
SD Card on LPC1114
SDCard

Jim Schimpf

Document Number: PAN-201612001
Revision Number: 0.9

6 January 2017

Pandora Products.
215 Uschak Road

Derry, PA 15627

Pandora Products.

SDCard
Program Manual

Creative Commons Attribution 4.0 International License 2014 Pandora Products. All other product
names mentioned herein are trademarks or registered trademarks of their respective owners.

Pandora Products.

215 Uschak Road

Derry, PA 15627

Phone: 724-539.1276

Email: jim.schimpf@gmail.com

Pandora Products. has carefully checked the information in this document and believes it to be accu-
rate. However, Pandora Products assumes no responsibility for any inaccuracies that this document
may contain. In no event will Pandora Products. be liable for direct, indirect, special, exemplary,
incidental, or consequential damages resulting from any defect or omission in this document, even
if advised of the possibility of such damages.

In the interest of product development, Pandora Products reserves the right to make improvements
to the information in this document and the products that it describes at any time, without notice or
obligation.

PAN-201612001

Revision: 0.9
6 January 2017

SDCard
ii

Pandora Products.

SDCard
Program Manual

Document Revision History

Version Author Description Date
0.1 js Initial Version 6-Dec-2016
0.2 js More SPI speeds 9-Dec-2016
0.3 js SD Card interface 9-Dec-2016
0.4 js SD Card Initialization 10-Dec-2016
0.5 js SD Block Reader 15-Dec-2016
0.6 js SD Block Writer & FAT file system 25-Dec-2016
0.7 js SDCard.c code 29-Dec-2016
0.8 js Working & SDCard code complete 5-Jan-2017
0.9 js Fix typos 6-Jan-2017

PAN-201612001

Revision: 0.9
6 January 2017

SDCard
iii

Pandora Products.

SDCard
Program Manual

Contents

Contents

1 Introduction 2

2 SPI/SSP 2

2.1 Hardware . 2

2.1.1 Processor Pins . 2

2.1.2 SPI Setup . 2

2.2 Software . 4

2.2.1 API . 4

2.2.2 void SPI_Pins(void) - Initialize SPI I/O pins 4

2.2.3 void SPI_config(SSP_ConfigFormat *fmt,uint32_t rate,uint32_t pre) Set up
configuration . 4

2.2.4 int SPI_xfer(int size,unsigned char *in, unsigned char *out) - Transfer SPI
data . 5

2.2.5 int SPI_Done(void) - Check for xfer done 5

2.3 Software Use . 5

3 SD Card 7

3.1 Introduction . 7

3.2 Hardware . 7

3.2.1 Socket . 7

3.2.2 CS Signal . 8

3.3 SD Software low level . 8

3.3.1 Sending Commands . 8

3.3.2 Initialization . 9

3.3.3 SD_Init . 9

3.3.4 Block Read . 9

3.3.4.1 SD_ReadBlock . 10

3.3.5 Block Write . 10

3.3.5.1 SD_WriteBlock . 11

3.4 FAT File System[4] . 11

3.4.1 diskio Modifications . 12

PAN-201612001

Revision: 0.9
6 January 2017

SDCard
iv

Pandora Products.

SDCard
Program Manual

Contents

3.4.1.1 disk_initialize . 12

3.4.1.2 disk_initialize . 12

3.4.1.3 disk_read and disk_write . 12

3.5 Main Program . 12

3.5.1 Introduction . 12

3.5.2 Card Functions . 13

3.5.3 FAT Functions . 13

3.5.3.1 Mount Card . 13

3.5.3.2 Directory . 13

3.5.3.3 Read File . 13

3.5.3.4 Write File . 13

3.5.3.5 Delete File . 13

3.5.4 Getting it working . 14

PAN-201612001

Revision: 0.9
6 January 2017

SDCard
v

Pandora Products.

SDCard
Program Manual

List of Figures

List of Figures

1 256 bytes xfer in Polling Mode . 6

2 256 bytes xfer in Interrupt Mode . 6

3 12 MHz 256 byte xfer in Interrupt Mode . 7

4 SD Card Module . 8

5 Read Operation . 10

6 Write Data . 11

List of Tables

1 SPI pins . 2

2 Clock speeds . 4

PAN-201612001

Revision: 0.9
6 January 2017

SDCard
Page 1 of 15

Pandora Products.

SDCard
Program Manual

Introduction

1 Introduction

An SD card adds a “disk drive” to embedded projects that allows them to store huge amounts of
data and have a removable storage medium. I had some SD card socket assemblies and decided to
try to interface them to the LPC1114. There are two parts to this interface, the hardware (SPI or
SSP on NXP) and the software adding a FAT style file system. The hardware interface needs to be
developed for the LPC1114 but there is already code for the FAT file system for SD cards which
must be adapted for this processor.

2 SPI/SSP

2.1 Hardware

2.1.1 Processor Pins

The first item that must be done is to set up the pins on the processor for SPI0 use. The following
pins are used.

Pin Name Use
1 PIO_8 MISO0
2 PIO_9 MOSI0
6 PIO_6 SCK0
25 PIO_2 SSEL0

Table 1: SPI pins

The SCK pin is a secondary choice because the other SCK0 is pin 3 which is already used for
SWCLK a debug line. Set up these lines in the processor multiplexer section with following code.

#define LPC_SSP LPC_SSP0
Chip_IOCON_PinMuxSet(LPC_IOCON, IOCON_PIO0_8, (IOCON_FUNC1 | IOCON_MODE_INACT));/* MISO0 */
Chip_IOCON_PinMuxSet(LPC_IOCON, IOCON_PIO0_9, (IOCON_FUNC1 | IOCON_MODE_INACT));/* MOSI0 */
Chip_IOCON_PinMuxSet(LPC_IOCON, IOCON_PIO0_2, (IOCON_FUNC1 | IOCON_MODE_INACT));/* SSEL0 */
Chip_IOCON_PinMuxSet(LPC_IOCON, IOCON_PIO0_6, (IOCON_FUNC2 | IOCON_MODE_INACT));/* SCK0 */
Chip_IOCON_PinLocSel(LPC_IOCON, IOCON_SCKLOC_PIO0_6);
Chip_SSP_Init(LPC_SSP);

Note that PIO0_6 needs to be set with IOCON_FUNC2 to enable it. All the lines are set MODE_INACT
since they are under the control of the SPI block not the GPIO.

2.1.2 SPI Setup

Next the SPI must be set up for the clock phase, frame format and data bits. The following code
does that.

PAN-201612001

Revision: 0.9
6 January 2017

SDCard
Page 2 of 15

Pandora Products.

SDCard
Program Manual

Hardware

// These are in the ssp_11xx.h file
typedef enum CHIP_SSP_FRAME_FORMAT {
SSP_FRAMEFORMAT_SPI = (0 << 4),
/**< Frame format: SPI */
CHIP_SSP_FRAME_FORMAT_TI = (1u << 4),/**< Frame format: TI SSI */
SSP_FRAMEFORMAT_MICROWIRE = (2u << 4),/**< Frame format: Microwire */
} CHIP_SSP_FRAME_FORMAT_T;
typedef enum CHIP_SSP_CLOCK_FORMAT {
SSP_CLOCK_CPHA0_CPOL0 = (0 << 6),/**< CPHA = 0, CPOL = 0 */
SSP_CLOCK_CPHA0_CPOL1 = (1u << 6),/**< CPHA = 0, CPOL = 1 */
SSP_CLOCK_CPHA1_CPOL0 = (2u << 6),/**< CPHA = 1, CPOL = 0 */
SSP_CLOCK_CPHA1_CPOL1 = (3u << 6),/**< CPHA = 1, CPOL = 1 */
SSP_CLOCK_MODE0 = SSP_CLOCK_CPHA0_CPOL0,/**< alias */
SSP_CLOCK_MODE1 = SSP_CLOCK_CPHA1_CPOL0,/**< alias */
SSP_CLOCK_MODE2 = SSP_CLOCK_CPHA0_CPOL1,/**< alias */
SSP_CLOCK_MODE3 = SSP_CLOCK_CPHA1_CPOL1,/**< alias */
} CHIP_SSP_CLOCK_MODE_T;
// *********************************
#define SSP_MODE_TEST 1 /*1: Master, 0: Slave */
SSP_ConfigFormat ssp_format;
ssp_format.frameFormat = SSP_FRAMEFORMAT_SPI;
ssp_format.bits = SSP_DATA_BITS;
ssp_format.clockMode = SSP_CLOCK_MODE0;
Chip_SSP_SetFormat(LPC_SSP, ssp_format.bits,
ssp_format.frameFormat,
ssp_format.clockMode);
Chip_SSP_SetMaster(LPC_SSP, SSP_MODE_TEST);
Chip_SSP_Enable(LPC_SSP);
Chip_SSP_DisableLoopBack(LPC_SSP);

Last the clock speed is set with a call to Chi0_SSP_SetClockRate(); The call has the following
parameters:

/**
* @brief Set up output clocks per bit for SSP bus
* @param pSSP : The base of SSP peripheral on the chip
* @param clk_rate fs: The number of prescaler-output clocks per bit on the bus, minus one
* @param prescale : The factor by which the Prescaler divides the SSP peripheral clock PCLK
* @return Nothing
* @note The bit frequency is PCLK / (prescale x[clk_rate+1])
*/

The output clocks for a number of input values are.

PAN-201612001

Revision: 0.9
6 January 2017

SDCard
Page 3 of 15

Pandora Products.

SDCard
Program Manual

Software

clk_rate prescale SCK mHz
1 2 11.99
1 4 6.099
1 8 3.012
1 16 1.507
1 32 754.0 (kHz)
2 2 8.054
2 4 4.032
2 8 2.012
2 16 1.007
2 32 502.1 (kHz)
3 2 6.030
3 4 3.017
3 8 1.509
3 16 753.5 (kHz)
3 32 376.8 (kHz)

Table 2: Clock speeds

This is with the default 48 mHz clock speed and using the built in oscillator.

2.2 Software

2.2.1 API

The following API has been written for SPI use:

2.2.2 void SPI_Pins(void) - Initialize SPI I/O pins

Input Use Output
Set up SPI pins

NONE

This call sets up the spi pins a shown in Figure 1 on page 2.

2.2.3 void SPI_config(SSP_ConfigFormat *fmt,uint32_t rate,uint32_t pre) Set up configura-
tion

Input Use Output
fmt Bits & format
rate Clock rate/bit -1
pre Prescale value

NONE

PAN-201612001

Revision: 0.9
6 January 2017

SDCard
Page 4 of 15

Pandora Products.

SDCard
Program Manual

Software Use

This sets up the SPI configuration the fmt is an SSP_ConfigFormat object with values for bits/word,
frameFormat and clockMode. The rate and pre values set the SPI clock shown in Figure 2 on the
previous page. The values for the fmt fields are shown here in section 2.1.2 on page 2.

2.2.4 int SPI_xfer(int size,unsigned char *in, unsigned char *out) - Transfer SPI data

Input Use Output
size # Bytes to transfer
in Data sent to SPI

out Data returned from SPI
bytes in xfer

This is the call to actually write data to/from the SPI device. The flag POLLING_MODE determines
if the interrupt or polling method is used. If POLLING_MODE = 1 then the polling call is made
and the SPI_xfer is synchronous and on return the return value is the number of bytes returned from
the read.

If POLLING_MODE = 0 and INTERRUPT_MODE is used then the call to SPI_xfer is asyn-
chronous and returns immediately with the return value = to size. See SPI_Done() 2.2.5

2.2.5 int SPI_Done(void) - Check for xfer done

Input Use Output

=0 not done, # bytes transferred if don

If INTERRUPT_MODE = 1, i.e. interrupt mode is used then this call returns 0 till the transfer is
done and then returns the # of bytes transferred when the transfer is complete.

2.3 Software Use

As noted above the API has polling and interrupt modes. The difference occurs when you call
SPI_xfer() in polling mode this call is blocking and in interrupt mode the call is non-blocking and
SPI_Done() tells when it is finished. There is very little speed difference in the transfer of 256 bytes
in polling or interrupt mode.

PAN-201612001

Revision: 0.9
6 January 2017

SDCard
Page 5 of 15

Pandora Products.

SDCard
Program Manual

Software Use

Figure 1: 256 bytes xfer in Polling Mode

as you can see it took about 2.84 ms to transfer.

Figure 2: 256 bytes xfer in Interrupt Mode

The interrupt was a little faster at 2.66 ms for the same transfer.

PAN-201612001

Revision: 0.9
6 January 2017

SDCard
Page 6 of 15

Pandora Products.

SDCard
Program Manual

SD Card

Also the clock speed of SCK does not seem to matter both the above transfers were done at 1.5
MHz. Here is a transfer done at 12 MHz.

Figure 3: 12 MHz 256 byte xfer in Interrupt Mode

As you can see it takes the same time but the time/byte is smaller but the gaps between sending
bytes is still there.

3 SD Card

3.1 Introduction

After the SPI/SSP is working we must then interface to a Secure Digital card (SD Card) and then we
have to media to build a file system. I found this paper [3] at this location http://alumni.cs.
ucr.edu/~amitra/sdcard/Additional/sdcard_appnote_foust.pdf that describes
how to interface to an SDCard. The software in this section will be based on this paper.

3.2 Hardware

3.2.1 Socket

The hardware used was 1PCS SD Card Socket Module Slot Reader For Arduino ARM MCU LW
from eBay [2] http://www.ebay.com/itm/1PCS-SD-Card-Socket-Module-Slot-Reader-For-Arduino-ARM-MCU-LW-/
172144420638?hash=item28149b671e:g:TigAAOSwXeJXdj51

PAN-201612001

Revision: 0.9
6 January 2017

SDCard
Page 7 of 15

http://alumni.cs.ucr.edu/~amitra/sdcard/Additional/sdcard_appnote_foust.pdf
http://alumni.cs.ucr.edu/~amitra/sdcard/Additional/sdcard_appnote_foust.pdf
http://www.ebay.com/itm/1PCS-SD-Card-Socket-Module-Slot-Reader-For-Arduino-ARM-MCU-LW-/172144420638?hash=item28149b671e:g:TigAAOSwXeJXdj51
http://www.ebay.com/itm/1PCS-SD-Card-Socket-Module-Slot-Reader-For-Arduino-ARM-MCU-LW-/172144420638?hash=item28149b671e:g:TigAAOSwXeJXdj51

Pandora Products.

SDCard
Program Manual

SD Software low level

This unit takes a full size SD card and has the SPI lines brought out to a header It also has a 5V ->
3.3V power supply chip on it but in this design the 3.3V only is used. It also supplies all the pull-up
resistors shown in [3] in Figure 2 page 3. It does NOT have an SD card inserted switch.

Figure 4: SD Card Module

3.2.2 CS Signal

The CS signal is NOT the SSEL signal from SPI, that signal goes low on every byte transmitted then
high between bytes. For the SD card the SS signal has to stay low over a number of SPI transfers.
Instead PIO0_7 is enabled as a GPIO and the routine SS_CC(flag) is used to control it explicitly.
CS is set low in the initialization during the entire sequence.

3.3 SD Software low level

3.3.1 Sending Commands

All the code following uses the routine SD_SendCmd() which sends a command to the card and
returns the status. When a command is sent it is a 6 byte block with the command as the first byte, a
4 byte big-endian argument then one byte of a CRC-7 of the proceeding 5 bytes. The routine builds
this structure with the argument passed in as 32 bit unsigned integer.

Each command returns 1,2 or 5 bytes of response. The first byte is a status byte and the response
is not valid till the SD card returns a byte with the top bit clear. The routine reads SPI data till this
is found and then reads the rest (if any of the response). Also the routine sticks in 2 extra bytes
as padding to give the SD card time to handle the command. Also the card is selected when the
command is sent and the response received and left selected on exit of the routine.

PAN-201612001

Revision: 0.9
6 January 2017

SDCard
Page 8 of 15

Pandora Products.

SDCard
Program Manual

SD Software low level

3.3.2 Initialization

Before a card can be used it must be initialized. As explained in [3] there are 3 interfaces to the card
and we are going to bring up the SPI interface. The SPI initialization is shown on page 7 of [3]. The
code in SD_Init() follows this chart and the code on page 10. The clock speed of SPI is set to 376.6
KHz, which is the closest we could get (see Table 2 on page 4) to 400 KHz.

The initialization code was copied from code found https://developer.mbed.org/compiler/
#nav:/HelloWorld/SDFileSystem;here. Looking at the code in Hello World project, SD-
FileSystem.cpp. First 80 clocks (i.e. 10 bytes of 0xFF) are transmitted to synchronize the card.
Then CMD0 is sent to initialize the card. Next CMD8 is sent with an argument of 0x1AA. On a
type 1 card this returns a status with the Illegal command bit clear, on a type 2 card (most modern
cards) this returns with the Illegal Command bit set. Once this is done then a loop is entered sending
a CMD55 (prep for an ACMD command) then ACMD41 and keep sending this pattern till the status
byte returned has bit 0 (Idle bit) == 0. This takes a long time, there is a 55 ms delay is this loop and
it takes a couple of cycles before the card is ready.

Finally CMD58 is read to get the OCR and check bit there. Then CMD16 is sent to set the block
size for 512 bytes and the card is ready for use. Also on successful initialization the SPI clock is set
to 1.509 MHz from the slower initialization speed.

3.3.3 SD_Init

int SD_Init(void)

Input Use Output
Result 0 => success, 0< => failures

3.3.4 Block Read

The block read is relatively simple, CMD17 is sent with the argument set to the block desired. Then
a loop is entered with the card selected waiting for the card to send back the token 0xFE. This takes
on the order of 5ms before this is received. Once received the block (512 bytes) are read via SPI.
The image shows the 0xFE being received and the data transfer starting. The upper traces show the
whole transaction, with the CMD17 at the left, the wait for 0xFE and the data transfer

PAN-201612001

Revision: 0.9
6 January 2017

SDCard
Page 9 of 15

https://developer.mbed.org/compiler/#nav:/HelloWorld/SDFileSystem;
https://developer.mbed.org/compiler/#nav:/HelloWorld/SDFileSystem;

Pandora Products.

SDCard
Program Manual

SD Software low level

Figure 5: Read Operation

3.3.4.1 SD_ReadBlock

int SD_ReadBlock (uint32_t blockaddr,uint8_t *data)

Input Use Output
blockaddr Absolute block # on SD card

data Data buffer of 512 bytes Block read from card
Result 0 => success 0< implies failure

3.3.5 Block Write

Single block write is quite simple. Issue the command (CMD24) and get a response with the bottom
bit cleared. Send a start of data mark 0xFE. Once that is done send the data block and then following
the data block another 16 bits of data (0xFFFF) to simulate the CRC which is ignored. After this
the card select line is disabled.

PAN-201612001

Revision: 0.9
6 January 2017

SDCard
Page 10 of 15

Pandora Products.

SDCard
Program Manual

FAT File System[4]

Figure 6: Write Data

This shows the start of data mark and then the data (which was 1,2,3... 255). The block write was
repeated twice as shown by the upper traces.

3.3.5.1 SD_WriteBlock

int SD_WriteBlock (uint32_t blockaddr,uint8_t *data)

Input Use Output
blockaddr Absolute block # on SD card

data Data buffer of 512 bytes Written to card
Result 0 => success 0< implies failure

3.4 FAT File System[4]

The structure and operation of the FAT file system is explained here https://en.wikipedia.
org/wiki/File_Allocation_Table. It is the most common file system used in SD cards
in a variety of devices. There are very good embedded versions of the system available (see below).
See the article above for more information on the internals of the system.

With the initialize card, read a block and write a block working the FAT (File Allocation Block) file
system can be supported. See [1] at http://elm-chan.org/fsw/ff/00index_e.html
for excellent documentation and source code for an embedded version of this file system.

PAN-201612001

Revision: 0.9
6 January 2017

SDCard
Page 11 of 15

https://en.wikipedia.org/wiki/File_Allocation_Table
https://en.wikipedia.org/wiki/File_Allocation_Table
http://elm-chan.org/fsw/ff/00index_e.html

Pandora Products.

SDCard
Program Manual

Main Program

The code has an interface section called diskio.c that has the disk operation routines called by the
FAT code and in them you put the calls to previously mentioned initialize, read and write routines.
Then the rest of the FAT code “just works”. The above mentioned URL also has links to the docu-
mentation on the FAT API and configuration of the whole software system. The configuration allow
customization of how much of the API is present and also for thing lacking in embedded systems
like a real time clock.

3.4.1 diskio Modifications

The diskio code is designed to handle RAM,SD and USB devices. In this application only the SD
card is the device in use so the code is modified to handle just it. The code is changed so that only
the SD device section is active in each of the routines in the module.

3.4.1.1 disk_initialize This section is called to setup the SD card for use. In addition a flag
variable inited is added to the routine as a static to mark that the SD card has been successfully
initialized. The routine can be called multiple times but will only initialize the SD card once. This
routine called the SD_Init() 3.3.3 on page 9 from the SD card code to do the actual work. It’s
success or failure is recorded in the inited flag.

3.4.1.2 disk_initialize This routine is quite simple, it returns the state of the inited flag. It is
called before other actions are taken to check if the code needs to initialize the SD card if it has not
been done before.

3.4.1.3 disk_read and disk_write These two routines are simular, both use the single block
read and write (3.3.4.1 on page 10 and 3.3.5.1 on the previous page). The count value passed is the
number of blocks to read or write and a loop calling the read or write single block routine is used
to handle this. Also a re-try mechanism is added to re-try an operation if a failure is returned. If if
fails after 3 tries then the routine returns a failure.

3.5 Main Program

3.5.1 Introduction

The main program (SDCard.c) ties all the pieces together and allows the parts to be tested. It is a
simple menu based system allowing you to do the low level functions and use the FAT file functions.
The whole system runs under FreeRTOS and the menu system actually runs in a thread.

SD CARD Control Program VER:[Jan 5 2017 05:08:09]
SD Card Control

-- Card --
1 - Init Card

PAN-201612001

Revision: 0.9
6 January 2017

SDCard
Page 12 of 15

Pandora Products.

SDCard
Program Manual

Main Program

2 - Read Card Sec
3 - Write Card Sec

-- FAT FILE --
4 - Mount Card
5 - Directory
6 - Read File
7 - Write File
8 - Delete File
Choice:

3.5.2 Card Functions

These call the the card level functions see 3.3 on page 8. It was orignally written to allow easy
testing of these functions. Each call the functions laid out in that section. The read card also dumps
the read data out to the terminal so you can look at it.

3.5.3 FAT Functions

These call the FAT file system API and allow it to be checked. The Mount Card initializes the
card for use. This was done to test the disk_initialize call in the diskio.c code explicitly. The other
functions just exercise the FAT API and are more a check on the diskio.c functions that the FAT
code.

3.5.3.1 Mount Card This mounts the FAT file system and initializes the card. This operation
will automatically be called in the other FAT functions if not called here. Also it set a flag so it only
gets called once.

3.5.3.2 Directory This is a simple directory read one level deep that reads all the files at the top
level on the SD card and sums their sizes.

3.5.3.3 Read File Input a file name and the text of the file is read and dumped to the serial port.

3.5.3.4 Write File This writes a test pattern “0123456789ABCDEF “ to a file name specified
by the user. It can create files or overwrite an existing file. The test pattern is written 100 times to
the file.

3.5.3.5 Delete File This deletes a specified file.

PAN-201612001

Revision: 0.9
6 January 2017

SDCard
Page 13 of 15

Pandora Products.

SDCard
Program Manual

Main Program

3.5.4 Getting it working

These FAT functions kept failing and it was found that the fundamental disk read and write functions
were failing. It was found that the basic functions would work successfully after SD_Init() was
called and then fail when called subsuquently. So a call to SD_Init() was added to sector read and
write calls. This slows them down “a lot...” but does make the FAT system work successfully.
Futher work will be done to determine what “reset” functions are actaually needed to allow these to
work successfully.

PAN-201612001

Revision: 0.9
6 January 2017

SDCard
Page 14 of 15

Pandora Products.

SDCard
Program Manual

References

References

[1] ChanN. Fatfs - generic fat file system module.

[2] e Bay. 1pcs sd card socket module slot reader for arduino arm mcu lw.

[3] C Fouts. Secure digital card interface for the msp430.

[4] Wikipeida.org. File allocation table.

PAN-201612001

Revision: 0.9
6 January 2017

SDCard
Page 15 of 15

	1 Introduction
	2 SPI/SSP
	2.1 Hardware
	2.1.1 Processor Pins
	2.1.2 SPI Setup

	2.2 Software
	2.2.1 API
	2.2.2 void SPI_Pins(void) - Initialize SPI I/O pins
	2.2.3 void SPI_config(SSP_ConfigFormat *fmt,uint32_t rate,uint32_t pre) Set up configuration
	2.2.4 int SPI_xfer(int size,unsigned char *in, unsigned char *out) - Transfer SPI data
	2.2.5 int SPI_Done(void) - Check for xfer done

	2.3 Software Use

	3 SD Card
	3.1 Introduction
	3.2 Hardware
	3.2.1 Socket
	3.2.2 CS Signal

	3.3 SD Software low level
	3.3.1 Sending Commands
	3.3.2 Initialization
	3.3.3 SD_Init
	3.3.4 Block Read
	3.3.4.1 SD_ReadBlock

	3.3.5 Block Write
	3.3.5.1 SD_WriteBlock

	3.4 FAT File SystemFAT
	3.4.1 diskio Modifications
	3.4.1.1 disk_initialize
	3.4.1.2 disk_initialize
	3.4.1.3 disk_read and disk_write

	3.5 Main Program
	3.5.1 Introduction
	3.5.2 Card Functions
	3.5.3 FAT Functions
	3.5.3.1 Mount Card
	3.5.3.2 Directory
	3.5.3.3 Read File
	3.5.3.4 Write File
	3.5.3.5 Delete File

	3.5.4 Getting it working

