<test utility procs>>=
proc syncToTest {{value {}}} {
set [namespace current]::testDone $value

proc waitForSync {{timeout 1000}} {
set varname [namespace current]::testDone
set tid [::after S$Stimeout set S$varname TIMEOUT]
vwait $varname
after cancel $tid
set $varname

<<exported tests>>=
test Dispatch-1.0 {
dispatch an event to a state machine.
} —-setup {
::stsatcl STSAClass create rcl {
statemodel {
state sl {a} {
::stsatcl::test::syncToTest $a
}

transition sl - el —-> sl

}

} —cleanup {
rcl destroy

} —-body {
rcl create instl
instl signal el 20
waitForSync

} —result {20}

<<exported tests>>=
test Dispatch-2.0 {
dispatch multiple events to a state machine.
} —-setup {
::stsatcl STSAClass create rcl {
attribute {Count 0}
attribute {Max 2}
statemodel {
state sl {} {
my variable Count Max
incr Count
if {$Count >= SMax} {

::stsatcl::test::syncToTest $Count

}

transition sl - el —-> sl

}

} —cleanup {
rcl destroy

} -body {
rcl create instl
instl signal el
instl signal el
waitForSync

} —result {2}

stsatcl - An Single Threaded Software Architecture for Tcl 80/130

Delayed Dispatch Method

Dispatch of delayed events is accomplished by the DelayedDispatch method. One difference between delayed dispatch
and non-delayed dispatch is we don’t have to consult the event queue. Recall that we use the after ms form of the after
command to generate Tcl events at the appropriate delay time. The DelayedDispatch command is tied to the Tcl event and,
like the Dispatch command is responsible for translating the Tcl event into a state machine event. We have arranged for all
the event information, in the form of a dictionary value, to be stored along with the other information required to support delayed
events.

Also, like the D1 spat ch method we must keep track of the timer ID’s and other information associated with the delayed event.

<<state model methods>>=
method DelayedDispatch {src event} {
my variable __ delayedSignals___
if {[info exists __delayedSignals__ ($src,$event)]} { # 0
set eventInfo [dict get $__delayedSignals__ ($src, $Sevent) info]
array unset __delayedSignals__ $src, Sevent
tailcall my Receive $eventInfo ; # ©

o Now that the delayed event is delivered, we can obtain the event information and do the bookkeeping on the set of
outstanding delayed events.

2] The Receive method does the heavy lifting of actually causing the state machine transition.

Delayed Dispatch Method Tests

<<exported tests>>=
test DelayedDispatch-1.0 {
dispatch a delayed event to a state machine.
} —setup {
::stsatcl STSAClass create rcl {
statemodel {
state sl {} {
::stsatcl::test::syncToTest [clock milliseconds]
}

transition sl - el —-> sl

}
} —cleanup {
rcl destroy
} —body {
rcl create instl
set delay 100

set start [clock milliseconds]
instl delayedSignal $delay el
set end [waitForSync]

expr {$Send - S$start - S$delay <= 2}
} —result {1}

<<exported tests>>=
test DelayedDispatch-2.0 {
dispatch multiple delayed events to a state machine.
} —setup {
::stsatcl STSAClass create rcl {
attribute {Count 0}

stsatcl - An Single Threaded Software Architecture for Tcl 81/130

attribute {Max 2}
statemodel {
state sl {} {
my variable Count Max
incr Count
if {$Count >= S$Max} {
::stsatcl::test::syncToTest $Count

}

transition sl - el —-> s2

state s2 {} {
my variable Count
incr Count

}

transition s2 - e2 -> sl

}
} —cleanup {
rcl destroy
} —body {
rcl create instl
set delay 100

set start [clock milliseconds]
instl delayedSignal $delay el
instl delayedSignal S$delay e2
set end [waitForSync]

expr {S$end - $start - 2 x $delay <= 2}
} —result {1}

Cancel Delayed Signal

The CancelDelayedSignal method factors common code for tending to the bookkeeping of delayed signals into one place.

<<state model methods>>=

method CancelDelayedSignal {src event} {
my ValidateEvent S$event
Check if we have the delayed signal. It might not exist
or have already been dispatched. We return an indication
of whether the signal was indeed canceled.
my variable _ delayedSignals___

if {[info exists __delayedSignals__ ($src, $Sevent)]} {
after cancel [dict get $_ _delayedSignals__ (Ssrc, $Sevent) timerid]
array unset _ _delayedSignals__ "$src, Sevent"
set result true

} else {

set result false
}

return S$result

Example State Activities

At long last we now have enough information to code the state model activities and the remaining processing for our example
washing machine. Let’s recap where we are with the example.

stsatcl - An Single Threaded Software Architecture for Tcl 82/130

First, we saw a class diagram and used that diagram to define the attributes and linkages for the classes that perform washing
machine control. Next we saw a state model and showed how that model could be encoded in the STSAClass DSL. All along in
the presentation of the example we have deferred showing any state activities code. Now that we have the XUML class methods
available, we are prepared to show the third and final facet of how a model is made into a running program.

To make the correspondence clear, we will visit each state activity, show its action language pseudo-code and then present the
Tcl code that implements the activity. It is in that Tcl code we shall see the invocation of the XUML class methods discussed
above. A few points are worth noting.

* There is substantial repetition in the action language. No attempt has been made to factor common sequences into instance
operations as would be the case for more complicated activities. This was deliberate to avoid having to look in multiple places
to be able to determine exactly what is happening.

* The transliteration of action language statements to Tcl commands is quite literal. In many places, a more natural Tcl coding
style would have “nested” several commands together. Again, this was deliberate to be explicit about the correspondence
between the Tcl commands and the action language statements.

Washing Machine State Activities

We start with the Washing Machine class. In reading this section, you may find it helpful to refer to the state model and class
diagram.

Stopped Activity

Stop spinning —-- wash complete
select one ct related by self->R1[CT]
signal Stop to ct

Stopped Implementation

<<WM stopped activity>>=
set ct [my —> R1]
Sct signal Stop

Filling To Wash Activity

Fill the tub with wash water.
select one wc related by self->R4[WC]
select one ct related by self->R1[CT]
signal Fill (wc.WashWaterTemp) to ct

Filling To Wash Implementation

<<WM filling to wash activity>>=

set wc [my —> R4]

set ct [my —-> R1]

Sct signal Fill [$wc readAttributes WashWaterTemp]

Washing Activity

stsatcl - An Single Threaded Software Architecture for Tcl 83/130
Agitate the tub to wash.

select one ct related by self->R1[CT]

signal Agitate to ct

select one wc related by self->R4[WC]

signal Done to self at wc.WashDuration

Washing Implementation

<<WM washing activity>>=

set ct [my -> R1]

Sct signal Agitate

set wc [my —> R4]

my delayedSignal [expr {[$Swc readAttributes WashDuration]

o We are implicitly assuming the units of WashDuration are seconds. In truth, the units are minutes, but we are not patient

enough to wait that long for a run of the example to finish.

Draining Wash Activity

Stop washing and drain

the dirty wash water.

select one ct related by self->R1[CT]
signal Drain to ct

Draining Wash Implementation

<<WM draining wash activity>>=
set ct [my —-> R1]
Sct signal Drain

Filling To Rinse Activity

Fill the tub with rinse water.

select one wc related by self->R4[WC]
select one ct related by self->R1[CT]
signal Fill (wc.RinseWaterTemp) to ct

Filling To Rinse Implementation

<<WM filling to rinse activity>>=
set wc [my —> R4]
set ct [my —> R1]

Sct signal Fill [$wc readAttributes RinseWaterTemp]

Rinsing Activity

Agitate the tub to rinse.

select one ct related by self->R1[CT]
signal Agitate to ct

select one wc related by self->R4[WC]

signal Done to self at wc.RinseDuration

stsatcl - An Single Threaded Software Architecture for Tcl 84 /130

Rinsing Implementation

<<WM rinsing activity>>=

set ct [my -> R1]

Sct signal Agitate

set wc [my —> R4]

my delayedSignal [expr {[$wc readAttributes RinseDuration] % 1000}] Done

Draining Rinse Activity

Stop rinsing and drain

the rinse water.

select one ct related by self->R1[CT]
signal Drain to ct

Draining Rinse Implementation

<<WM draining rinse activity>>=
set ct [my -> R1]
Sct signal Drain

Spinning Activity

Spin out excess water.

select one ct related by self->R1[CT]
signal Spin to ct

select one wc related by self->R4[WC]
signal Done to self at wc.SpinDuration

Spinning Implementation

<<WM spinning activity>>=

set ct [my —-> R1]

Sct signal Spin

set wc [my —> R4]

my delayedSignal [expr {[$wc readAttributes SpinDuration] % 1000}] Done

Clothes Tub State Activities

The other state model in our example is for the Clothes Tub class Again, you may find it helpful to refer to the state model and
class diagram.

Empty Activity

Stop the pump
select one mtr related by self->R2[MTR]
where (MotorID = 'Pump’)
mtr.Stop ()
Close the drain valve
select one wv related by self->R3[WV]
where (ValveID = ’'Drain’)

stsatcl - An Single Threaded Software Architecture for Tcl

85/130

wv.Close ()

Disable the sensor

select one wls related by self->R5[WLS]
wls.Disable ()

Inform the washing machine

select one wm related by self->R1[WM]
signal Empty to wm

Empty Implementation

<<CT empty activity>>=

set mtr [my selectOneRelatedWhere R2 selected {
[$selected readAttributes MotorID] eq "Pump"

H]

Smtr Stop

set wv [my selectOneRelatedWhere R3 selected {
[Sselected readAttributes ValveID] eq "Drain"

H]

Swv Close

set wls [my —-> R5]

Swls Disable

set wm [my —> R1]

Swm signal Empty

Filling Activity

Enable the sensor
select one wls related by self->R5[WLS]
wls.Enable ()
Open inlet valve (s)
if (temp = ’"Hot’)
select one wv related by self->R3[WV]
where (ValveID = ’"Hot')
wv.Open ()
else if (temp = ’Cold’)
select one wv related by self->R3[WV]
where (ValvelID = ’'Cold’)
wv.Open ()
else if (temp = ’'Warm’)
select many wvs related by self->R3[WV]

where (ValveID = ’'Hot’ OR ValveID = ’Cold’)

foreach wv in wvs
wv.Open ()
endfor
end if

Filling Implementation

<<CT filling activity>>=
set wls [my —> R5]
Swls Enable
if {Stemp eg "Hot"} {
set wv [my selectOneRelatedWhere R3 selected {

[$selected readAttributes ValveID] eqg "Hot"

}]
Swv Open
} elseif {Stemp eqg "Cold"} {
set wv [my selectOneRelatedWhere R3 selected {

[$selected readAttributes ValveID] eqg "Cold"

stsatcl - An Single Threaded Software Architecture for Tcl 86/130

}]
Swv Open
} elseif {Stemp eqg "Warm"} {

set wvs [my selectRelatedWhere R3 selected {
[$Sselected readAttributes ValveID] eq "Hot" ||\
[$Sselected readAttributes ValveID] eq "Cold"

}]

foreach wv S$wvs {
Swv Open

Full Activity

Disable the sensor
select one wls related by self->R5[WLS]
wls.Disable ()
Close all water valves
select many wvs related by self->R3[WV]
where (ValvelID = ’'Hot’ OR ValvelD = ’'Cold’)
foreach wv in wvs
wv.Close ()
endfor
Inform the washing machine
select one wm related by self->R1[WM]
signal Full to wm

Full Implementation

<<CT full activity>>=

set wls [my —> R5]

Swls Disable

set wvs [my selectRelatedWhere R3 selected {
[$selected readAttributes ValveID] eq "Hot" ||\
[Sselected readAttributes ValvelID] eq "Cold"

]

foreach wv Swvs ({
Swv Close

}

set wm [my —> R1]

Swm signal Full

Agitating Activity

Start the agitator motor

select one mtr related by self->R2[MTR]
where (MotorID = ’'Agitator’)

mtr.Start ()

Agitating Implementation

<<CT agitating activity>>=

set mtr [my selectOneRelatedWhere R2 selected {
[$selected readAttributes MotorID] eq "Agitator"

H]

Smtr Start

stsatcl - An Single Threaded Software Architecture for Tcl

87/130

Emptying Activity

Stop the motor

select one mtr related by self->R2[MTR]
where (MotorID = ’'Agitator’)

mtr.Stop ()

Open the drain valve

select one wv related by self->R3[WV]

where (ValveID = ’'Drain’)

wv.Open ()

Start the pump

select one mtr related by self->R2[MTR]
where (MotorID = ’'Pump’)

mtr.Start ()

Enable the sensor

select one wls related by self->R5[WLS]

wls.Enable ()

Emptying Implementation

<<CT emptying activity>>=
set mtr [my selectOneRelatedWhere R2 selected {

[$selected readAttributes MotorID] eq "Agitator"

H]

Smtr Stop

set wv [my selectOneRelatedWhere R3 selected {
[$selected readAttributes ValveID] eq "Drain"

H]

Swv Open

set mtr [my selectOneRelatedWhere R2 selected {
[$Sselected readAttributes MotorID] eq "Pump"

]

Smtr Start

set wls [my —> R5]

Swls Enable

Spinning Activity

Open the drain valve
select one wv related by self->R2[WV]
where (ValveID = ’'Drain’)

wv.Open ()

Start the pump

select one mtr related by self->R2[MTR]
where (MotorID = 'Pump’)

mtr.Start ()

Start the spin motor

select one mtr related by self->R2[MTR]
where (MotorID = ’'Spin’)

mtr.Start ()

Spinning Implementation

<<CT spinning activity>>=
set wv [my selectOneRelatedWhere R3 selected {
[$selected readAttributes ValveID] eq "Drain"

stsatcl - An Single Threaded Software Architecture for Tcl 88/130

H]

Swv Open

set mtr [my selectOneRelatedWhere R2 selected {
[$selected readAttributes MotorID] eq "Pump"

H]

Smtr Start

set mtr [my selectOneRelatedWhere R2 selected ({
[$selected readAttributes MotorID] eq "Spin"

H]

Smtr Start

Stopping Spin Activity

Stop the motor

select one mtr related by self->R2[MTR]
where (MotorID = ’Spin’)

mtr.Stop ()

Stop the pump

select one mtr related by self->R2[MTR]
where (MotorID = 'Pump’)

mtr.Stop ()

Close the drain valve

select one wv related by self->R3[WV]

where (ValveID = ’'Drain’)
wv.Close ()

Stopping Spin Implementation

<<CT stopping spin activity>>=
set mtr [my selectOneRelatedWhere R2 selected ({
[$selected readAttributes MotorID] eq "Spin"

H

Smtr Stop

set mtr [my selectOneRelatedWhere R2 selected {
[$Sselected readAttributes MotorID] eq "Pump"

1]

Smtr Stop

set wv [my selectOneRelatedWhere R3 selected {
[$selected readAttributes ValveID] eq "Drain"

H

Swv Close

State Machine Trace

In this section we discuss the capabilities and design of tracing state machine event dispatch. Again, we are confronted with a
heavily overloaded term, frace. There are many kinds of traces in the Tcl world and we do not wish to confuse Tcl variable and
command tracing with st satcl package state machine tracing. Here we are discussing the ability of the package to produce a
chronologically ordered sequence of the results of dispatching state machine events.

It’s hard to overemphasize the importance of the event dispatch trace for a set of state machines. Since the majority of the
processing in state machine based application is in the form of callbacks for dispatched events, it is difficult to simply read the
code base sequentially and have a good sense of what will happen during execution. Of course, a different sequence of events
will order the code execution differently. That is, after all, what we are trying to achieve with a state model.

The fact that the path of code execution does not easily correspond to the sequence of the code statements is objectionable enough
to some that they avoid a state model based approach. Others try to cast state behavior into more sequential appearing code by

stsatcl - An Single Threaded Software Architecture for Tcl 89/130

using other techniques such as coroutines. All of these considerations lead to the conclusion that capturing a chronological trace
of the event dispatch of a state machine based applications is indispensable to understanding and testing.

In this section we discuss the design and implementation of the state machine tracing implemented by this package. First we lay
out some basic rules.

* Tracing can be controlled. It is necessary to be able to start and stop the trace capture and to clear out any accumulated traces.
» Tracing must capture all the semantics of event dispatch, including polymorphic and creation events.
* Itis only necessary to trace event dispatch. Signaling, i.e. when events are generated, is not captured.

* Common operations on the collected trace data must be supported including the ability to save the trace data into some persis-
tent form, (e.g. a file).

To meet these requirements, trace data is captured by the event dispatch methods and stored in appropriate data structures. The
following sections discuss the manner in which this is done. We divide the discussion into the these parts:

* The structure of the trace data.
* Procedures to gather the trace data.

* Procedures to query and format the trace data.

Trace Data

The figure below shows a class diagram in UML notation of the state machine trace data.

stsatcl - An Single Threaded Software Architecture for Tcl 90/130

Trace

Trace_Id {I}
Timestamp
Source
Event
Target
Class

R1

Creation Polymorphic Transition
Trace_Id {I,R1} Trace_Id {I,R1} Trace_Id {I,R1}
SuperClass CurrState
Linkage NewState
Params

Figure 6: Trace Data Class Model

A trace is identified by an arbitrary identifier. We will use a sequential integer. Each trace has a Timestamp. This needs to be of
relatively high resolution so we will use the return from the clock microseconds command. The Target of a trace is the
object command name of the instance to which the event is directed. We also store the C1lass command name that corresponds
to the Target so we can perform queries on a class rather than instance basis (e.g. it is interesting to determine how all instances
of some set of classes pass events without any reference to particular instances).

The three types of event dispatch types are captured as by the R1 generalization. Creation events result in an instance being
created followed by an ordinary Transition event. So any creation event will have two trace entries. Polymorphic events
map, at run time, an event directed at a superclass instance to a corresponding event in the related subclass instance. So each
polymorphic event will have at least one ordinary transition associated with it as the polymorphic event is finally mapped down
to a leaf subclass and consumed there. Ordinary Transition events are most common and we record the object that is the source
of the event, parameters associated with the event and the outcome of the transition.

The most direct implementation of this data schema is to use the Tc1RAL package. Tc1RAL has direct support for defining the
relation variables and partition constraints implied by the class diagram and all the required operations to query and serialize the
captured trace data.

<<sm trace packages>>=
package require ral
package require ralutil

The correspondence between the class diagram and the Tc1RAL commands required to implement it is direct and amounts to
little more than casting the class diagram into Tcl command syntax.

stsatcl - An Single Threaded Software Architecture for Tcl 91/130

<<sm trace data>>=
namespace import ::ral::«
namespace import ::ralutil::=x

relvar create Trace {

Trace_Id int

Timestamp bignum
Source string
Event string
Target string
Class string

} Trace_Id
relvar create Creation {
Trace_Id int

} Trace_Id

relvar create Polymorphic {

Trace_Id int
SuperClass string
Linkage string

} Trace_Id

relvar create Transition {

Trace_Id int
CurrState string
NewState string
Params list

} Trace_Id

relvar partition R1 Trace Trace_Id\
Creation Trace_Id\
Polymorphic Trace_Id\
Transition Trace_Id

Despite the value of tracing in testing and debugging, it is a rather heavy weight operation and this design requires as “C” based
extension to implement it. So we will make it optional at to whether or not to pull in all the tracing machinery. To do that we will
use some variable to hold the state of the tracing operations.

<<stsatcl data>>=
variable tracelInitialized false
variable traceState off

We also need some ordinary variables to keep track of the state of trace capture, a counter for generating the Trace_ Id attribute
values and details of trace logging.

<<sm trace data>>=

variable traceNumber 0
variable tracelLogState off
variable tracelogLevel info

In addition to simply accumulating trace data, it is sometimes convenient to produce the trace as a log in real time. We support
logging via the 1ogger package available in tcl1lib.

<<sm trace packages>>=
package require logger

We log to a service that is the same name as the package.

<<sm trace packages>>=
variable tracelogCmd [::logger::init stsatcl]

stsatcl - An Single Threaded Software Architecture for Tcl 92/130

Trace Control

The t raceControl procedure provides the interface necessary to control the aspects of state machine tracing.

<<stsatcl commands>>=
proc ::stsatcl::traceControl {op args} {
variable traceInitialized ; O
if {!$tracelInitialized} {
set tracelInitialized true
<<sm trace packages>>
<<sm trace data>>
}
switch —-exact —-- S$op {
on {
variable traceState on
}
off {
variable traceState off
set traceState off
}
status {
variable traceState
return S$traceState
}
clear {
relvar eval {
foreach rvar {Trace Creation Polymorphic Transition} {
relvar set S$rvar [relation emptyof [relvar set S$rvar]]

}
variable traceNumber 0
}
logon {
variable tracelLogState on
}
logoff {
variable tracelogState off
}
loglevel ({
variable tracelLogLevel
if {[llength $args] != 0} {
set tracelLoglevel [lindex S$args 0]
}
return $tracelLogLevel
}
save {
if {[llength $args] == 0} {
DeclError NO_SAVEFILE
}
storeToSQLite [lindex $args 0] [relvar names [namespace current]::x]
}
default {
DeclError BAD_TRACEOP S$op

<<package exports>>=
namespace export traceControl

] So we only pull in all the required tracing packages and define the tracing data structures if some form of control operation
on the tracing is invoked.

stsatcl - An Single Threaded Software Architecture for Tcl 93/130

<<error code formats>>=

BAD_TRACEOP {unknown trace operation, "%s"}
NO_SAVEFILE {no save file name provided}

Trace Population

Each of the XUML class methods that is involved with dispatching events into a state machine invokes a procedure to capture
the dispatch data. There are three such procedures corresponding to the three types of event dispatch. Each as the same basic
structure, namely determining if tracing is enabled, inserting the trace data to the appropriate relvars and logging the trace
instance.

<<stsatcl commands>>=
proc ::stsatcl::TraceCreation {source event target} {
variable traceState
if {$traceState} {
relvar eval {
set trace [NewTrace S$source S$event S$target]
relvar insert Creation [list\
Trace_Id [relation extract S$trace Trace_Id]\

}

LogTrace S$trace

<<stsatcl commands>>=
proc ::stsatcl::TracePolymorphic {source event target super link} {
variable traceState
if {$traceState} {
relvar eval {
set trace [NewTrace $source S$Sevent S$target]
relvar insert Polymorphic [list\

Trace_Id [relation extract S$trace Trace_Id]\
SuperClass S$super)\
Linkage $1link\

}

LogTrace S$trace

<<stsatcl commands>>=
proc ::stsatcl::TraceTransition {source event target curr new params} {
variable traceState
if {StraceState} {
relvar eval {
set trace [NewTrace $source S$Sevent S$target]
relvar insert Transition [list\

Trace_1Id [relation extract Strace Trace_Id]\
CurrState Scurr\

NewState $new\

Params Sparams\

}

LogTrace S$trace

Code to number the trace and insert it into the Trace relvar is factored to a separate procedure.

stsatcl - An Single Threaded Software Architecture for Tcl 94 /130

<<stsatcl commands>>=

proc ::stsatcl::NewTrace {src event target} {
variable traceNumber
return [relvar insert Trace [list\

Trace_Id [incr traceNumber]\
Timestamp [clock microseconds]\

Source Ssrc\

Event Sevent\

Target Starget\

Class [info object class S$target]\

Each of the above three procedures that inserts a particular type of trace data into the data store also logs the trace. Trace logging
first checks the state of the logging and then formats an appropriate string for the log.

<<stsatcl commands>>=
proc ::stsatcl::LogTrace {trace} {
variable tracelLogState

if {StracelLogState} {
set rec [FormatTraceRec [lindex [TracesToRecords S$trace] 0]] ; # ©

variable tracelLogCmd
variable tracelLogLevel
S${traceLogCmd}: :${tracelLogLevel} Srec

(1] The TracesToRecords procedure returns a list and knowing that the list contains only one element, we extract that
element to format.

<<exported tests>>=
test LogTrace-1.0 {

log trace data

} —setup {

::stsatcl STSAClass create trl {
attribute {Count 0} {Max 2}
statemodel {

state sl {} {
my variable Count Max
incr Count
if {$Count >= SMax} {
::stsatcl::test::syncToTest $Count

}

transition sl - el —-> s2

state s2 {} {
my variable Count
incr Count
my signal e2

}

transition s2 - e2 —-> sl

turnOnTracelog
} —cleanup {
turnOffTracelog

stsatcl - An Single Threaded Software Architecture for Tcl

95/130

trl destroy

} —body {
trl create instl
instl signal el
waitForSync

} —result {2}

<<exported tests>>=
test LogTrace-2.0 {
log trace data for a polymorphic event
} —setup {
::stsatcl STSAClass create 1t2 {
partition R1 1t2-subl foo
polymorphic xel x*e2

::stsatcl STSAClass create 1t2-subl {
reference R1 —-> 1t2
statemodel {
state subl-sl1 {} {

::stsatcl::test::syncToTest true

}

transition subl-sl - xel —-> subl-s2

state subl-s2 {} {

[my —> R1] delayedSignal 50 xe2

}

transition subl-s2 - xe2 -> subl-sl

1t2 create super
1lt2-subl create subl
super link R1 subl
subl link R1 super

turnOnTracelLog
} —cleanup {
turnOffTracelog

1t2 destroy
1lt2-subl destroy
} —body {
super signal xel
waitForSync
} —result {true}

<<exported tests>>=
test LogTrace—-3.0 {
log trace data for a creation event
} —setup {
::stsatcl STSAClass create 1t3 {
statemodel {
transition @ - el -> sl

state sl {value} {

::stsatcl::test::syncToTest $value

stsatcl - An Single Threaded Software Architecture for Tcl 96/130

turnOnTracelog
} —cleanup {
turnOffTracelog

1t3 destroy

} -body {
set inst [1lt3 signal el 10]
waitForSync

} —result {10}

<<test utility procs>>=
proc turnOnTraceLog {} {
variable prevloglevel

::stsatcl traceControl clear
::stsatcl traceControl on

set logcmd [::logger::servicecmd stsatcl]
set prevloglevel [${logcmd}::currentloglevel]
${logcmd}::setlevel [::stsatcl traceControl loglevel]

::stsatcl traceControl logon

proc turnOffTracelog {} {
variable prevloglevel

set logcmd [::logger::servicecmd stsatcl]
${logcmd}::setlevel S$prevloglevel
::stsatcl traceControl logoff

::stsatcl traceControl off

::stsatcl traceControl clear

Trace Operations

It is difficult to provide all the conceivable operations that one may wish to perform on the captured state machine trace data. In
this package we will provide some common operations, but special cases can be handled by constructing appropriate queries on
the relvar data of the package and passing the result to be formatted. The required primitive operations are here to support a
wider range of custom trace queries.

We divide the decoding of the trace data into two parts:

* Casting the relvar data into an ordered list of dictionaries.

» Formatting trace dictionary data into human readable form.

This separation makes handling data programmatically via the dictionaries much easier yet still allows the production of human
readable output. There are many ways that a program can use the state machine trace data. For example, the trace data can be
used to compute the coverage of states and transitions for testing purposes. This is much easier to accomplish if the data is not in
string form but rather with known named fields.

In this section we will cover the layout of the trace record dictionaries and then a set of query functions to produce sets of records.
Afterward, we will discuss procedures to format trace dictionaries into human readable strings.

Trace Dictionary Structure

Although the relvars defined above contain all the trace data in a form that is easy to write queries on, transforming relational
data into a dictionary provides a convenient interface for handling sets of trace data. Here we discuss the keys that the trace data
dictionary have and the procedures which produce them.

stsatcl - An Single Threaded Software Architecture for Tcl 97 /130

The trace data dictionary has to account for the three different types of dispatched events. We will have common keys that apply
to all types of events and a t ype key that can be used to determine the event type specific keys. The common keys are:

id
An integer number that identifies the sequence of the trace entry.

time
The time since the epoch, in microseconds, that the trace was captured.

source
The object command name of the instance that signaled the event. If the source of the event is outside of an object, then

this will be the empty string.

event
The name of the event.

target
The object command name of the target of the event.

class
The command name of the class that corresponds to target.

type
The type of the dispatched event: one of creation, polymorphic, or transition.

For creation type events, there are no additional keys. The target value is interpreted as the object command name of the
newly created instance and the class value is the command name of the instance creator (which is, necessarily, also the class

of the target).

For polymorphic type events, the following additional keys are available:

super
The object command name of the superclass instance mapping the event.

link
The name of the partition linkage across which the event is mapped.

For polymorphic type events, the target value is the command name of the subclass instance onto which the polymorphic

event is mapped.

For t ransition type events, the following additional keys are available:

current
The name of the state of target when the event was received.

new
The name of the state of target after the transition happened.

params
A list of values giving the parametric data passed with the event to the state activity.

The procedure, TracesToRecords, takes a relation value that is a subset (proper or improper) of the value contained in the
Trace relvar and converts it into a list of trace records. Each trace record is a dictionary of the form described above.

As we will see below, this procedure is used by all the query oriented procedures to convert the trace data into lists of dictionaries.
One difficulty of this transformation is to account for the three different types of event traces. This is done by joining the Trace
relation values against each of the three relvars that participate in R1. This join is done in such a way that three new relation
valued attributes are created and, given the disjoint union implied by the partition constraint, only one of the new attributes will

contain any tuples.

stsatcl - An Single Threaded Software Architecture for Tcl 98/130

<<stsatcl commands>>=
proc ::stsatcl::TracesToRecords {traces} {
foreach rvname {Creation Polymorphic Transition} { # ©@
set traces [rvajoin S$traces [relvar set $rvname] Srvname]

set result [list]

relation foreach trace $traces -ascending Trace_Id { # (2
relation assign S$trace
set labeled [dict create\

id STrace_Id\
time $Timestamp\
source S$Source\
event SEvent\

target S$Target\
class SClass\
1; #©
if {[relation isnotempty $Transition]} { # @
relation assign $Transition
dict set labeled type transition
dict set labeled current $CurrState
dict set labeled new $NewState
dict set labeled params S$Params
} elseif {[relation isnotempty S$Polymorphic]} {
relation assign $Polymorphic
dict set labeled type polymorphic
dict set labeled super $SuperClass
dict set labeled link $Linkage
} elseif {[relation isnotempty $Creation]} {
dict set labeled type creation

lappend result $labeled
}

return S$result

o Perform a relation valued join of the traces against the three different types of trace data. Each rvajoin produces a
new attribute whose name we choose to be the same as the relvar from which it came and whose value is a relation
value containing those tuples whose value of Trace_ Id match. Because the R1 partition represents a disjoint union and
Trace_Id is an identifier, only one of the three new attributes will have any tuples and the non-empty one will contain
exactly one tuple.

(2] We can now iterate across the joined trace data in the order that it was generated (i.e. by ~ascending Trace_Id)so
that the resulting list of dictionaries is in the same order. This was the primary reason for performing all the rvajoin
operations, i.e. to make it more convenient to preserve the event dispatch order into the resulting list.

(3] Add all the common keys, except t ype.

o Add the keys that are specific to the event type.

Decode All Traces

The first of the query functions simple decodes all available trace data.

<<stsatcl commands>>=
proc ::stsatcl::decodeAllTraces {} |
tailcall TracesToRecords [relvar set Trace]

stsatcl - An Single Threaded Software Architecture for Tcl 99/130

<<package exports>>=
namespace export decodeAllTraces

Decode All Traces Tests

<<exported tests>>=

test decodeAllTraces-1.0 {
display trace data

} —setup {

::stsatcl STSAClass create trl {
attribute {Count 0} {Max 2}
statemodel {

state sl {} {
my variable Count Max
incr Count
if {$Count >= SMax} {
::stsatcl::test::syncToTest $Count

}

transition sl - el —-> s2

state s2 {} {
my variable Count
incr Count

}

transition s2 - e2 —-> sl

}
} —cleanup {
::stsatcl traceControl off
::stsatcl traceControl clear
trl destroy
} —body {
::stsatcl traceControl on
trl create instl
instl signal el
instl signal e2
waitForSync
set traces [::stsatcl decodeAllTraces]
dict get [lindex S$traces 0] event
} —result {el}

Decode Class Traces

<<stsatcl commands>>=
proc ::stsatcl::decodeClassTraces {args} {
tailcall TracesToRecords [pipe {
relvar set Trace |
relation restrictwith ~ {$Class in S$args}

H]

<<package exports>>=
namespace export decodeClassTraces

stsatcl - An Single Threaded Software Architecture for Tcl

100/130

Decode Class Traces Tests

<<exported tests>>=
test decodeClassTraces-1.0 {
display trace data for specific class
} —setup {
::stsatcl STSAClass create dctl {
reference R1 -> dct2
attribute {Power 20}
statemodel {
state Off {} {
[my —> R1] signal Lower
}

transition Off - TurnOn -> On

state On {power} {
my variable Power
set Power S$power
[my —> R1] signal Raise
}
transition On - TurnOff -> Off

::stsatcl STSAClass create dct2 {
reference R1 -> dctl
statemodel {

state Down {} {

::stsatcl::test::syncToTest [[my —> R1] readAttributes Power]

}

transition Down - Raise -> Up

state Up {} {
[my —> R1] delayedSignal 50 TurnOff
}

transition Up - Lower —-> Down

::stsatcl traceControl clear
::stsatcl traceControl on
} —cleanup {
::stsatcl traceControl off
::stsatcl traceControl clear
dctl destroy
dct2 destroy
} —-body {
dctl create instl
dct2 create inst2
instl link R1 inst2
inst2 link R1 instl
instl signal TurnOn 30

waitForSync

puts [::stsatcl formatTraces [::stsatcl decodeAllTraces]]
set traces [::stsatcl decodeClassTraces [namespace current]
expr {[llength S$traces] == 2 &&\

[dict get [lindex S$traces 1] event] eq "Lower"}
} —result {1}

::det?2]

stsatcl - An Single Threaded Software Architecture for Tcl 101/130

Decode Target Traces

<<stsatcl commands>>=
proc ::stsatcl::decodeTargetTraces {args} {
tailcall TracesToRecords [pipe {
relvar set Trace |
relation restrictwith ~ {$Target in $args}

}H]

<<package exports>>=
namespace export decodeTargetTraces

Format Traces

Human readable output for state machine traces can be obtain via the format Traces procedure. This procedure takes a list of
trace records, as defined above and as returned from the various trace decode procedures, and returns a string that has a human
readable representation of the trace records. Each trace record is separated by a line terminator character. The returned string
may be written on any channel the caller wishes.

<<stsatcl commands>>=
proc ::stsatcl::formatTraces {tracerecs} {
if {[llength S$tracerecs] == 0} {
return {}
}
set prevtime [dict get [lindex $tracerecs 0] time]
foreach rec $tracerecs {
dict with rec {
append result "[FormatTimestamp $time]:
append result " [FormatTimeAsSec [expr {$time - Sprevtime}]]:
set prevtime $time
append result [FormatTraceRec S$rec] \n

"

"

}

return [string trimright S$result]

<<package exports>>=
namespace export formatTraces

Format Traces Tests

<<exported tests>>=
test formatTraces-1.0 {

display human readable trace data
} —-setup {

::stsatcl STSAClass create trl {
attribute {Count 0} {Max 2}
statemodel {

state sl {} {
my variable Count Max
incr Count
if {$Count >= SMax} {
::stsatcl::test::syncToTest $Count

}

transition sl - el -> s2

stsatcl - An Single Threaded Software Architecture for Tcl

102 /130

state s2 {} {
my variable Count
incr Count

}

transition s2 - e2 -> sl

}

} —cleanup {
::stsatcl traceControl off
::stsatcl traceControl clear
trl destroy

} —body {
::stsatcl traceControl on
trl create instl
instl signal el
instl signal e2
waitForSync

set traces [::stsatcl formatTraces [::stsatcl::decodeAllTraces]]

llength [split S$traces \n]
} —result {2}

Format Trace Record

An individual trace record may be formatted with the Format TraceRec procedure.

<<stsatcl commands>>=

proc ::stsatcl::FormatTraceRec {rec} {
dict with rec {
switch -exact —-- S$type {

transition {
append result\
"Transition: "\

"[list S$source] - Sevent \{$params\}

"Scurrent -> Snew"
}
polymorphic {
append result\
"Polymorphic : "\

"[list $source] - $event —> Ssuper ==> "\

"Slink —-> Starget™"
}
creation {
append result\
"Creation: "\

"[list S$source] - Sevent -> Sclass ==> Starget"

}
default {

DeclError BAD_TRACETYPE S$type

}

return $result

<<error code formats>>=
BAD_TRACETYPE {unknown trace type, "%s"}

Format Time Stamp

-> Starget ==> "\

stsatcl - An Single Threaded Software Architecture for Tcl 103/130

<<stsatcl commands>>=
proc ::stsatcl::FormatTimestamp {time} {
set sec [clock format [expr {$time / 1000000}] -format %T] ; # ©
set time [expr {S$time % 1000000}]
set msec [expr {$time 10001}]
set usec [expr {S$time 10001}1]

o\

o0

return [format %s.%031d.%031d $sec Smsec S$Susec]

o We assume time in units of microseconds.

Format Time As Seconds

<<stsatcl commands>>=

proc ::stsatcl::FormatTimeAsSec {time} {
set sec [expr {$time / 1000000}]
set time [expr {$time % 1000000}]
set msec [expr {$time / 1000}]
set usec [expr {$time % 1000}]

return [format %31d.%031d.%031d Ssec Smsec Susec]

Sequence Diagrams

Another way to view trace information is in the form of a sequence diagram. The segdiag program can layout and render
UML sequence diagrams from a simple textual specification of the diagram’s components. The syntax of the sequence diagram
is similar to that of dot. Using the captured state machine trace information, we can view the interactions of state models. We
present several procedures in this group.

Diagram Traces

<<stsatcl commands>>=

proc ::stsatcl::diagtraces {traces args} {
set result {}
append result "seqgdiag \{\n"

append result " activation = none; \n"
foreach {option value} S$args {
append result " Soption = $value; \n"

relation foreach trace $traces -ascending Trace_Id ({
relation assign S$trace
if {$Source eq {}} {
set Source EXTERNAL
} else {
set Source [namespace tail $Source]
}
set Target [namespace tail $Target]
append result " $Source —->> $Target \[label=\"$Event\"\];\n"

append result "\}\n"

http://blockdiag.com/en/seqdiag/index.html

stsatcl - An Single Threaded Software Architecture for Tcl 104 /130

return S$result

Diagram All Traces

<<stsatcl commands>>=

proc ::stsatcl::diagAllTraces {filename args} {
set chan [open $filename w]
try {

chan puts S$chan [diagtraces [relvar set Trace] {*}Sargs]
} finally {
chan close $chan

}

return

<<package exports>>=
namespace export diagAllTraces

Diagram Class Traces

<<stsatcl commands>>=

proc ::stsatcl::diagClassTraces {filename classes args} {
set chan [open $filename w]
try {

set traces [pipe {

relvar set Trace >

relation restrictwith ~\

{$Class in $classes || [namespace tail $Class] in $classes}
1o} >~
chan puts S$chan [diagtraces S$traces {*}S$Sargs]
} finally {

chan close $chan

}

return

<<package exports>>=
namespace export diagClassTraces

Finishing the Example

Up to this point in discussing our running example, we have ignored the all too apparent fact that we don’t have any washing
machine hardware. No valves, no pumps, no tubs, nothing. Worse yet, we have no way to start the washing cycle. No buttons
knobs or user interface of any kind. And yet we intend to run the example. Clearly, we have some loose ends to tie up.

Our example model describes a single XUML domain. Real applications are typically build from multiple domains, each domain
confining itself to a single coherent subject matter. This is very much related to the concept of separation of concerns. So in our
case, we have solved the problem of timing and sequencing activities to wash clothes but have assumed that some other domain
will handle the the interaction with the sensors and valves and motors as well as with the our intrepid user who’s just trying to
wash some clothes.

To resolve this, we must provide two things:

1. A set of operations that other domains may invoke when washing machine control is needed. We call these operations
domain operations. These operations form a set of services provided by our domain.

http://en.wikipedia.org/wiki/Separation_of_concerns

stsatcl - An Single Threaded Software Architecture for Tcl 105/130

2. A set of procedure interfaces that our domain invokes when it needs service from another domain to which it has allocated
some responsibility. We call these operations external operations.

For our example, we are assuming there exists some user interface that a user may interact with to get his clothes washed. We
intend to provide only two domain operations:

1. Select a wash cycle.

2. Start a washing machine.

This will be a distinctly unfriendly washer as once it is started there will be no way to stop it before it completes the entire cycle.

For external operations, our domain assumes that valves can be opened and closed, motors can be started and stopped, and
sensors can be enabled and disabled. Additionally, we assume that when the sensor detects the clothes tub as full or empty, it can
manage to generate a signal into our domain to indicate the sensor state. We will see how that happens below.

Domain Operations

In this section we show the code for our two domain operations. We assume that there is some entity in our overall system that
will invoke these operations. To make our example run, we will contrive to make that happen even though we do not intend to
supply a user interface, per se.

Start Washer

To start a washing machine we must supply the identifier of the washer so we can know which one is to be started. Although our
instance population only included a single WashingMachine instance, as we stated before, the models will run with an arbitrary
number of washing machine instances.

The implementation of the operation first searches all the instances of WashingMachine to find the correct one to start. It is
possible to request an unknown washer to start. After finding the correct instance, the Start event will kick things off.

<<domain operations>>=
proc ::wmctrl::startWasher {washer} ({
set wm [WashingMachine selectOneWhere selected {
[$selected readAttributes MachineID] eq $washer
]
if {$wm eq {}} {
error "unknown washer, \"S$Swasher\""
}

Swm signal Start

return

Select Cycle

On the class diagram, relationship R1 determines which Washing Cycle will be used to control the operations. Selecting a wash
cycle mean we must reform the R1 relationship, i.e. unlink the existing cycle and link in a different one. The implementation of
the selectCycle domain operation does just that.

<<domain operations>>=
proc ::wmctrl::selectCycle {washer cycle} {
set wm [WashingMachine selectOneWhere selected {
[$selected readAttributes MachineID] eq S$washer
}]
if {Swm eqg {}} {
error "unknown washer, \"S$washer\""

stsatcl - An Single Threaded Software Architecture for Tcl 106 /130

set wc [WashingCycle selectOneWhere selected {
[Sselected readAttributes CycleType] eqg Scycle
}]
if {$wc eq {}} {
error "unknown cycle, \"S$cycle\""

}
$wm unlink R4 [$wm —> R4] ; # ©
Swm link R4 S$Swc

return

o You must provide the instance currently participating in the link in order to unlink it. It’s a basic sanity check.

External Operations

For external operations, we don’t code the operation itself, it is after all external. But we must define its interface and invoke the
operation at the appropriate time in our own processing.

For our example, there are six external operations that are assumed, two each for the motor, valve and water level sensor. Each
of these operations passes an identifying value to the operation. This allows the external operations to determine exactly what is
is to operate upon. We fill in the external operation invocations below.

<<MTR start operation>>=
my variable MotorID
::wmctrl: :MOTOR: :start $MotorID

<<MTR stop operation>>=
my variable MotorID
::wmctrl: :MOTOR: :stop $MotorID

<<WV open operation>>=
my variable ValveID
::wmctrl::VALVE: :open $ValvelD

<<WV close operation>>=
my variable ValveID
::wmctrl::VALVE: :close $ValvelID

<<WLS enable operation>>=
set machine [my -> R5 R1] ; # ©
::wmctrl: :SENSOR: :enable [$Smachine readAttributes MachineID]

<<WLS disable operation>>=
set machine [my —-> R5 R1]
::wmctrl: :SENSOR: :disable [$Smachine readAttributes MachineID]

] Sensors are identified in the same way as washing machines. So, to get a value for that identifier, we navigate the linkage
back to where it is stored. This is valid since the class diagram constrains each Washing Machine to have exactly on
Clothes Tub and each Clothes Tub to have exactly one Water Level Sensor.

At this point the example domain is fully coded. We still have a bit more work to actually get the domain to run and we will
finally do that below.

stsatcl - An Single Threaded Software Architecture for Tcl 107 /130

Introspection

It is very common in the Tcl world to provide the means to query the internals of things (e.g. the info command). Access to
this kind of data can provide powerful opportunities for meta-programming in addition to aiding testing and debugging.

<<stsaclass constructor>>=
::00::0bjdefine [self] {
<<class introspection methods>>

Info Method

The info method provides a simple interface properties of the class as defined through the configuration script given used to
construct the class.

xumlclass info topic

The method returns data associated with the fopic argument which may be one of the following:

attributes
Returns a list of the attribute names.

links
Returns a list of the relationship links.

states
Returns a list of state names.

events
Returns a list of events.

transitions
Returns a list of transitions. Each transition is also a list of three elements giving the source state, event and target state of
the transition. Note that the entire <states> by <events> transition matrix is returned, i.e. the length of the returned list is
the product of the number of states and the number of events. The order of the returned list is arbitrary.

intialstate
Returns the initial state.

defaulttrans
Returns the default transition, either “IG” or “CH”.

terminals
Returns a list of terminal states.

polyevents
Returns a list of polymorphic events.

<<class introspection methods>>=
method info {topic} {
switch -exact —-- Stopic {
attributes {
my variable attrInfo
return [dict keys S$SattrInfo]
}
links {
my variable linkInfo
return [dict keys $linkInfo]
}

states {

stsatcl - An Single Threaded Software Architecture for Tcl 108 /130

my variable states
return $states
}
events {
my variable events
return $events
}
transitions {
my variable transitions
set result [list]
dict for {src trans} S$transitions {
dict for {evt dst} S$trans {
lappend result [list $src S$Sevt $dst]

}
return S$result

}

initialstate {
my variable initialstate
return $initialstate

}

defaulttrans {
my variable defaulttrans
return $defaulttrans

}

terminals {
my variable terminals
return S$terminals

}

polyevents {
my variable polyEvents
return $polyEvents

}

default {
tailcall ::stsatcl::DeclError UNKNOWN_INFO S$topic

<<error code formats>>=
UNKNOWN__INFO {unknown information topic, "%s"}

Info Method Tests

<<exported tests>>=

test info-1.0 {
introspection on a class

} —-setup {

::stsatcl STSAClass create inl {
attribute {Count 0} {Max 2}
reference R23 -> foo
statemodel {

state sl {} {
puts "in s1"
}

transition sl - el -> s2

state s2 {} {
puts "in s2"

stsatcl - An Single Threaded Software Architecture for Tcl 109/130

transition s2 - e2 —-> sl

}
} —cleanup {
inl destroy
} —body {
set pass 1

set attrs [inl info attributes]

set pass [expr {$pass && "Count" in S$attrs && "Max" in Sattrs}]
set links [inl info links]

set pass [expr {Spass && "R23" in $links}]

set states [inl info states]

set pass [expr {$pass && "sl" in $states && "s2" in $states}]
set events [inl info events]

set pass [expr {$pass && "el" in Sevents && "e2" in Sevents}]
set trans [inl info transitions]

set pass [expr {$pass && [llength $trans] == 4}]

set 1state [inl info initialstate]

set pass [expr {S$pass && S$istate eq "sl"}]

set deftrans [inl info defaulttrans]

set pass [expr {$pass && S$deftrans eq "CH"}]

set terms [inl info terminals]

set pass [expr {$pass && [llength $terms] == 0}]
set poly [inl info polyevents]
set pass [expr {S$pass && [llength S$poly] == 0}]

set pass
} —result {1}

Dot Method

The dot program is magical software that can layout and render directed graphs from a simple textual specification of the graph’s
nodes and arcs. It is often useful to view graphically the implementation aspects of a state model. The dot method produces a
string that describes the state model in the syntax compatible with the dot program.

<<class introspection methods>>=

method dot {} {
set result {}
append result "digraph [namespace tail [self]] \{" \n
append result " node\ [shape=\"box\"]" \n

my variable states
foreach state S$states {
if {$state eq "@"} { # ©
append result " A AR NN
"shape=\"point\""\
", label=\"\""\
"\]\n" ; # ©
} else {
lassign [info class definition [self] ${state}_ STATE_]\
arguments body ; # ©
set code "S$state \{$Sarguments\} \{"
append code\
[textutil::adjust::indent [textutil::adjust::undent S$body]\
{ 11+ O
append code "\n\}"
set labelCode {}
set escapemap [list \\ \\\\ \" \\\"] ; # ©
foreach line [split S$code \n] {

http://www.graphviz.org/

stsatcl - An Single Threaded Software Architecture for Tcl 110/130

© 0 0 ©

append labelCode\
[string map Sescapemap $line]\
"\\l"
}
set stProps "label=\"$labelCode\""

my variable initialstate
if {$state eg S$initialstate} {
append stProps ",style=\"bold\""
}
append result " \"$state\"\ [SstProps]" \n

my variable transitions
dict for {currstate trans} Stransitions {
dict for {event dststate} S$trans {

if {!($dststate eq "IG" || Sdststate eg "CH")} {
append result " \"Scurrstate\" —-> \"Sdststate\"\
\[label=\"$Sevent\"]" \n

append result "\}"

return Sresult

The initial pseudo state has no activity associated with it.
Careful escaping is necessary since “dot” uses many characters in its syntax that have special meaning in Tcl.
we obtain the details of the state activity to insert the action as the “label” for the node.

This just makes the indentation consistent by removing all the indentation and then re-indenting the code with a fixed
spacing.

We need a round of escape character substitution to insure “dot” does not interpret Tcl syntax incorrectly.

To perform some cleanup on the state activities, we use the textutil: :adjust package from tcllib.

<<required packages>>=
package require textutil::adjust

Dot File Method

The dot £i1le method provides a convenient interface to write the dot description of the state model to a given filename.

xumlclass dot £1le filename

filename

The name of the file to which the dot description of the state model is written.

<<class introspection methods>>=
method dotfile {filename} ({

set chan [open $filename w]
try {
chan puts S$chan [my dot]

stsatcl - An Single Threaded Software Architecture for Tcl

111/130

} finally {
chan close S$chan

}

return

Draw Method

The draw method provides a convenient interface to render the state model graph using the dot program. It is necessary that

dot be installed and be found along the execution path.

xumlclass draw options

options

A setof dot (1) command line options that are given to dot when it is run. The string “%F” is substituted with the base

name of the class, if present. Default value for options is “-Gcenter=1 -Gratio=auto -Gsize=7.5,10 -Tps -0%F.ps”.

<<class introspection methods>>=
method draw {{dotopts {-Gcenter=1 -Gratio=auto -Gsize=7.5,10 -Tps -o%F.ps}}} {
set dotexec [auto_execok dot]
if {S$dotexec eqg {}} {
tailcall ::stsatcl::DeclError NODOT

}

set dotopts [string map [list %F [namespace tail [self]]] S$dotopts] ; #©
set chan [open "| S$Sdotexec S$dotopts" w]
try {
chan puts S$chan [my dot]
} finally {

chan close $chan

}

return

] Substitute the file name token. The default file name is just the name of the class minus any namespace qualifiers.

<<error code formats>>=
NODOT {cannot find \"dot\" executable}

Dot Method Tests

<<exported tests>>=
test dot-1.0 {
draw state model with dot
} —-setup {
::stsatcl STSAClass create dotl {
statemodel {
state sl {} {
puts "in s1"
}

transition sl - e2 —-> s2

state s2 {} {
puts "in s2"

transition @ - el —-> sl

stsatcl - An Single Threaded Software Architecture for Tcl 112/130

We use "dotfile" to make an expected result file
which is closely examined manually to serve as
the comparison file.
dotl dotfile dot_1_results
} —cleanup {
dotl destroy
} —body {
set diagram [dotl dot]
string equal $diagram [viewFile dot_1_results]
} —result {1}

<<exported tests>>=
test draw-1.0 {

draw and render state model with dot
} —setup {

::stsatcl STSAClass create dotl {

statemodel {
state sl {} {
puts "in s1"

}

transition sl - e2 —-> s2

state s2 {} {
puts "in s2"

transition @ - el -> sl

}
} —cleanup {
dotl destroy
} —body {
dotl draw
} —result {}

The figure below shows our example Washing Machine state model as rendered by dot. These types of drawing are not partic-
ularly useful during the design of a state model but does represent the “as coded” state model and can be used to insure that the
transfer of the analysis state model to code was accurate. Here we can compare the morphology of the state model graph to its
design as well as example the translation of the state activity into its implementation.

stsatcl - An Single Threaded Software Architecture for Tcl 113/130

Stopped {} {
set ct [my -> R1]
$ct signal Stop

}

Start

FillingToWash {} {

set we [my -> R4]

set ct [my -> R1]

$ct signal Fill [$wc readAttributes WashWaterTemp]
}

ull

Washing {} {
set ct [my -> R1]
$ct signal Agitate
set we [my -> R4]
my delayedSignal [expr {[$wc readAttributes WashDuration] * 1000}] Done ; # <1>

DrainingWash {} {
set ct [my -> R1]
$ct signal Drain

}

mpty Done

FillingToRinse {} {

set wc [my -> R4]

set ct [my -> R1]

$ct signal Fill [$wc readAttributes RinseWaterTemp]
}

Full

Rinsing {} {

set ct [my -> R1]

$ct signal Agitate

set wc [my -> R4]

my delayedSignal [expr {[$wc readAttributes RinseDuration] * 1000}] Done
}

one

DrainingRinse {} {
set ct [my -> R1]
$ct signal Drain

}

Empty

Spinning {} {

set ct [my -> R1]

$ct signal Spin

set we [my -> R4]

my delayedSignal [expr {[$wc readAttributes SpinDuration] * 1000}] Done
}

Figure 7: Dot Drawing of Washing Machine State Model

stsatcl - An Single Threaded Software Architecture for Tcl 114 /130

Utility Methods

A number of unexported utility methods are presented here without much discussion. This is simply common code factored into
methods. Most of these methods provide argument validation for the DSL commands.

Check Link Name

<<utility methods>>=
method CheckLinkName {rname} {
classvariable linkInfo
if {![dict exists $linkInfo S$Srname]} {
tailcall ::stsatcl::DeclError UNKNOWN_LINKAGE S$rname

<<error code formats>>=
UNKNOWN_LINKAGE {unknown linkage, "%s"}

Check Reference Object

<<utility methods>>=
method CheckReferenceObj {rname obj} {
classvariable linkInfo

set objclass [info object class $obj]
switch —-exact —-- [dict get $linkInfo Srname type] {
reference {
set destclass [dict get $linkInfo S$rname dest]
if {!(Sobjclass eq S$destclass ||\
Sdestclass in [info class superclasses $objclass])} {
tailcall ::stsatcl::DeclError NOT_AN_INSTANCE\
Sobj [dict get $1linkInfo S$rname dest]

}
partition {
set subclasses [dict get $1linkInfo $rname subclasses]
foreach subclass $subclasses {
if {$objclass eqg S$subclass ||\
Ssubclass in [info class superclasses S$objclass]} {
return

}
tailcall ::stsatcl::DeclError NOT_A_SUBCLASS\

Sobj [join $subclasses {, }]
}
default {
tailcall ::stsatcl::DeclError UNKNOWN_LINKTYPE\
[dict get $linkInfo $rname typel

<<error code formats>>=
NOT_AN_INSTANCE {instance, "%s", 1is not an instance of class, "%s"}
NOT_A_SUBCLASS {instance, "%s", is not an instance of any subclasses, "%s"}

stsatcl - An Single Threaded Software Architecture for Tcl 115/130

Resolve Object

<<utility methods>>=
method ResolveObj {obj} {

if {[string range $obj 0 1] ne "::"} {
set obj\
[string trimright [uplevel 2 namespace current] :]::$obj

}

return $obj

Resolve Class

<<utility methods>>=
method ResolveClass {class} {
if {[string range $class 0 1] ne "::"} {

set myclass [info object class [self]]

set class [namespace qualifiers $myclass]::S$class

if {[llength [info commands $class]] == 0 ||

!'[info object isa class $class]} {
tailcall ::stsatcl::DeclError CANNOT_RESOLVE_CLASS S$class

}

return $class

<<error code formats>>=
CANNOT_RESOLVE_CLASS {cannot resolve, "%s", to a class}

Validate Event

<<utility methods>>=
method ValidateEvent {event} {
classvariable events
if {$event ni Sevents} {
tailcall ::stsatcl::DeclError UNKNOWN_EVENT S$event

<<error code formats>>=
UNKNOWN_EVENT {unknown event, "%s"}

Event Source

<<utility methods>>=
method EventSource {} {
try {
set src [lindex [uplevel 1 {self caller}] 1] ; # ©
} on error {} {
set src {}

}

return $src

o self caller throws an error if the caller is not a method.

stsatcl - An Single Threaded Software Architecture for Tcl 116/130

Forward Polymorphic Event

<<utility methods>>=
method ForwardPolyEvent {type src event arglist} {
classvariable partitions
foreach partition $partitions { # @
my variable S$partition
set target [set S$partition] ; # ©
if {Starget eqg {}} {
tailcall ::stsatcl::DeclError UNCOND $partition
}
::stsatcl::TracePolymorphic $src $event Starget [self] S$partition
Starget {*}Stype S$event {+}$arglist ; # (3

] Polymorphic events are propagated down all the partition linkages that are specified for the class.

2] Polymorphic event dispatch implies a run time traversal of the partition linkage from superclass to subclass. However
unlike the case of a conventional partition traversal, we don’t care about the type of the subclass instance. All subclasses
must be prepared to handle the polymorphic event.

o Despite all the variable substitution, this command signals the event to the subclass instance. Here #ype controls whether
the signal is delayed and, if delayed, the delay time. Admittedly, the construct is rather strained but was done this way so
that there is only a single invocation of TracePolymorphic in the package and much of the code for a method specific
to delayed event forwarding would be duplication.

Running the Example

We are finally ready to run our example. To do so we have to figure out two last things:

1. How to get the startWasher domain operation invoked.

2. What to do about the six external operations.

Put another way, we need to drive the domain operations and szub the external operations in order to resolve fully all the domain
dependencies. One convenient aspect of domain based systems is that the domain will run in isolation as long as you can drive
the operations and stub the dependencies. The domain code itself is really none wiser.

Stubbing the External Operations

For the MOTOR and VALVE operations we will content ourselves to simply log the fact that they were invoked. The control that
is implied by the operation is “open loop” and no feed back is assumed. So when we say “Open a Valve” we will assume that the
value does what it is told. This leads us to the following implementation.

<<external operation stubs>>=
namespace eval ::wmctrl::MOTOR ({
::logger::initNamespace [namespace current] info
proc start {motor} {
log::info "starting motor, \"Smotor\""
}
proc stop {motor} {
log::info "stopping motor, \"S$Smotor\""

}

namespace eval ::wmctrl::VALVE ({

stsatcl - An Single Threaded Software Architecture for Tcl

117 /130

::logger::initNamespace [namespace current] info
proc open {valve} {
log::info "opening valve, \"Svalve\""
}
proc close {valve} {
log::info "closing valve, \"Svalve\""

The SENSOR operations present a bit more difficulty to stub. In this case, there is feedback from the interaction. We must signal
back the state of water level as being full or empty. So in some sense we must simulate the action of the sensor. If you carefully
examine the example, you find that we can assume the tub starts empty and each time the sensor is enabled we are trying to detect
the opposite state of the tub. So enabling the sensor on an empty tub means we are looking for when the tub goes full and vice
versa. So it sufficient to simulate the sensor to simply toggle the tub state and then announce the new state at some time when
we think the new state will have been reached. We will delay the announcement of the new state for some time to simulate the
water filling or draining. To make the example run in reasonable times, we assume the tub will fill or empty in 3 seconds. That’s

quick!

<<external operation stubs>>=

namespace eval ::wmctrl::SENSOR {
::logger::initNamespace [namespace current] info
variable sensorState TubEmpty
variable sensorEvent

proc enable {machine} ({
log::info "enable sensor on machine, \"$machine\""

variable sensorState
variable sensorEvent

set newState\

[expr {S$sensorState eq "TubEmpty" ? "TubFull" : "TubEmpty"}]

set sensorEvent [after 3000 [namespace code\
[list trigger $machine $newState]]] ; # (2]

proc disable {machine} {
log::info "disable sensor on machine, \"$machine\""
variable sensorEvent
after cancel $sensorEvent

] Toggle the tub state.

2] Use the after ms form of the command to delay announcing the new state.

+ O

Delivering the indication that the Water Level Sensor has detected a change in the water level really means we want to send
the appropriate ClothesTub instance either the TubFull or TubEmpty event. Conveniently, we have been keeping track of the
sensor state using string named the same as the event we intend to deliver. So all we have to do is search for the correct Washing

Machine that matches the sensor, navigate R1 to the ClothesTub and signal an event.

<<external operation stubs>>=
proc trigger {machine value} ({
variable sensorState
set sensorState $value

set wm [::wmctrl::WashingMachine selectOneWhere selected ({
[$Sselected readAttributes MachineID] eq $machine

}]

set ct [Swm —-> R1]

stsatcl - An Single Threaded Software Architecture for Tcl 118/130

Sct signal $sensorState

Before we can start the example running, we have to figure out how we are going to stop it. Recall that to dispatch state machine
events we must enter the Tcl event loop. We will use the vwait command to do that. But we need some way to break out of the
event loop so that we can look at the results of the run. To do that we will add setting a global variable to the state activity of the
Stopping Spin state in the ClothesTub class. This state is entered when the cycle is done and it is our intent to regain control of
the execution flow after each washing cycle. Note that we are adding this synchronization solely to be able to run one washing
cycle in our example. An actual application would most likely run forever.

<<CT stopping spin activity>>=
set ::done 1

An finally, yes truly finally, we are in a position to drive the domain operations to select a cycle and run the washer through the
cycle. We will turn on tracing so we can see what happened.

<<running the example>>=
::stsatcl traceControl on

c:wmctrl::selectCycle WasherOne PermPress
puts "x*x*x*x Start Run"
::wmctrl::startWasher WasherOne

vwait ::done ; # ©

puts "xxx%x Finish Run"
::stsatcl traceControl off

puts "xx%x*x Trace Begin"
puts [::stsatcl::formatTraces [::stsatcl::decodeAllTraces]]

puts "xx%x%x Trace End"

::wmctrl::WashingMachine draw\
{-Gcenter=1 -Gratio=auto -Gsize=7.5,10 -Tsvg -oimages/WashingMachine.svg} ; # ©

::stsatcl diagAllTraces images/wmctrl-seqdiag.diag span_height 7 ; # ©

o Enter the Tcl event loop. State machine events will then be dispatched and the washer will operate.
(2] While we are at it, we need an example to show how dot will draw a state model.
(3] Draw a sequence diagram of the example run. This will allow us to compare the textual log with a graphic containing the

same information.

Example Run Results

After running the example we obtain the following output.
Output From Running the Example

**x*x%x Start Run

[Thu Aug 21 20:52:43 PDT 2014] [wmctrl::SENSOR] [info] ’'enable sensor on machine, —
"WasherOne"’

[Thu Aug 21 20:52:43 PDT 2014] [wmctrl::VALVE] [info] ’'opening valve, "Hot"’

[Thu Aug 21 20:52:43 PDT 2014] [wmctrl::VALVE] [info] ’'opening valve, "Cold"’

[Thu Aug 21 20:52:46 PDT 2014] [wmctrl::SENSOR] [info] ’'disable sensor on machine, <
"WasherOne"’

[Thu Aug 21 20:52:46 PDT 2014] [wmctrl::VALVE] [info] ’'closing valve, "Hot"’

stsatcl - An Single Threaded Software Architecture for Tcl

119/130

[Thu Aug 21 20:52:46 PDT 2014] [wmctrl::VALVE] [info] ’'closing valve, "Cold"’
[Thu Aug 21 20:52:46 PDT 2014] [wmctrl::MOTOR] [info] ’'starting motor, "Agitator"’
[Thu Aug 21 20:53:01 PDT 2014] [wmctrl::MOTOR] [info] ’stopping motor, "Agitator"’
[Thu Aug 21 20:53:01 PDT 2014] [wmctrl::VALVE] [info] ’opening valve, "Drain"’
[Thu Aug 21 20:53:01 PDT 2014] [wmctrl::MOTOR] [info] ’starting motor, "Pump"’
[Thu Aug 21 20:53:01 PDT 2014] [wmctrl::SENSOR] [info] ’'enable sensor on machine, <~
"WasherOne"’
[Thu Aug 21 20:53:04 PDT 2014] [wmctrl::MOTOR] [info] ’stopping motor, "Pump"’
[Thu Aug 21 20:53:04 PDT 2014] ([wmctrl::VALVE] [info] ’'closing valve, "Drain"’
[Thu Aug 21 20:53:04 PDT 2014] [wmctrl::SENSOR] [info] ’disable sensor on machine, <>
"WasherOne"’
[Thu Aug 21 20:53:04 PDT 2014] [wmctrl::SENSOR] [info] ’'enable sensor on machine, —
"WasherOne"’
[Thu Aug 21 20:53:04 PDT 2014] [wmctrl::VALVE] [info] ’opening valve, "Cold"’
[Thu Aug 21 20:53:07 PDT 2014] [wmctrl::SENSOR] [info] ’disable sensor on machine, <>
"WasherOne"’
[Thu Aug 21 20:53:07 PDT 2014] [wmctrl::VALVE] [info] ’'closing valve, "Hot"’
[Thu Aug 21 20:53:07 PDT 2014] [wmctrl::VALVE] [info] ’‘closing valve, "Cold"’
[Thu Aug 21 20:53:07 PDT 2014] [wmctrl::MOTOR] [info] ’starting motor, "Agitator"’
[Thu Aug 21 20:53:17 PDT 2014] [wmctrl::MOTOR] [info] ’stopping motor, "Agitator"’
[Thu Aug 21 20:53:17 PDT 2014] [wmctrl::VALVE] [info] ’opening valve, "Drain"’
[Thu Aug 21 20:53:17 PDT 2014] [wmctrl::MOTOR] [info] ’starting motor, "Pump"’
[Thu Aug 21 20:53:17 PDT 2014] [wmctrl::SENSOR] [info] ’enable sensor on machine, —
"WasherOne"’
[Thu Aug 21 20:53:20 PDT 2014] [wmctrl::MOTOR] [info] ’stopping motor, "Pump"’
[Thu Aug 21 20:53:20 PDT 2014] [wmctrl::VALVE] [info] ’closing valve, "Drain"’
[Thu Aug 21 20:53:20 PDT 2014] [wmctrl::SENSOR] [info] ’disable sensor on machine, <>
"WasherOne"’
[Thu Aug 21 20:53:20 PDT 2014] [wmctrl::VALVE] [info] ’'opening valve, "Drain"’
[Thu Aug 21 20:53:20 PDT 2014] [wmctrl::MOTOR] [info] ’'starting motor, "Pump"’
[Thu Aug 21 20:53:20 PDT 2014] [wmctrl::MOTOR] [info] ’starting motor, "Spin"’
[Thu Aug 21 20:53:35 PDT 2014] [wmctrl::MOTOR] [info] ’stopping motor, "Spin"’
[Thu Aug 21 20:53:35 PDT 2014] [wmctrl::MOTOR] [info] ’stopping motor, "Pump"’
[Thu Aug 21 20:53:35 PDT 2014] [wmctrl::VALVE] [info] ’‘closing valve, "Drain"’
*%%*x Finish Run
**xxx Trace Begin
20:52:43.678.227: 0.000.000: Transition: {} - Start {} -> ::wmctrl::washer ==> <
Stopped -> FillingToWash
20:52:43.679.383: 0.001.156: Transition: ::wmctrl::washer - Fill {Warm} —-> :: &
wmnctrl::tub ==> Empty -> Filling
20:52:46.719.669: 3.040.286: Transition: {} — TubFull {} —> ::wmctrl::tub ==> <+
Filling -> Full
20:52:46.720.993: 0.001.324: Transition: ::wmctrl::tub - Full {} -> ::wmctrl:: <«
washer ==> FillingToWash -> Washing
20:52:46.721.866: 0.000.873: Transition: ::wmctrl::washer - Agitate {} -> ::

wmctrl::tub ==> Full -> Agitating

20:53:01.722.060: 15.000.194: Transition: ::wmctrl::
::washer ==> Washing —-> DrainingWash

20:53:01.722.494: 0.000.434: Transition: ::wmctrl::
::tub ==> Agitating —-> Emptying

20:53:04.724.324: 3.001.830: Transition: {}

Emptying —> Empty

20:53:04.725.658: 0.001.334: Transition:
washer ==> DrainingWash —-> FillingToRinse
20:53:04.726.140: 0.000.482: Transition:

wmnctrl::tub ==> Empty -> Filling

20:53:07.727.046: 3.000.906: Transition: {}

washer - Done {} -> ::wmctrl <«

washer — Drain {} -> ::wmctrl <

— TubEmpty {} -> ::wmctrl::tub ==> <+

crwmetrl::tub - Empty {} —-> ::wmctrl:: ¢

c:wmctrl::washer — Fill {Cold} -> :: <«

— TubFull {} -> ::wmctrl::tub ==> <+

stsatcl - An Single Threaded Software Architecture for Tcl 120/130

Filling -> Full

20:53:07.728.202: 0.001.156: Transition: ::wmctrl::tub - Full {} -> ::wmctrl:: ¢
washer ==> FillingToRinse -> Rinsing

20:53:07.728.815: 0.000.613: Transition: ::wmctrl::washer - Agitate {} -> :: &
wmctrl::tub ==> Full -> Agitating

20:53:17.728.887: 10.000.072: Transition: ::wmctrl::washer - Done {} —-> ::wmctrl <&
::washer ==> Rinsing -> DrainingRinse

20:53:17.729.352: 0.000.465: Transition: ::wmctrl::washer - Drain {} —-> ::wmctrl &
::tub ==> Agitating -> Emptying

20:53:20.731.145: 3.001.793: Transition: {} - TubEmpty {} -> ::wmctrl::tub ==> <>
Emptying —> Empty

20:53:20.732.428: 0.001.283: Transition: ::wmctrl::tub - Empty {} —-> ::wmctrl::
washer ==> DrainingRinse -> Spinning

20:53:20.733.028: 0.000.600: Transition: ::wmctrl::washer - Spin {} -> ::wmctrl
::tub ==> Empty -> Spinning

20:53:35.733.102: 15.000.074: Transition: ::wmctrl::washer - Done {} -> ::wmctrl <&
::washer ==> Spinning -> Stopped

20:53:35.733.583: 0.000.481: Transition: ::wmctrl::washer - Stop {} —-> ::wmctrl <«

::tub ==> Spinning —-> StoppingSpin
%% Trace End

The first section is the set of log message that show the interaction with the motors, values and sensors. This amounts to a trace
of the external side effects that the domain asserts on the washing machine hardware. The second portion show the chronological
trace of the state machine event dispatch. The first column of the trace is the time of day and the second column is the time
difference between the last trace entry (in the form of s.ms.us). The remainder of the trace show the details of the event dispatch.
The first portion of the Transition trace shows the event being dispatched from a source instance to a target instance. The state
machine transition, from current state to new state, is then shown after the “==>"" symbol.

The figure below shows the trace information in sequence diagram form.

stsatcl - An Single Threaded Software Architecture for Tcl

121/130

Figure 8: Example Sequence Diagram

EXTERNAL washer tub
_Start	
I I Fill I	
_TubFull	I
I I Full	
[I [
	_Agitate I
'	Done '
	Drain
_JubEmpty	I
: : Empty :	
I	_Fill I
: TubFull : :	
I I Full	
: : Agitate :	
	Done
	.
	Drain
: TubEmpty : :	
	Empty
	;
	Spin
	Done
	StOp

The track labeled EXTERNAL shows events that originate outside of the domain. The example begins with a Start event being
sent to the washer instance. The other external events arise from the Water Level Sensor detecting the status of the Clothes Tub.
The clothes are cleaned by a sequence of events exchanged between the washer and tub to coordinate the steps of the washing

stsatcl - An Single Threaded Software Architecture for Tcl 122/130

cycle to clean clothes. Although the sequence diagram does not tell the whole story of the program execution (e.g. the side
effects caused the state activities is often very important), it does go a long way to showing the chronological unfolding of the
example’s execution.

Code Organization

In this section we show the organization of the files that can be tangled from the literate source. Each root chunk is described in
a section below.

Source Code

<<stsatcl.tcl>>=
DO NOT EDIT THIS FILE!
THIS FILE IS AUTOMATICALLY GENERATED FROM A LITERATE PROGRAM SOURCE FILE.

This software is copyrighted 2014 by G. Andrew Mangogna.
The following terms apply to all files associated with the software unless
explicitly disclaimed in individual files.

The authors hereby grant permission to use, copy, modify, distribute,

and license this software and its documentation for any purpose, provided
that existing copyright notices are retained in all copies and that this
notice is included verbatim in any distributions. No written agreement,
license, or royalty fee is required for any of the authorized uses.
Modifications to this software may be copyrighted by their authors and
need not follow the licensing terms described here, provided that the

new terms are clearly indicated on the first page of each file where

they apply.

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES
THEREOF, EVEN IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.
#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

#

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, AND NON—-INFRINGEMENT. THIS SOFTWARE
IS PROVIDED ON AN "AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE
NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS,

OR MODIFICATIONS.

GOVERNMENT USE: If you are acquiring this software on behalf of the
U.S. government, the Government shall have only "Restricted Rights"
in the software and related documentation as defined in the Federal
Acquisition Regulations (FARs) in Clause 52.227.19 (c) (2). If you
are acquiring the software on behalf of the Department of Defense,
the software shall be classified as "Commercial Computer Software"
and the Government shall have only "Restricted Rights" as defined in
Clause 252.227-7013 (c) (1) of DFARs. Notwithstanding the foregoing,
the authors grant the U.S. Government and others acting in its behalf
permission to use and distribute the software in accordance with the
terms specified in this license.

package require Tcl 8.6

<<required packages>>

stsatcl - An Single Threaded Software Architecture for Tcl

123/130

<<helper commands>>

namespace eval ::stsatcl {

<<package exports>>
namespace ensemble create

variable version 1.0.3

<<stsatcl data>>

<<stsatcl commands>>

package provide stsatcl $::stsatcl::version

Unit Tests

<<stsatcl.test>>=

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

DO NOT EDIT THIS FILE!
THIS FILE IS AUTOMATICALLY GENERATED FROM A LITERATE PROGRAM SOURCE FILE.

This software is copyrighted 2014 by G. Andrew Mangogna.

The following terms apply to all files associated with the software unless

explicitly disclaimed in individual files.

The authors hereby grant permission to use, copy, modify, distribute,

and license this software and its documentation for any purpose, provided
that existing copyright notices are retained in all copies and that this
notice is included verbatim in any distributions. No written agreement,
license, or royalty fee is required for any of the authorized uses.
Modifications to this software may be copyrighted by their authors and
need not follow the licensing terms described here, provided that the

new terms are clearly indicated on the first page of each file where

they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING
OUT OF THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES
THEREOF, EVEN IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, AND NON—-INFRINGEMENT. THIS SOFTWARE
IS PROVIDED ON AN "AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE
NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS,

OR MODIFICATIONS.

GOVERNMENT USE: If you are acquiring this software on behalf of the
U.S. government, the Government shall have only "Restricted Rights"
in the software and related documentation as defined in the Federal
Acquisition Regulations (FARs) in Clause 52.227.19 (c) (2). 1If you
are acquiring the software on behalf of the Department of Defense,
the software shall be classified as "Commercial Computer Software"
and the Government shall have only "Restricted Rights" as defined in
Clause 252.227-7013 (c) (1) of DFARs. Notwithstanding the foregoing,
the authors grant the U.S. Government and others acting in its behalf
permission to use and distribute the software in accordance with the
terms specified in this license.

stsatcl - An Single Threaded Software Architecture for Tcl

124 /130

package require Tcl 8.6
package require cmdline
package require logger

source ../src/stsatcl.tcl
chan puts "testing stsatcl version: [package require stsatcl]"

#

Add custom arguments here.

set optlist {

}

{level.arg warn {Log debug level}}

array set options [::cmdline::getKnownOptions argv S$Soptlist]

package require tcltest
eval tcltest::configure $argv

namespace eval ::stsatcl::test {

::logger::initNamespace [namespace current] $::options(level)
namespace import ::tcltest::x

<<test utility procs>>

<<meta constructor tests>>

<<constructor tests>>

<<exported tests>>

cleanupTests

Package Index

We also provide a root chunk to extract a package index file.

<<pkgIndex.tcl>>=
package ifneeded stsatcl 1.0.3 [list source [file join $dir stsatcl.tcl]]

Example Code

<<wmctrl.tcl>>=

#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#
#

DO NOT EDIT THIS FILE!
THIS FILE IS AUTOMATICALLY GENERATED FROM A LITERATE PROGRAM SOURCE FILE.

This software is copyrighted 2014 by G. Andrew Mangogna.

The following terms apply to all files associated with the software unless

explicitly disclaimed in individual files.

The authors hereby grant permission to use, copy, modify, distribute,

and license this software and its documentation for any purpose, provided
that existing copyright notices are retained in all copies and that this
notice is included verbatim in any distributions. No written agreement,
license, or royalty fee is required for any of the authorized uses.
Modifications to this software may be copyrighted by their authors and
need not follow the licensing terms described here, provided that the

new terms are clearly indicated on the first page of each file where

they apply.

IN NO EVENT SHALL THE AUTHORS OR DISTRIBUTORS BE LIABLE TO ANY PARTY FOR
DIRECT, INDIRECT, SPECIAL, INCIDENTAL, OR CONSEQUENTIAL DAMAGES ARISING

stsatcl - An Single Threaded Software Architecture for Tcl 125/130

OUT OF THE USE OF THIS SOFTWARE, ITS DOCUMENTATION, OR ANY DERIVATIVES
THEREOF, EVEN IF THE AUTHORS HAVE BEEN ADVISED OF THE POSSIBILITY OF
SUCH DAMAGE.

THE AUTHORS AND DISTRIBUTORS SPECIFICALLY DISCLAIM ANY WARRANTIES,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY,
FITNESS FOR A PARTICULAR PURPOSE, AND NON—-INFRINGEMENT. THIS SOFTWARE
IS PROVIDED ON AN "AS IS" BASIS, AND THE AUTHORS AND DISTRIBUTORS HAVE
NO OBLIGATION TO PROVIDE MAINTENANCE, SUPPORT, UPDATES, ENHANCEMENTS,

OR MODIFICATIONS.

GOVERNMENT USE: If you are acquiring this software on behalf of the
U.S. government, the Government shall have only "Restricted Rights"
in the software and related documentation as defined in the Federal
Acquisition Regulations (FARs) in Clause 52.227.19 (c) (2). If you
are acquiring the software on behalf of the Department of Defense,
the software shall be classified as "Commercial Computer Software"
and the Government shall have only "Restricted Rights" as defined in
Clause 252.227-7013 (c) (1) of DFARs. Notwithstanding the foregoing,
the authors grant the U.S. Government and others acting in its behalf
permission to use and distribute the software in accordance with the
terms specified in this license.

S o S e e S S e S e o o o S e o o S e e e e

package require Tcl 8.6
package require logger

source stsatcl.tcl

namespace eval ::wmctrl ({
::logger::initNamespace [namespace current] info
namespace import ::stsatcl::STSAClass

<<WM class>>

<<WC class>>

<<CT class>>

<<WV class>>

<<MTR class>>

<<WLS class>>

<<initial instance population>>
}
<<domain operations>>
<<external operation stubs>>
<<running the example>>

Bibliography

Books

[1] [mb-xuml] Stephen J. Mellor and Marc J. Balcer, Executable UML: a foundation for model-driven architecture,
Addison-Wesley (2002), ISBN 0-201-74804-5.

[2] [rs-xuml] Chris Raistrick, Paul Francis, John Wright, Colin Carter and Ian Wilkie, Model Driven Architecture
with Executable UML, Cambridge University Press (2004), ISBN 0-521-53771-1.

[3] [Is-build], Leon Starr, How to Build Shlaer-Mellor Object Models, Yourdon Press (1996), ISBN 0-13-207663-2.

[4] [sm-data] Sally Shlaer and Stephen J. Mellor, Object Oriented Systems Analysis: Modeling the World in Data,
Prentice-Hall (1988), ISBN 0-13-629023-X.

stsatcl - An Single Threaded Software Architecture for Tcl 126 /130

[5] [sm-states] Sally Shlaer and Stephen J. Mellor, Object Oriented Systems Analysis: Modeling the World in
States, Prentice-Hall (1992), ISBN 0-13-629940-7.

stsatcl - An Single Threaded Software Architecture for Tcl

127 /130

Index

—, 50

A
Attribute, 7
attribute, 7

B

BAD_DEFAULT_TRANS, 23
BAD_INIT_STATE, 23
BAD_POLY_EVENTS, 31
BAD_TERM_STATE, 24
BAD_TRACEOP, 93
BAD_TRACETYPE, 102
BADATTRIBUTENAME, 7
BADREFSPEC, 10

C
cancel, 72
CancelDelayedSignal, 81
CANNOT_RESOLVE_CLASS, 115
CH_TRANSITION, 76
CheckLinkName, 114
CheckReferenceObj, 114
class

STSA Class, 5
ClassOp, 17
classop, 16
COMMON_EVENTS, 31
Constructor, 17
constructor, 6, 17, 35
createin, 39
currentstate, 75

D
decodeAllTraces, 98
decodeClassTraces, 99
decodeTargetTraces, 101
DefaultTrans, 23
defaultTrans, 22
DelayedDispatch, 80
delayedSignal, 71
Destructor, 18
destructor, 18, 41
diagAllTraces, 104
diagClassTraces, 104
diagtraces, 103
Dispatch, 78
domain operation
selectCycle, 105
startWasher, 105
dot, 109
dotfile, 110
draw, 111

DSL command
attribute, 7
classop, 16
constructor, 17
defaultTrans, 22
destructor, 18
initialState, 23
instop, 15
partition, 11
polymorphic, 15
reference, 9
state, 18
statemodel, 13
terminal, 23
transition, 20
DUPATTRIBUTENAME, 7
DUPLICATE_STATE, 19
DUPLICATE_TRANS, 21
DUPREFERENCE, 10

E

error code
BAD_DEFAULT_TRANS, 23
BAD_INIT_STATE, 23
BAD_POLY_EVENTS, 31
BAD_TERM_STATE, 24
BAD_TRACEOQOP, 93
BAD_TRACETYPE, 102
BADATTRIBUTENAME, 7
BADREFSPEC, 10
CANNOT_RESOLVE_CLASS, 115
CH_TRANSITION, 76
COMMON_EVENTS, 31
DUPATTRIBUTENAME, 7
DUPLICATE_STATE, 19
DUPLICATE_TRANS, 21
DUPREFERENCE, 10
INVALIDTIME, 72
ISOLATED, 29
NO_SAVEFILE, 93
NODOT, 111
NOSUBCLASS, 51
NOT_A_SUBCLASS, 114
NOT_AN_INSTANCE, 114
NOT_LINKED, 48
NOT_PARTITION, 57
NOT_SUBCLASS, 51
OVERLINK, 45
PARTITION, 12
RESERVED_STATE, 19
TRANS_DST, 21
TRANS_SRC, 21
UNCOND, 51

stsatcl - An Single Threaded Software Architecture for Tcl

128 /130

UNKNOWN_ATTRIBUTE, 36
UNKNOWN_DST_STATE, 29
UNKNOWN_EVENT, 115
UNKNOWN_INFO, 108
UNKNOWN_INIT_STATE, 29
UNKNOWN_LINKAGE, 114
UNKNOWN_LINKTYPE, 48
UNKNOWN_SRC_STATE, 29
UNKNOWN_STATE, 39
UNKNOWN_TERM_STATE, 30
EventSource, 115

F

force, 74
FormatTimeAsSec, 103
FormatTimeStamp, 102
FormatTraceRec, 102
formatTraces, 101
ForwardPolyEvent, 116

|

info, 107
InitialState, 23
initialState, 23
InstOp, 16

instop, 15
INVALIDTIME, 72
ISOLATED, 29

L
link, 45

M

maplnstances, 64

mapRelatedInstances, 65

method

STSAClass
Attribute, 7
ClassOp, 17
Constructor, 17
constructor, 6
DefaultTrans, 23
Destructor, 18
InitialState, 23
InstOp, 16
Partition, 12
Polymorphic, 15
Reference, 10
State, 19
Statemodel, 14
Terminal, 24
Transition, 21
XUMLClass

—, 50
cancel, 72
CancelDelayedSignal, 81
CheckLinkName, 114

CheckReferenceObj, 114

constructor, 35

createin, 39

currentstate, 75

DelayedDispatch, 80

delayedSignal, 71

destructor, 41

Dispatch, 78

dot, 109

dotfile, 110

draw, 111

EventSource, 115

force, 74

ForwardPolyEvent, 116

info, 107

link, 45

maplnstances, 64

mapRelatedInstances, 65

migrate, 56

newin, 39

readAttributes, 41

Receive, 75

remaining, 73

ResolveClass, 115

ResolveObj, 115

selectOneRelatedWhere, 64

selectOneWhere, 61

selectRelatedWhere, 62

selectWhere, 60

signal, 67

unlink, 48

updateAttributes, 43

ValidateEvent, 115
migrate, 56

N

newin, 39

NO_SAVEFILE, 93
NODOT, 111
NOSUBCLASS, 51
NOT_A_SUBCLASS, 114
NOT_AN_INSTANCE, 114
NOT_LINKED, 48
NOT_PARTITION, 57
NOT_SUBCLASS, 51

(0]
OVERLINK, 45

P
PARTITION, 12
Partition, 12
partition, 11
Polymorphic, 15
polymorphic, 15
proc

decodeAllTraces, 98

stsatcl - An Single Threaded Software Architecture for Tcl

129/130

decodeClassTraces, 99
decodeTargetTraces, 101
diagAllTraces, 104
diagClassTraces, 104
diagtraces, 103
domain operation
selectCycle, 105
startWasher, 105
FormatTimeAsSec, 103
FormatTimeStamp, 102
FormatTraceRec, 102
formatTraces, 101
TracesToRecords, 97

R

readAttributes, 41
Receive, 75

Reference, 10

reference, 9

remaining, 73
RESERVED_STATE, 19
ResolveClass, 115
ResolveObj, 115

S

selectCycle, 105

selectOneRelatedWhere, 64

selectOneWhere, 61

selectRelatedWhere, 62

selectWhere, 60

signal, 67

startWasher, 105

State, 19

state, 18

Statemodel, 14

statemodel, 13

STSA Class, 5

STSAClass
Attribute, 7
ClassOp, 17
Constructor, 17
constructor, 6
DefaultTrans, 23
Destructor, 18
InitialState, 23
InstOp, 16
Partition, 12
Polymorphic, 15
Reference, 10
State, 19
Statemodel, 14
Terminal, 24
Transition, 21

T
Terminal, 24
terminal, 23

TracesToRecords, 97
TRANS_DST, 21
TRANS_SRC, 21
Transition, 21
transition, 20

U

UNCOND, 51
UNKNOWN_ATTRIBUTE, 36
UNKNOWN_DST_STATE, 29
UNKNOWN_EVENT, 115
UNKNOWN_INFO, 108
UNKNOWN_INIT_STATE, 29
UNKNOWN_LINKAGE, 114
UNKNOWN_LINKTYPE, 48
UNKNOWN_SRC_STATE, 29
UNKNOWN_STATE, 39
UNKNOWN_TERM_STATE, 30
unlink, 48

updateAttributes, 43

A"
ValidateEvent, 115

X

XUMLClass
—, 50
cancel, 72
CancelDelayedSignal, 81
CheckLinkName, 114
CheckReferenceObj, 114
constructor, 35
createin, 39
currentstate, 75
DelayedDispatch, 80
delayedSignal, 71
destructor, 41
Dispatch, 78
dot, 109
dotfile, 110
draw, 111
EventSource, 115
force, 74
ForwardPolyEvent, 116
info, 107
link, 45
maplnstances, 64
mapRelatedInstances, 65
migrate, 56
newin, 39
readAttributes, 41
Receive, 75
remaining, 73
ResolveClass, 115
ResolveObj, 115
selectOneRelatedWhere, 64
selectOneWhere, 61

stsatcl - An Single Threaded Software Architecture for Tcl 130/130

selectRelatedWhere, 62
selectWhere, 60

signal, 67

unlink, 48
updateAttributes, 43
ValidateEvent, 115

	Introduction
	Reading This Document
	Design Concepts
	Document Conventions
	Example Overview
	Class Diagram

	Error Reporting
	STSA Class
	Constructor
	Configuration DSL
	Attribute Method
	Attribute Example

	Reference Method
	Reference Example

	Partition Method
	Statemodel Method
	Polymorphic Method
	InstOp Method
	ClassOp Method
	Constructor Method
	Destructor Method

	State Model Configuration DSL
	State Method
	Transition Method
	DefaultTrans Method
	InitialState Method
	Terminal Method
	State Model Example

	Completing XUML Class Construction
	Attribute Semantics
	Linkage Semantics
	State Model Semantics
	Polymorphic Event Semantics

	Completing the Example Classes
	XUML Class Methods
	Creating Objects
	Constructor
	Constructing in a State
	Destructor

	Access to Attributes
	Reading Attribute Values
	Updating Attribute Values

	Linkage Methods
	Link Method
	Unlink Method
	Link Navigation Method
	Migrate Method

	Example Initial Instance Population
	Instance Selection
	Select Where Method
	Select One Where Method
	Select Related Where Method
	Select One Related Where Method

	Instance Computation Methods
	Map Instances Method
	Map Related Instances Method

	State Machine Execution
	Signal Method
	Delayed Signal Method
	Cancel Method
	Remaining Method
	Force Method
	Current State Method
	Receive Method
	Dispatch Method
	Delayed Dispatch Method
	Cancel Delayed Signal

	Example State Activities
	Washing Machine State Activities
	Clothes Tub State Activities

	State Machine Trace
	Trace Data
	Trace Control
	Trace Population
	Trace Operations
	Trace Dictionary Structure
	Decode All Traces
	Decode Class Traces
	Decode Target Traces
	Format Traces
	Format Trace Record
	Format Time Stamp
	Format Time As Seconds

	Sequence Diagrams
	Diagram Traces
	Diagram All Traces
	Diagram Class Traces

	Finishing the Example
	Domain Operations
	Start Washer
	Select Cycle

	External Operations

	Introspection
	Info Method
	Dot Method
	Dot File Method
	Draw Method

	Utility Methods
	Check Link Name
	Check Reference Object
	Resolve Object
	Resolve Class
	Validate Event
	Event Source
	Forward Polymorphic Event

	Running the Example
	Stubbing the External Operations
	Example Run Results

	Code Organization
	Source Code
	Unit Tests
	Package Index
	Example Code

	Bibliography
	Books

	Index

