
Pandora Products Manual
Minnow Restful Web server

Jim Schimpf

Document Number: PAN-201201001
Revision Number: 1.1

11 February 2012

Pandora Products.
215 Uschak Road

Derry, PA 15627

Pandora Products.

Minnow Restful Web server
Program Manual

c�2012 Pandora Products. All rights reserved. Pandora product and company names, as well as their
respective logos are trademarks or registered trademarks of Pandora Products. All other product
names mentioned herein are trademarks or registered trademarks of their respective owners.

Pandora Products.

215 Uschak Road

Derry, PA 15627

Phone: 724.539.1276

Web: http://pandora.dyn-o-saur.com:8080/cgi-bin/Minnow.cgi

Email: vze35xda@verizon.net

Pandora Products. has carefully checked the information in this document and believes it to be accu-
rate. However, Pandora Products assumes no responsibility for any inaccuracies that this document
may contain. In no event will Pandora Products. be liable for direct, indirect, special, exemplary,
incidental, or consequential damages resulting from any defect or omission in this document, even
if advised of the possibility of such damages.

In the interest of product development, Pandora Products reserves the right to make improvements
to the information in this document and the products that it describes at any time, without notice or
obligation.

PAN-201201001

Revision: 1.1
11 February 2012

Firing Box Manual
ii

Pandora Products.

Minnow Restful Web server
Program Manual

Document Revision History

Use the following table to track a history of this document’s revisions. An entry should be made into

this table for each version of the document.

Version Author Description Date
1.0 js Initial Version 28-Jan-2012
1.1 js Editorial work 11-Feb-2012

PAN-201201001

Revision: 1.1
11 February 2012

Firing Box Manual
iii

Pandora Products.

Minnow Restful Web server
Program Manual

Contents

Contents

1 Minnow Web server 2

1.1 Introduction . 2

1.2 Demonstrations . 2

1.2.1 Building Minnow from source . 2

1.2.2 Web server Example . 2

1.2.3 Lua Example . 3

1.2.4 Web server with REST . 4

1.2.5 Debug Operation . 5

2 Demonstration Site Operation 7

2.1 Server RESTful operation . 7

2.1.1 Server Code . 8

2.1.2 Server Summary . 11

2.2 SAMPLE REST API . 12

2.2.1 ADMIN/TIME . 12

2.2.2 ADMIN/POWER . 12

2.2.3 ADMIN/LOGIN . 13

3 Lua Extension Classes 14

3.1 RESTful Interface CLASS . 14

3.1.1 Introduction . 14

3.1.2 Class Operation . 14

3.1.3 Class Methods - Server Control . 14

3.1.3.1 http.start() . 14

3.1.3.2 http.stop() . 15

3.1.3.3 http.lock() . 15

3.1.3.4 http.open() . 16

3.1.3.5 http.close() . 16

3.1.3.6 http.url(h) . 16

3.1.3.7 http.data() . 17

3.1.4 JSON Support . 17

PAN-201201001

Revision: 1.1
11 February 2012

Firing Box Manual
iv

Pandora Products.

Minnow Restful Web server
Program Manual

Contents

3.1.4.1 parsers.json() . 17

3.1.4.2 json_kvp() . 18

3.2 Timer CLASS . 18

3.2.1 Timer Class Methods . 18

3.2.1.1 timer.sleep() . 18

3.2.2 Timer Constructors/Destructors . 19

3.2.2.1 timer.new() . 19

3.2.2.2 timer.delete() . 19

3.2.3 Timer Methods . 19

3.2.3.1 timer.start() . 19

3.2.3.2 timer.done() . 19

3.2.3.3 timer.read() . 20

3.3 Keyboard Class . 20

3.3.1 Class Methods . 20

3.3.1.1 kbd.prep() . 20

3.3.1.2 kbd.close() . 20

3.3.1.3 kbd.getc() . 20

3.3.2 Use . 21

PAN-201201001

Revision: 1.1
11 February 2012

Firing Box Manual
v

Pandora Products.

Minnow Restful Web server
Program Manual

List of Figures

List of Figures

1 Simple Site . 2

2 Initial Screen . 4

3 Challenge/Response Screen . 5

4 Run Mode . 5

5 Debug Page . 6

6 Time Command Test . 6

7 REST command structure . 8

PAN-201201001

Revision: 1.1
11 February 2012

Firing Box Manual
Page 1 of 21

Pandora Products.

Minnow Restful Web server
Program Manual

Minnow Web server

1 Minnow Web server

1.1 Introduction

This software is a Lua[5]interpreter (5.1 version) that has extensions [2]to support serving web
pages it is also designed to easily support RESTful [7]interaction. The RESTful interaction is done
by calling Lua scripts to do server actions. Included in the package is a sample web site supporting
AJAX [6]. The Lua interpreter also has extensions added to support JSON[1]and some other useful
server side actions.

The package has source code and an Mac Xcode project for building and a make file for Linux
systems.

1.2 Demonstrations

1.2.1 Building Minnow from source

On download of the Minnow source you have to build it (XCode on OS X or makefile in Linux) .The
download include demonstration websites to show the capabilities of Minnow. If you are on OS X
then double click the X Code project and and built it. You will then find the Minnow executable in
build\Debug Intel and can copy it to the Minnow directory for further work.

On Linux cd to the Minnow directory after expanding the ZIP download and then type make. The
executable should build and leave it in the Minnow directory.

1.2.2 Web server Example

Start Minnow with the command line (I’m assuming you are in the Minnow directory and the
executable is there):

./Minnow -c Site_Simple/main.lua -http Site_Simple -port 8081

Now you have a simple web server running on your machine on port 8081 so if you type http://localhost:8081
in your browser you will get:

Figure 1: Simple Site

PAN-201201001

Revision: 1.1
11 February 2012

Firing Box Manual
Page 2 of 21

Pandora Products.

Minnow Restful Web server
Program Manual

Demonstrations

You can click on the links and move to other pages and while doing this you will see that Minnow
will print a log of page operations on it’s stdout. You can then use it to support a regular website
with pages, images and links.

1.2.3 Lua Example

Minnow is also built around a Lua interpreter. If you start Minnow with no command line options
you will be in the Lua interpreter. The only non-standard thing is the quit keyword which will exit
the interpreter.

552 > ./Minnow
Lua 5.1.4 Copyright (C) 1994-2008 Lua.org, PUC-Rio
> a = 10
> b = 20
> print(a,b,a*b)
10 20 200
> quit
-- END RUN --
553 >

It will also run any standard Lua script (and use the extensions described below) by starting it with
Minnow -c <script name>

-- Test script
print("-- Minnow Script --")
io.write("Input Count: ")
count = io.read("*l")
for i=0,count
do
print(i,i*i,i*i*i)
end

and saving that into a file called test.lua.

Running the script we get:

555 > ./Minnow -c test.lua
-- Minnow Script --
Input Count: 5
0 0 0
1 1 1
2 4 8
3 9 27
4 16 64
5 25 125
-- End Run --

PAN-201201001

Revision: 1.1
11 February 2012

Firing Box Manual
Page 3 of 21

Pandora Products.

Minnow Restful Web server
Program Manual

Demonstrations

1.2.4 Web server with REST

Included in the demo code for Minnow is a RESTful example where Minnow not only serves up
webpages but also accepts and responds to RESTful commands from the browser client.

The simple site is built with a challenge/response login system and a debugger that allows you to
test RESTful commands and responses.

Start Minnow with the command line (I’m assuming you are in the Minnow directory and the
executable is there):

./Minnow -c Site/rest/main.lua -http Site/Site -rest Site/rest -port 8081

At this point you have a web server running on your machine (i.e. type http://localhost:8081 in
your browser) . You should get this:

Figure 2: Initial Screen

You can now Login to the system by clicking on the Login control on the Left. This gets you the
challenge response screen:

PAN-201201001

Revision: 1.1
11 February 2012

Firing Box Manual
Page 4 of 21

Pandora Products.

Minnow Restful Web server
Program Manual

Demonstrations

Figure 3: Challenge/Response Screen

The challenge has been made very simple, just type in the challenge value (4FE1) into the Response
field and hit Submit and you will get:

Figure 4: Run Mode

At this point you can click on Debug or Logout. Logout will take you back to the initial screen
while debug will let you issue RESTful commands and see the responses.

1.2.5 Debug Operation

If you click the Debug operation you get:

PAN-201201001

Revision: 1.1
11 February 2012

Firing Box Manual
Page 5 of 21

Pandora Products.

Minnow Restful Web server
Program Manual

Demonstrations

Figure 5: Debug Page

This page allows you to input a RESTful and observe the result. Not only can you use the commands
we have supplied in Minnow this page can be useful when you build new commands and and want
to test them.

Figure 6: Time Command Test

In the example above I used the RESTful command admin/time (see 2.2.1 on page 12) and got
back the JSON key/value pair with the current time. The POST checkbox allows you to send GET
commands (not checked) or POST commands (checked). At the same time the STDOUT of Minnow
shows what is happening:

Searching for RESPONSE
-- In Login Response handler --

*** DATA RECEIVED ***
HTTP TYPE: 3
1 REST
2 ADMIN

PAN-201201001

Revision: 1.1
11 February 2012

Firing Box Manual
Page 6 of 21

Pandora Products.

Minnow Restful Web server
Program Manual

Demonstration Site Operation

3 TIME
n 3
2
Searching for ADMIN
-- Admin Actions --
3
Searching for TIME

When you are working on developing server side scripts to support your commands any print()
command you put into the Lua script will appear here and will help with your debugging.

2 Demonstration Site Operation

The operation of the Minnow as a Lua interpreter and simple web server are easily seen from the
demonstration. Operation as a RESTful server is much more complicated and involves interaction
between client code (HTML/CSS/Javascript/JQuery) and server code (Lua). This will be set out in
detail here and will give you enough information to develop your own sites. NOTE: You will need
knowledge of Javascript/JQuery and Lua to use Minnow in this way. If you need a tutorial then
these websites might help:

• HTML http://www.w3schools.com/html/default.asp

• CSS http://www.w3schools.com/css/default.asp

• Javascrpt http://www.w3schools.com/js/default.asp

• JQueryhttp://www.w3schools.com/jquery/jquery_intro.asp

• Lua http://lua-users.org/wiki/LuaTutorial

2.1 Server RESTful operation

How did all of the above work and what do you have to write to make Minnow do what you want
on your web site ? In this case it is done with a combination of server and client side scripting. The
client side code used Javascript and the server scripting is in Lua supported by Minnow. In addition
the client side scripting uses JQuery[4]as a support library.

The interaction that occurs is RESTful, in that the client sends in GET or POST requests and the
server via the Lua scripts builds responses in JSON. The script in the client then parses the JSON
and changes the screen in the appropriate fashion. The full set of RESTful commands is show in
the figure.

PAN-201201001

Revision: 1.1
11 February 2012

Firing Box Manual
Page 7 of 21

http://www.w3schools.com/html/default.asp
http://www.w3schools.com/css/default.asp
http://www.w3schools.com/js/default.asp
http://www.w3schools.com/jquery/jquery_intro.asp
http://lua-users.org/wiki/LuaTutorial

Pandora Products.

Minnow Restful Web server
Program Manual

Server RESTful operation

<REST>

ADMIN

TIME POWER

GET GET/POST

ON/OFFLOGIN

REQUEST RESPONSE LOGOUT STATUS

Resp Val

GET/POST

Figure 7: REST command structure

The client would issue a command in a RESTful fashion by building a URI string like

HTTP://localhost:8081/rest/admin/login/request

and doing a GET to the server. The server the returns the challenge value and the client puts that
value on the page and waits for the user to input the response. When the user presses submit it sends
another RESTful command with the response value and if that checks out, the response allows the
client script to show the RUN page.

2.1.1 Server Code

If you go to the Site directory in Minnow and then go to the rest folder in there, that is the server
scripting code. In the command line that started the server:

./Minnow -c Site/rest/main.lua -http Site/Site -rest Site/rest -port 8081

The highlighted portion is the initial server server script this main.lua reads the command line
for the subsequent parameters and uses them to start the web server. The RESTful operation is
supported by code that turns each incoming request URI into a Lua list. It’s important to note that
this script does not get all the requests only those that start with http://localhost:8081/rest . The
non-RESTful requests, i.e. regular page requests are handled automatically by the libmicrohttp
code. On receipt of a RESTful request the Lua list is form of the URI is passed to a routine that
looks at the element following rest, which in HTTP://localhost:8081/rest/admin/login/request is
admin. A handler has been assigned to this node:

*** DATA RECEIVED ***
HTTP TYPE: 3
1 REST
2 ADMIN

PAN-201201001

Revision: 1.1
11 February 2012

Firing Box Manual
Page 8 of 21

Pandora Products.

Minnow Restful Web server
Program Manual

Server RESTful operation

3 LOGIN
4 REQUEST <-- LOGIN GET request
n 4
2
Searching for ADMIN <-- Find ADMIN level commands (LOGIN)
-- Admin Actions --
3
Searching for LOGIN <-- Find LOGIN level commands REQUEST
-- Login actions --
4
Searching for REQUEST <-- Handling request
-- In Login Request handler --

*** DATA RECEIVED ***
HTTP TYPE: 6
1 REST
2 ADMIN
3 LOGIN
4 RESPONSE
5 6F15 <-- POST with challenge-resp from browser
n 5
2
Searching for ADMIN
-- Admin Actions --
3
Searching for LOGIN
-- Login actions --
4
Searching for RESPONSE
-- Build the site structure list
site = {}
site.ADMIN = admin_handler

So that any request with admin will be passed in this case to admin_handler. If you look at the file
admin.lua in Site/rest you will see at the bottom it then assigns handlers to subsequent parts of the
admin command.

--
-- STRUCTURE
--
-- Build action list for admin actions
admin_actions = {}
admin_actions.POWER = stop_handler
admin_actions.TIME = time_handler

PAN-201201001

Revision: 1.1
11 February 2012

Firing Box Manual
Page 9 of 21

Pandora Products.

Minnow Restful Web server
Program Manual

Server RESTful operation

admin_actions.LOGIN = login_handler

In rest_sup.lua there is a handler routine that is used to call the proper handler given the URI list and
position. This is called at the entrance to each section of the command structure and automatically
calls the proper handler or if not found returns an error.

With the above list the admin handling routine knows that if the list element following admin is
login the login handler is called. (i.e. in HTTP://localhost:8081/rest/admin/login/request). In
the login handler code (in login.lua) we have another list of possible commands as:

--
-- STRUCTURE
--
-- Build action list for login actions
login_actions = {}
login_actions.REQUEST = login_request_handler
login_actions.RESPONSE = login_response_handler
login_actions.STATUS = login_status_handler
login_actions.LOGOUT = login_logout_handler

So that if the keyword following login in the URI is request then the login_request_handler() func-
tion is called.

Inside the login_request_handler() the actions are rather simple, at this point the handler has the
URI list and knows what data it needs from that list. The handler builds a response as a Lua list
which has elements which will the JSON key’s in a key value JSON response. Filling out those
fields a support routine (in Lua) is be called to convert a Lua list to a JSON string. This is then
returned to the server and we are done.

function login_request_handler(rqst,htype,url,n,al)
local out = {}
local data
local i
-- Is this a GET, if so look pick random value from random list
-- Also fail if already logged in
if(htype == HTTP_GET and LOGIN_OK == nil)
then
-- Add some randomness to our BAD random # gen
data = os.time() % 1000
math.randomseed(data)
for i=1,data
do
math.random()
end
data = math.random(1,16)

PAN-201201001

Revision: 1.1
11 February 2012

Firing Box Manual
Page 10 of 21

Pandora Products.

Minnow Restful Web server
Program Manual

Server RESTful operation

-- Get index into random # list
LOGIN_CHAL_PSN = data
-- NOTE: This makes it simple as just return the
-- same random number not the NEXT one

-- Build response
out.CHAL = LOGIN_CHAL_LIST[LOGIN_CHAL_PSN]
else
out.CHAL = "UNKNOWN RQST"
end
-- Return response
out = json_kvp(out) -- At this point the result is -> JSON
h:close(out) -- Send the result to the client
end

2.1.2 Server Summary

On the server side you will need main script like main.lua to start the process and define the top
level commands (following rest/...) . In the demonstration we only have one (admin) but for more
complicated situations you will have many more. Also in main you will have require lines bringing
in these support scripts

First you will read these values in from the command line

-- Pull up items from command line
-- NOTE THESE ARE GLOBALS FOR THE REST
-- OF THE SYSTEM
REST_LCN = flag_srch(arg,"-rest",1)
HTTP_LCN = flag_srch(arg,"-http",1)
PORT_NUM = flag_srch(arg,"-port",1)
if(REST_LCN == nil)
then
print("SYNTAX ERROR: -rest <REST file lcn> NOT GIVEN")
print("Shutting down")
os.exit(-1)
end
if(HTTP_LCN == nil)
then
print("SYNTAX ERROR: -http <HTTP file lcn> NOT GIVEN")
print("Shutting down")
os.exit(-1)
end
if(PORT_NUM == nil)
then

PAN-201201001

Revision: 1.1
11 February 2012

Firing Box Manual
Page 11 of 21

Pandora Products.

Minnow Restful Web server
Program Manual

SAMPLE REST API

print("WARNING: Server Port # not given")
print("Server Port = 8080")
PORT_NUM = 8080
end

Now you can use these input values to set up the search path for the support lua script

-- Set that into the package search path
_G.package.path = REST_LCN .. "/?.lua;" .. _G.package.path -- This sets up the REQUIRE path
-- Now all modules will load with just a simple require + name
require "rest_sup" -- Support for REST
require "login" -- LOGIN support script
require "admin" -- ADMIN support script

The rest of the code in main.lua is simply a loop reading handling REST request using the rest_handler()
routine to call the correct supporting function.

2.2 SAMPLE REST API

The REST API consists of a number of URI’s and specifications for the data sent or received with
the requests. We will specify the URI as http://<server>/<rest>/... Where <server> stands for the
TCP/IP address and port of the server and <rest> stands for the path link set up for REST interactions
(see 3.1.3.1 on page 14). The overall design on the API is shown in Figure 7 on page 8.

2.2.1 ADMIN/TIME

This is used to read out the server system clock.

Request URI TYPE DATA
http://<server>/<rest>/admin/time GET NONE

The returned data is the current server system time.

{ "TIME" : "Sun Nov 14 16:46:21 2010" }

2.2.2 ADMIN/POWER

This URI is used to check for system running and to shutdown the system

Request URI TYPE DATA ACTION
http://<server>/<rest>/admin/power GET NONE Return status

http://<server>/<rest>/admin/power/on POST NONE Return status
http://<server>/<rest>/admin/power/off POST NONE Return status and shutdown

The returns status for the GET and first POST is:

PAN-201201001

Revision: 1.1
11 February 2012

Firing Box Manual
Page 12 of 21

Pandora Products.

Minnow Restful Web server
Program Manual

SAMPLE REST API

{ "SYSTEM" : "ON" }

For the second POST shutdown the response is:

{ "SYSTEM" : "OFF" }

2.2.3 ADMIN/LOGIN

Multiple sub commands used for logging in. A client is logged in no other IP address can access
the web server (see the http.lock() command 3.1.3.3 on page 15). It is a simple challenge/response
system. When a request is made to log in the system supplies a challenge value, a 16 bit value. The
user responds with 16 bit (i.e. 4 digit) value. If this matches that client is logged in and no other IP
address is allowed by the server.

The challenge is one of these 4 byte values:

"50A0","F748","95B1","8D8B","4F34","52C7","85B6","EA03",
"E6B8","D37F","4FE1","5215","A868","9336","2885","6F15"

The correct response is the value following the challenge value (with the last value 6F15, looping
back to the first 50A0).

NOTE: The demonstration version has been modified to accept the same number not the
NEXT see in (2.1.1 on page 11)

ADMIN/LOGIN/REQUEST

Used to request a challenge value.

Request URI TYPE DATA
http://<server>/<rest>/admin/login/request GET { “CHAL” : “<Chal value>” }

ADMIN/LOGIN/RESPONSE

This is used to return the response to the challenge.

Request URI TYPE DATA
http://<server>/<rest>/admin/login/response/<resp hex> POST { “LOGIN” : “OK” }

ADMIN/LOGIN/STATUS

This is used to query the server on the login status

Request URI TYPE DATA
http://<server>/<rest>/admin/login/status GET { “LOGIN” : “OK” } or { “LOGIN” : “NO” }

ADMIN/LOGIN/LOGOUT
Request URI TYPE DATA

http://<server>/<rest>/admin/login/logout POST { “LOGOUT” : “OK” }

PAN-201201001

Revision: 1.1
11 February 2012

Firing Box Manual
Page 13 of 21

Pandora Products.

Minnow Restful Web server
Program Manual

Lua Extension Classes

3 Lua Extension Classes

There are a number of extension classes written to support Minnow. There is a class layered over
the libmicrohttpd Web server library allow Lua access to web data for the RESTful operation, there
are support extension classes added for timers, JSON parsing and keyboard control.

3.1 RESTful Interface CLASS

3.1.1 Introduction

The Minnow Lua system has a built in Web server so it can be used in conjunction with a browser
based client application. This allows a rather full GUI application on any OS using the same
JavaScript/Browser application. In order for this to work an HTTP support library has been added.
The library GNU libmicrohttpd (http://www.gnu.org/software/libmicrohttpd/)[3]
is very well suited for this task. It is small, self-contained and is designed to be added into applica-
tions.

In addition a JSON parser has been added to support data sent in this form. JSON messages out are
easily generated using formatted write statements in Lua.

3.1.2 Class Operation

The Web server/RESTful class has three major parts. The first is used to stop and start the server.
The start command requires parameters to tell it the TCP/IP port to use for the HTTP transfer, data
where standard web pages are located and a location base for the RESTful request URIs. The system
can be used as a normal web server serving up pages, in fact this is used to load up the Javascript
application to the client’s browser.

The second part is a simple open/close set of calls to accept a request and return a response. Each
request is an opaque Lua user object that is generated on receipt of a request and is automatically
destroyed when the response is returned.

The third section of the class is used to extract information from the request, this includes the request
URL and any data included in the request.

3.1.3 Class Methods - Server Control

3.1.3.1 http.start() This will start the HTTP server running.

status = http.start(port,http_base,rest_base)

INPUT NAME USE
port TCP/IP used for HTTP messages

http_base Absolute path to standard html files served
rest_base Base path for RESTful actions of server

OUTPUT status 1 if server started OK, nil if failure

PAN-201201001

Revision: 1.1
11 February 2012

Firing Box Manual
Page 14 of 21

http://www.gnu.org/software/libmicrohttpd/

Pandora Products.

Minnow Restful Web server
Program Manual

RESTful Interface CLASS

If the port was set to 8080 and the server’s address was say 192.168.1.100 then the following URI
would access index.html stored at the http_base path.

http://192.168.1.100:8080/index.html

If rest_base was set to REST then following URI would access some RESTful action on the path
action/node-1/fire/1

http://192.168.1.100:8080/REST/action/node-1/fire/1

More details on the data and path information will be found in the http.url() method.

3.1.3.2 http.stop() This will stop the HTTP server.

http.stop()

INPUT NAME USE
OUTPUT NONE

This code can be used at any time after the http.start() command is given and you can then restart
the server without shutting down the program.

3.1.3.3 http.lock()

http.lock(rh,flag) or rh:lock(flag)

This command is used to lock or unlock the server to only speak to one IP address. It is run in the
context of handling a request and if locked, the request client’s IP address will be saved and only
requests from that IP address will be accepted till the server is unlocked. All other requesters will
get a 404.

INPUT NAME USE
rh HTTP RESTful request handle(see 3.1.3.3)

flag If <> nil then lock is done, if nil then unlock
OUTPUT NONE

In the context of a request from IP=192.168.1.103 then:

h:lock(1)

Would lock the server to 192.168.1.103 any other client would get a 404 on any request.

PAN-201201001

Revision: 1.1
11 February 2012

Firing Box Manual
Page 15 of 21

Pandora Products.

Minnow Restful Web server
Program Manual

RESTful Interface CLASS

3.1.3.4 http.open()

rh = http.open()

This code is a non-blocking call to receive a request. If a request is present you will be returned a
handle to the request, if none you will get nil.

INPUT NAME USE
OUTPUT rh HTTP RESTful request handle. nil if no request pending

You can use this call to poll for requests, note the requests are queued so any pending requests are
held till you retrieve them. You can have multiple outstanding requests.

3.1.3.5 http.close()

http.close(rh,data) or rh:close(data)

INPUT NAME USE
rh HTTP RESTful request handle

data Data to be returned to client
OUTPUT NONE

As you can see this is an instance class and you may use the request handle as the selector to pick the
method (close()). Either form is acceptable. This is used to return the result of a RESTful request
to the client. The data is usually encoded as JSON and will available to the client.

3.1.3.6 http.url(h)

http.url(rh) or rh:url()

This method is used to get the URI of the request.

INPUT NAME USE
rh HTTP RESTful request handle

OUTPUT url URL returned as a numeric index list of the path parts [1] = rest_base
OUTPUT htty_type Numeric value of HTTP request type, see below for list

This class like close may be used either as a class method or an instance method. In addition it
returns two parameters the url of the request and the HTTP request type.

The List returned for the example REST request http://192.168.1.100:8080/REST/action/node #/fire/1
would be:

INDEX VALUE
1 REST
2 action
3 node #
4 fire
5 1

PAN-201201001

Revision: 1.1
11 February 2012

Firing Box Manual
Page 16 of 21

Pandora Products.

Minnow Restful Web server
Program Manual

RESTful Interface CLASS

The http_type value returned is a number with the following meanings.

Value Meaning
0 HTTP_NONE
1 HTTP_CONNECT
2 HTTP_DELETE
3 HTTP_GET
4 HTTP_HEAD
5 HTTP_OPTIONS
6 HTTP_POST
7 HTTP_PUT
8 HTTP_TRACE

The highlighted items are the only ones normally used in the RESTful protocol.

3.1.3.7 http.data()

post_data = http.data(rh) or rh:data()

This is used to get the data on a POST request.

INPUT NAME USE
rh HTTP RESTful request handle

OUTPUT data POST data from request, all other types return nil

This method is used to get the POST data on a request. This is returned as a string. In most cases in
FIRENET it will be a JSON string which can be processed using the JSON parser.

3.1.4 JSON Support

This class is used to turn JSON into a LUA list.

3.1.4.1 parsers.json() This is used to turn a JSON string into a Lua list structure.

json_list = parsers.json(json_string)

INPUT NAME USE
json_string Valid JSON string

OUTPUT json_list List version of JSON structure or nil if invalid JSON

This will turn a JSON string structure for example:

PAN-201201001

Revision: 1.1
11 February 2012

Firing Box Manual
Page 17 of 21

Pandora Products.

Minnow Restful Web server
Program Manual

Timer CLASS

json_string = “{ \“key\” : \“value\” \“key1\” : \“value1\” }”
list = parsers.json(json_string)
print(list)
table: 0x100108bd0
table.foreach(list,print)
JOBJ table: 0x100108c10
table.foreach(list.JOBJ,print)
key value
key1 value1

See the JSON references for an idea of what sort of structures you can expect.

3.1.4.2 json_kvp() This is a support function in the rest_sup.lua file. It takes a lua list and turns
it into JSON. (i.e. the opposite of parsers.json())

rtnval = json_kvp(myresult)

INPUT NAME USE
myresult A Lua list indexed by key strings

OUTPUT rtnval A JSON string of key/value pairs and lists
For example if myresult was a lua list of the form

myresult.KEY= “VALUE”

The JSON string would be “{ “KEY” : “VALUE” }

3.2 Timer CLASS

This class is used for millisecond timing of events. It can be used to delay actions or time actions
to millisecond accuracy. The general sequence is one creates a timer object with new() (which also
starts the timer) and then can query to determine if a fixed time has passed with the done() method.
The time period can be re-started with the start() method.

There is one class method (sleep()) that can be used without creating a timer object. The other
methods work from a specific timer object.

3.2.1 Timer Class Methods

3.2.1.1 timer.sleep() Will cause Lua to idle for a set number of milliseconds.

handle:sleep(ms)

INPUT NAME USE
ms Time to sleep in milliseconds

OUTPUT NONE

PAN-201201001

Revision: 1.1
11 February 2012

Firing Box Manual
Page 18 of 21

Pandora Products.

Minnow Restful Web server
Program Manual

Timer CLASS

3.2.2 Timer Constructors/Destructors

3.2.2.1 timer.new() This creates a timer object that Lua can use for periodic operations and to
check for elapsed time. Each timer has an individual handle and there is no limit to the number a
script can have. Note all timers should be closed when they are no longer needed.

handle = timer.new()

INPUT NAME USE
NONE No input needed

OUTPUT handle Handle to open timer, nil if failure

The handle is opened and timer is started at 0.

3.2.2.2 timer.delete() This will dispose of a timer when it is no longer needed.

handle:delete()

INPUT NAME USE
handle Open timer handle

OUTPUT result 1 if deleted, nil if failure

3.2.3 Timer Methods

3.2.3.1 timer.start() This is used to reset an active timer to 0. Useful to reset elapsed time to 0.

result = timer.start(handle) or handle:start()

INPUT NAME USE
handle Open timer handle

OUTPUT result 1 if reset, nil if failure

3.2.3.2 timer.done() This is used to check for timer done, returns true when interval passed or
nil if not

handle:done(delay)

INPUT NAME USE
handle Open timer handle
delay Delay time in ms

OUTPUT result 1 if => delay time, nil if not

PAN-201201001

Revision: 1.1
11 February 2012

Firing Box Manual
Page 19 of 21

Pandora Products.

Minnow Restful Web server
Program Manual

Keyboard Class

3.2.3.3 timer.read() This is used to return the current elapsed time for a particular timer

handle:read()

INPUT NAME USE
handle Open timer handle

OUTPUT result Current elapsed time in ms or nil if error

3.3 Keyboard Class

This class which has no methods is used to query the keyboard while a script is running. This can
be used to allow the user to hit keys to modify the script actions without halting script loops.

3.3.1 Class Methods

3.3.1.1 kbd.prep() Prepares the keyboard for async input

kbd.prep()

INPUT NAME USE

OUTPUT result 1 if prep OK, nil if not

3.3.1.2 kbd.close() Called to shut down the async processing of input. (See 3.3.2 on the follow-
ing page)

kbd.close()

INPUT NAME USE

OUTPUT result 1 if close OK, nil if not

3.3.1.3 kbd.getc() Reads the keyboard without stopping

ch = kbd.getc()

INPUT NAME USE

OUTPUT result Keyboard character as a string or nil if none

PAN-201201001

Revision: 1.1
11 February 2012

Firing Box Manual
Page 20 of 21

Pandora Products.

Minnow Restful Web server
Program Manual

References

3.3.2 Use

This code is used so the script can stay in a loop and query the keyboard in passing. This query does
not halt the loop and allows characters to be input while the loop proceeds. Code example

kbd.prep() -- Get read for user input
while(flag)
do

-- Do real work here....
work_routine()
-- User input ?
ch = kbd.getc()
if(ch ~= nil and ch == “Q”)
then

-- User asked to quit
print(“** QUIT ENTERED **”)
break

end

end
-- Remember to close on exit
kdb.close()

References

[1] D. Crockford. The application/json media type for javascript object notation. Request for
Comments 4627, Network Working Group, July 2006.

[2] Christian Grothoff. Gnu libmicrohttpd.

[3] Christian Grothoff. Gnu libmicrohttpd.

[4] JQuery. Jquery.

[5] PUC-Rio Roberto Ierusalimschy, Departamento de Informática. Lua home page.

[6] Wikipedia. Ajax (programming).

[7] Wikipedia. Representational state transfer.

PAN-201201001

Revision: 1.1
11 February 2012

Firing Box Manual
Page 21 of 21

	1 Minnow Web server
	1.1 Introduction
	1.2 Demonstrations
	1.2.1 Building Minnow from source
	1.2.2 Web server Example
	1.2.3 Lua Example
	1.2.4 Web server with REST
	1.2.5 Debug Operation

	2 Demonstration Site Operation
	2.1 Server RESTful operation
	2.1.1 Server Code
	2.1.2 Server Summary

	2.2 SAMPLE REST API
	2.2.1 ADMIN/TIME
	2.2.2 ADMIN/POWER
	2.2.3 ADMIN/LOGIN

	3 Lua Extension Classes
	3.1 RESTful Interface CLASS
	3.1.1 Introduction
	3.1.2 Class Operation
	3.1.3 Class Methods - Server Control
	3.1.3.1 http.start()
	3.1.3.2 http.stop()
	3.1.3.3 http.lock()
	3.1.3.4 http.open()
	3.1.3.5 http.close()
	3.1.3.6 http.url(h)
	3.1.3.7 http.data()

	3.1.4 JSON Support
	3.1.4.1 parsers.json()
	3.1.4.2 json_kvp()

	3.2 Timer CLASS
	3.2.1 Timer Class Methods
	3.2.1.1 timer.sleep()

	3.2.2 Timer Constructors/Destructors
	3.2.2.1 timer.new()
	3.2.2.2 timer.delete()

	3.2.3 Timer Methods
	3.2.3.1 timer.start()
	3.2.3.2 timer.done()
	3.2.3.3 timer.read()

	3.3 Keyboard Class
	3.3.1 Class Methods
	3.3.1.1 kbd.prep()
	3.3.1.2 kbd.close()
	3.3.1.3 kbd.getc()

	3.3.2 Use

