FANDORA PRODUCTS

PWMLIib
PWM Library

Jim Schimpf

Document Number: PAN-2015112301
Revision Number: 0.8
3 April 2016

Pandora Products.
215 Uschak Road
Derry, PA 15627

Pandora Products. Program Manual
PWM Library

Creative Commons Attribution 4.0 International License 2015 Pandora Products. All other product
names mentioned herein are trademarks or registered trademarks of their respective owners.

Pandora Products.

215 Uschak Road
Derry, PA 15627

Phone: 724-539.1276

Email: jim.schimpf@ gmail.com

Pandora Products. has carefully checked the information in this document and believes it to be accu-
rate. However, Pandora Products assumes no responsibility for any inaccuracies that this document
may contain. In no event will Pandora Products. be liable for direct, indirect, special, exemplary,
incidental, or consequential damages resulting from any defect or omission in this document, even
if advised of the possibility of such damages.

In the interest of product development, Pandora Products reserves the right to make improvements
to the information in this document and the products that it describes at any time, without notice or
obligation.

PAN-2015112301 3 April 2016 i
Revision: 0.8 PWM Library

Pandora Products. Program Manual
PWM Library

Document Revision History

] Version \ Author \ Description Date
0.1 js Initial Version 23-Nov-2015
0.2 js Add example 24-Nov-2015
0.3 js Handle differing IOCON cmds needed 26-Nov-2015
0.4 js Added test and summary 26-Nov-2015
0.5 Js Add info on prescale 1-Dec-2015
0.6 Js Interrupt support 10-Dec-2015
0.7 js Better API documentation 15-Mar-2015
0.8 Js Better API doc on Start 3-Apr-2016
PAN-2015112301 3 April 2016 iii

Revision: 0.8 PWM Library

Pandora Products. Program Manual
PWM Library Contents

Contents

1 PWM LPC1114 Description
1.1 Introduction e
1.2 LPCI114 PWM Hardware
1.2.1 PinsAvailable
1.2.2 Counter Timer Hardware

1.23 Operation e

(o N S S N I)

1.2.4 Interrupts o e e e e e e e e e e

2 PWMLIib API
2.1 Internal Structure e e e
22 PWMPinEnable
23 APL . e
2.3.1 PWMLIib_Setup Set up timer for PWM
232 PWMLib_Start Start PWM
2.3.3 PWMLIib_DutyCycle Set the PWM dutycycle
234 PWMLIib_Stop StopPWMo

O© O O OV 0 0 N N

24 Simpleexample L
2.5 InterruptExample 10
251 Code e 11
252 Results 12
2.6 Summary e e e e e 12

PAN-2015112301 3 April 2016 iv
Revision: 0.8 PWM Library

Pandora Products. Program Manual

PWM Library List of Figures

List of Figures
1 PWM Waveforms e e 2
2 16 Bit Counter/Timer e e 3
3 32bitCounter Timer e 4
4 PWMCycle e 4
5 PWMOutput e e e e 10
6 Timer Interrupt 12

PAN-2015112301 3 April 2016 Page 1 of 13

Revision: 0.8 PWM Library

Pandora Products. Program Manual
PWM Library PWM LPC1114 Description

1 PWM LPC1114 Description

1.1 Introduction

Pulse Width Modulation or PWM is the production of a train of square waves with a changeable
duty cycle. A square wave is normally produced with the high part of the wave equal to the low part
or 50% duty cycle. When PWM is employed you are able to set the duty cycle anywhere from 0%
(i.e. OFF) to 100% (i.e. ON). The picture shows some examples.

Amplitude

|1 -

Time

100%

Amplitude

Time

20%

Time

Amplitude

Figure 1: PWM Waveforms

These waveforms can be fed to a capacitor and with different duty cycles can produce a different
DC voltage outputs. Or they can be fed to a HEXFET and allow current control of some high power
device like a motor or heater.

1.2 LPC1114 PWM Hardware
1.2.1 Pins Available

The LPC1114 has 2 16 bit timers and 2 32 bit timers each of which can run PWM outputs. The
LPC1114FN28/102 (28 pin DIP package) has a limited number of these pins brought out. Using
Figure 25 in [1] We can build the following table.

Depending on what I/0O lines you need to control your system a particular timer’s PWM pins may or
may not be available. The highlighted pins have other important uses, thus won’t be good candidates
for PWM use. The design using the processor will determine which of these lines could be used.
Also the registers without pin numbers are present but not connected externally on the chip.

PAN-2015112301 3 April 2016 Page 2 of 13
Revision: 0.8 PWM Library

Pandora Products.

Program Manual

PWM Library LPC1114 PWM Hardware
] Timer Pin GPIO Pin | Package # \ Other Use

CT16B0 | MATO | PIOO_S8 1
MAT1 | PIOO_9 2
MAT2 | PIO0_10 3 SWCLK - Debug
MAT3

CT16B1 | MATO | PIOI1_9 18
MAT1
MAT?2
MAT3

CT32B0 | MATO | PIO1_6 15 Serial Out
MAT1 | PIO1_7 16 Serial In
MAT2 | P1IO0_1 24 Proc Boot
MAT3 | PIOO_11 4

CT32B1 | MATO | PIOI_1 10
MAT1 | PIO1_2 11
MAT2 | PIO1_3 12 SWDIO - Debug
MAT3 | PIO1_4 13
Table 1: LPC1114FN28/102 PWM Pins

1.2.2 Counter Timer Hardware

The 16 bit counter/timers hardware looks like this:

Fig72. 16-bit counter/timer block diagram

Figure 2: 16 Bit Counter/Timer

While the 32 bit counter timers look like this:

PAN-2015112301

Revision: 0.8

3 April 2016
PWM Library

Page 3 of 13

Pandora Products. Program Manual
PWM Library LPC1114 PWM Hardware

Fig 84. 32-bit counter/timer block diagram

Figure 3: 32 bit Counter Timer

The major difference other than the size of the counter register is that the 32 bit counter timers have
2 capture registers and the 16 bit only have one. For PWM we don’t need to consider the capture
action.

1.2.3 Operation

The counter/timer is set to count up to a certain value and reset. This is done by putting a value
into a match register and setting the counter to reset when it hits this value. Then a second match
register is set with a count that when reached causes its output pin to go high. When the reset value
is reached that output pin is again reset to O for the next cycle.

Output of Pin attached to Matchl

/‘ \ MATCHS3 - Set to 1000 & reset counter

Counter Start

Match]1 - Set to 700 to trigger pin

Figure 4: PWM Cycle

This means for PWM operation it requires two Match registers. One to specify the full cycle time
and the second hooked to an output pin to supply the PWM waveform. Looking at Table 1 on page

PAN-2015112301 3 April 2016 Page 4 of 13
Revision: 0.8 PWM Library

Pandora Products.
PWM Library

Program Manual
LPC1114 PWM Hardware

3 when creating a new PWM output, use the register that is NOT connected to a pin for the reset
register if possible.

Note that the value put into the output pin match register will be the difference between the full
cycle value and your new value. Say the full cycle is 1000 counts. You want a 10% duty cycle, this
would be 100 counts. If you put in 100 in the pin match register the waveform would not be correct
it would be low (as the counter always starts from reset and the match is low) for 100 cycles then
high for 900. The opposite (i.e. 900) is what you want, the API will handle this subtraction for you.
This way the waveform stays low till 900 is reached and resets at 1000, giving a duty cycle of 10%.

Finally the frequency of the PWM is somewhat important. Too slow and controlled devices will
jitter, too fast and the current controlling devices (FET’s etc) that the PWM drives might not respond
correctly. The frequency can be controlled to some extent by the counter prescaler register. The
board API has a call to get the system clock frequency (usually 48 MHz). That would be the value
fed through the prescaler to the counter register. The output frequency of the PWM wave form is

f = <System Clock>/ (<full cycle count> * <prescale>)
thus
prescale = <System Clock>/ (<full cycle count> * <f>)

The PWMLIib will calculate the prescale value, the user will need to supply the full cycle count and
a desired frequency. There is a slight correction on this as you can see in Figure 2 on page 3 and
Figure 3 on page 4 the prescaler works like the match register. The prescale value is put into the
prescale register. The prescale counter run by the <System Clock> counts up to the match (prescale
value) and one tick is then fed into the main counter.

If we use the above calculation and say we get 1. That is the main counter should be incremented
at 48 MHz or 1/clock. But the prescale register would be 1. The prescale counter would then count
up to 1 and increment the main counter timer register. But wait the prescale counter would go 0...1
then tick the counter/timer register at 24 MHz rather than 48.

Desired Frequency | Calculated Prescale | Output Frequency | Corrected Prescale | Output Frequency
48 1 24 0 48
24 2 16 2 24
16 4 12 3 16

Table 2: Prescale Table

As you can see in the above table if we subtract 1 from the calculation above then we will get the
desired frequency. This correction done automatically in the library.

PAN-2015112301
Revision: 0.8

3 April 2016
PWM Library

Page 5 of 13

Pandora Products. Program Manual
PWM Library PWMLib API

1.2.4 Interrupts

The counters can also generate an interrupt each time the counter resets. This can be useful if
you wish to say change the PWM duty cycle at every pulse. The is simply done in the setup (see
PWMLIib_Serup()2.3.1) with the inter flag TRUE.

This enables the interrupt so that when that match register resets the interrupt is generated. The
interrupt is vectored though the interrupt controller and in the NXP code it will a named routine for
each counter:

void TIMER16_0 IRQHandler (void

(
void TIMER16_1_TIRQHandler (void
(
(

void TIMER32 0 IRQHandler (void

)
)
)
void TIMER32_1_TIRQHandler (void)

All you have to do in your code is have a routine named this for the counter you are using counter
and on interrupt the processor will jump there and execute your code.

The library will turn on this interrupt when you start the PWM and stop it when you stop the PWM.

2 PWMLib API

2.1 Internal Structure

The PWMLIb has an internal structure that is built with the first call and used in all subsequent calls:

typedef struct {

LPC_TIMER_T xtimer; // Timer used
uint32_t preScale; // Prescaler for timer
uint32_t cycleLength; // PWM cycle in clock ticks
uint32_t frequency; // PWM Frequency
CHIP_IOCON_PIO_T pin; // Processor pin
uint8_t pin_ioset; // Pin Function setting
int8_t rmreg; // Reset on match
int8_t omreg; // Output on match
LPC11CXX_IRQn_Type irg_vec; // Interrupt vector
uint32_t pwm_set; // Current value
bool running;
} PWM_Data;
And a set of return ENUMs

typedef enum {
PWM_OK = 0,

PWM_BAD_VALUE_TOO_SMALL = -1,
PWM_BAD_VALUE_TOO_LARGE = -2,
PWM_BAD_ACTION = -3,
PWM_PIN_NOT_AVAILABLE = -4,
} PWM_RETURN;
PAN-2015112301 3 April 2016 Page 6 of 13

Revision: 0.8 PWM Library

Pandora Products.
PWM Library

Program Manual
PWM Pin Enable

2.2 PWM Pin Enable

When pins shown in Table 1 on page 3 are used they must be switched from GPIO use to connect
with their respective MAT# register. This is done through I/O setup but does not use the same
IOCON_FUNC for each pin. Here is the layout for the LPC1114FN28/102. The following table
was developed using Chapter 8 of [1] and looking up each pin.

Timer Pin \ GPIO Function | GPIO Pin | Package # Other Use

CT16B0O | MATO | IOCON_FUNC2 | PIOO0_8 1
MAT1 | IOCON_FUNC2 | PIO0_9 2
MAT2 | IOCON_FUNC3 | PIO0_10 3 SWCLK - Debug
MAT3

CT16B1 | MATO | IOCON_FUNCI1 | PIO1_9 18
MAT1
MAT?2
MAT3

CT32B0 | MATO | IOCON_FUNC2 | PIO1_6 15 Serial Out
MAT1 | IOCON_FUNC2 | PIO1_7 16 Serial In
MAT2 | IOCON_FUNC2 | PIOO_1 24 Proc Boot
MAT3 | IOCON_FUNC3 | PIO_11 4

CT32B1 | MATO | IOCON_FUNC3 | PIOI_1 10
MAT1 | IOCON_FUNC3 | PIO1_2 11
MAT2 | IOCON_FUNC3 | PIO1_3 12 SWDIO - Debug
MAT3 | IOCON_FUNC2 | PIOI1_4 13

Table 3: LPC1114FN28/102 GPIO & IO Function

From this table we can develop a structure specific for the LPC1114FN28/102 mapping the MAT#
register to an I/O pin and the IOCON_FUNC# needed to set it for PWM output. (If you want the
library to run a different LPC1114 package you will have to develop this table for your copy of the
library). First we create a structure that holds the data for a single timer.

// Timer Charaistics
typedef struct {
LPC_TIMER_ T x*timer;

// Match GPIO setting
uint8_t matO;

uint8_t matl;

uint8_t mat2;

uint8_t mat3;

// GPIO pin
CHIP_IOCON_PIO_T pin_matO;
CHIP_IOCON_PIO_T pin_matl;
CHIP_IOCON_PIO_T pin_mat2;

PAN-2015112301
Revision: 0.8

3 April 2016
PWM Library

Page 7 of 13

Pandora Products. Program Manual
PWM Library API

CHIP_IOCON_PIO_T pin_mat3;
LPC11CXX_IRQOn_Type irqg;
} TIMER_SPEC;

Then in the code we build an IOTable[] that holds the data for all 4 timers. (See in PWMLib.c).
When the PWMLIib_Setup 2.3.1 is called it has the pointer to the particular timer passed as a pa-
rameter. This allows look up by comparing it to the first value in the structure. The code then uses
the match register passed in for the PWM output match to pick the IOCON_FUNC in the matX
items above and the correct pin label IOCON_PIOX_Y in the pin_matX items for that particular
timer.

For interrups the LPC11CXX_IRQn_Type was added to hold the vector value for the particular
counter’s interrupt. When interrupts are enabled then this is used to set it up for the particular
counter

2.3 API

2.3.1 PWMLib_Setup Set up timer for PWM

PWM_RETURN PWMLib_Setup(LPC_TIMER_T #*pTMR,int freq,int size,
CHIP_IOCON_PIO_T reset_match,CHIP_IOCON_PIO_T out_match,
PWM_Data =xdata,bool inter)

INPUT NAME USE
pTMR Pointer to timer used
freq Desired PWM frequency
size Full cycle count
reset_match Reset counter (i.e. 0-3 for MAT0-3)
out_match PWM pin (i.e 0-3 for MATO0-3)

data Filled out PWM_Data structure

inter TRUE if you want an interrupt at each counter reset
OUTPUT | PWM_RETURN Status of setup

The reset_match and out_match values specify which match registers (MAT0-MAT?3) of the chosen
counter are to be used for the end of waveform match (reset_match, MATCH3 in the picture) the
output PWM pin (out_match, MATCHI in the picture). See Figure 4 on page 4.

This call fills out the data in the PWM_Data structure2.1. It first does the table lookup described to
get the timer pin data. Note if the values found are O then that pin is not connected to the outside
and an error is returned. It then calculates the prescale as described in 1.2.3 and returns an error is
there is a problem.

NOTE: The duty cycle of the PWM is initially set to 0 by this call. You can call PWMLib_DutyCycle()
at any before or after PWMLib_Start() time to change the duty cycle.

PAN-2015112301 3 April 2016 Page 8 of 13
Revision: 0.8 PWM Library

Pandora Products. Program Manual
PWM Library Simple example

2.3.2 PWMLib_Start Start PWM

void PWMLib_Start (PWM_Data =data)

INPUT | NAME | USE

data PWM_Data from PWMLib_Setup
ouTPUT none

This call starts the PWM output. The code is rather straightforward except for the PWMC register.
This has a bit set for PWM output match register used. bit 0 is set for MATO, bit 1 for MAT1 etc.
So a bit shift of 1 using the MAT# is used to set it.

2.3.3 PWMLib_DutyCycle Set the PWM duty cycle

PWM_RETURN PWMLib_DutyCycle (PWM_Data =xdata,int dutyCycle)

| INPUT NAME USE
data PWM_Data from PWMLIib_Setup
dutyCycle # Counts
OUTPUT | PWM_RETURN Status of setup

This allows the setting of the PWM cycle time. The value input is # counts and the PWM duty cycle
is equals 100% * #counts/<full cycle count>. Thus if the full cycle count was 2000 then 1000 would
be 50% duty cycle. This call can be made before or after PWMLib_Start is called. If run before
start then the PWM will begin with that value rather than the default 0.

2.34 PWMLIib_Stop Stop PWM

void PWMLib_Stop (PWM_Data =*data)

INPUT | NAME | USE |

data PWM_Data from PWMLib_Setup
OuTPUT none

This call stops the PWM output.

2.4 Simple example

For the example the specification is to produce a 2KHz PWM waveform with a 30% duty cycle on
pin 10 of the LPC1114FN28/102. From the chart Table 1 on page 3 we can see pin 10 is attached
to CT32B1 Match 0 and the output pin is PIO1_1. The only other item to be determined is how
much resolution do we want for the PWM (i.e total count). The larger the total count then the more
precisely we can specify the duty cycle. (I.e. if the total count was 10 then you could only specify
PWM with to 10%). The other limitation is if you specify too large a total count then the prescale
value won’t be in range. (See 1.2.3).

PAN-2015112301 3 April 2016 Page 9 of 13
Revision: 0.8 PWM Library

Pandora Products. Program Manual
PWM Library Interrupt Example

For this version we will specify a total count of 4000. Thus a 30% duty cycle would be 30% of 4000
or 1200.

PWM_RETURN rtnval;
PWM_Data pwm;

/+ Initialize GPIO =/
Chip_GPIO_Init (LPC_GPIO);

// Timer Count Freq Reset Match Output Match
rtnval = PWMLib_Setup (LPC_TIMER32_1,4000, 2000, 3, 0,
if(rtnval == PWM_OK)

{
// Set 30% duty cycle
rtnval = PWMLib_DutyCycle ($pwm, 1200) ;
PWMLib_Start (&pwm) ;
}
else
{
// Handle Timer setup failure

}

The result is this waveform.

Fun Tria'd Moise: Filter Off

R -+Hidth

B 1.00Y :_—'r'-l'il:lth

Figure 5: PWM Output

The duty cycle is +Width / (-Width + +Width) = 149.8. usec / (149.8. usec + 349.4 usec) = 0.30008.
The frequency is 2.003 kHz which quite close to the desired.

2.5 Interrupt Example

The PWM library also allows you to generate an interrupt on each reset of the reset match register.
The code below was written to see if it was possible to change the duty cycle of the PWM on a
pulse by pulse basis. At the reset match interrupt, you can write a new value of the duty cycle (with

PAN-2015112301 3 April 2016 Page 10 of 13
Revision: 0.8 PWM Library

&pwm) ;

Pandora Products. Program Manual
PWM Library Interrupt Example

PWMLIib_DutyCycle()) and the next pulse would use that value. You have to do this quickly before
the match could occur.

For this test the frequency is 400,000 Hz and the two wave forms we want to produce are:

e 0.5 usec low 2.0 usec high wave

e 1.2 usec low 1.3 usec high wave

This means our interrupt routine will have to change the duty cycle in less than 0.5 usec, the shortest
time. This code will test if this is possible with a 48 MHz MO.

2.5.1 Code

#include "PWMLib.h"
const unsigned int OscRateln;
int main (void)
{
PWM_Data P;
PWM_Data *pwm = &P;
/+ Initialize GPIO PIOO_7 as scope marker =/
Chip_GPIO_Init (LPC_GPIO);
Chip_GPIO_SetPinDIROutput (LPC_GPIO, 0, 7);
Chip_GPIO_SetPinState (LPC_GPIO, 0, 7, 0);
// 400,000 Hz frequency
// MAT3 as reset match
// MATO/PIO0_8 PWM bit
// Enable int on MAT3 reset
PWMLib_Setup (LPC_TIMER16_0,400000,120, 3,0, pwnm, true);
PWMLib_DutyCycle (pwm, 24) ; // 0.5 us low 2.0 us high
PWMLib_Start (pwm) ;
// Enter an infinite loop
while (1)
{
__WFI();
}
return 0 ;
}
void TIMER16_0_IRQHandler (void)
{
Chip_TIMER_ClearMatch (LPC_TIMER16_0, 3);
Chip_GPIO_SetPinState (LPC_GPIO, 0, 7, 1);
Chip_GPIO_SetPinState (LPC_GPIO, 0, 7, 0);

PAN-2015112301 3 April 2016 Page 11 of 13
Revision: 0.8 PWM Library

Pandora Products. Program Manual
PWM Library Summary

The code sets up PIO0_7 as a scope marker so we can see when the interrupt takes place. The
PWMLIib_Setup uses LPC_TIMER16_0 and MAT?3 as the reset match and MATO (which is attached
to PIO0_8 see Table 3 on page 7).

To catch the interrupt, the routine TIMER16_0_IRQHandler() was added. Note the call Chip_TIMER_ClearMatch()
MUST be present to clear the interrupt. You need to put in the timer you are using and the MAT

register that generated the interrupt. Any other code in the interrupt routine is user dependent. Here

we pulsed PIO0_7 so the scope can show us when the routine occured.

2.5.2 Results

The scope was attached to PIO0_8 (PWM out) and PIO0_7 (marker) and we got the following:

Bun Trig'd) Moise: Filter Off

200y

Figure 6: Timer Interrupt

First the good news. Looking at the values at the bottom of the picture the PWM waveform is within
150 ns of the required values so that it is within specification. Looking at the yellow cursors and
right hand data block we can see that the interrupt routine occurs 1.5 us after the reset.

The 48 MHz MO is just not fast enough to change the duty cycle on the fly as the interrupt would
have to be less that 0.5 us from the reset match for the cycle by cycle modification to work.

2.6 Summary

The library has been tested on an LPC1114FN28/102 for CT16B0 except for the SWCLK pin. For
CT16B1 PIO0_9 (the only pin available). For CT32BO0 for all the pins (Serial port was turned off)
Note PIO0_1 worked but it was still tied to the 15K pullup for boot. And CT32B1 for all except the
SWDIO pin.

PAN-2015112301 3 April 2016 Page 12 of 13
Revision: 0.8 PWM Library

Pandora Products. Program Manual
PWM Library References

References

[1] NXP. UM10398 LPC111x/LPC11Cxx User manual. NXP BY, rev. 12.3 edition, June 2014.

PAN-2015112301 3 April 2016 Page 13 of 13
Revision: 0.8 PWM Library

	1 PWM LPC1114 Description
	1.1 Introduction
	1.2 LPC1114 PWM Hardware
	1.2.1 Pins Available
	1.2.2 Counter Timer Hardware
	1.2.3 Operation
	1.2.4 Interrupts

	2 PWMLib API
	2.1 Internal Structure
	2.2 PWM Pin Enable
	2.3 API
	2.3.1 PWMLib_Setup Set up timer for PWM
	2.3.2 PWMLib_Start Start PWM
	2.3.3 PWMLib_DutyCycle Set the PWM duty cycle
	2.3.4 PWMLib_Stop Stop PWM

	2.4 Simple example
	2.5 Interrupt Example
	2.5.1 Code
	2.5.2 Results

	2.6 Summary

